Image Tag Completion by Noisy Matrix Recovery Supplementary Document

Zheyun Feng^{*}, Songhe Feng[‡], Rong Jin^{*}, Anil K. Jain^{*} *{fengzhey, rongjin, jain}@cse.msu.edu, [‡]shfeng@bjtu.edu.cn

*Michigan State University, [‡]Beijing Jiaotong University

Abstract. In this supplementary document, we present

- Detailed proofs of Lemma 1, Lemma 2, theorem 2, theorem 4 and theorem 5 in the main paper.
- Detailed statistics about the refined datasets.
- Supplementary experimental results, mainly in terms of AR@N and C@N.

Note all the notations are the same as used in the main paper.

1 Detailed Proofs

1.1 Proof of Lemma 1

Proof. We have

$$\sum_{i=1}^{n} \sum_{j=1}^{m} \frac{|P_{i,j} - Q_{i,j}|^2}{Q_{i,j}}$$
$$= \sum_{i=1}^{n} \left(\sum_{j=1}^{m} \frac{|P_{i,j} - Q_{i,j}|^2}{Q_{i,j}} \right) \left(\sum_{i=1}^{j} Q_{i,j} \right)$$
$$\geq \sum_{i=1}^{n} \sum_{j=1}^{m} \frac{|P_{i,j} - Q_{i,j}|}{\sqrt{Q_{i,j}}} \sqrt{Q_{i,j}} = |P - Q|_1.$$

1.2 Proof of Lemma 2

Proof. To facilitate our analysis, we rewrite each \mathbf{d}_i as

$$\mathbf{d}_i = \sum_{j=1}^{m_*} \mathbf{d}_i^j,$$

where \mathbf{d}_{i}^{j} is the image tag vector corresponding to the *j*-th word sampling for the tag vector of the *i*-th image. To utilize Lemma 2, we define $Z_{i,j}$ as

$$Z_i = \left(\mathbf{d}_i^j - \mathbf{p}_i\right)\mathbf{e}_i^{\top},$$

and therefore

$$M = \frac{1}{m_*} \sum_{i=1}^n \sum_{j=1}^{m_*} Z_{i,j}.$$

To bound U in Lemma 2, we have

$$|Z_{i,j}|_* \le \left|\mathbf{d}_i^j - \mathbf{p}_i\right|_2 \le |\mathbf{d}_i^j|_2 \le 1.$$

To bound σ_Z , we compute

$$\left| \frac{1}{nm_*} \sum_{i=1}^n \sum_{j=1}^m \mathbb{E}\left[Z_{i,j} Z_{i,j}^\top \right] \right|_* = \left| \frac{1}{nm_*} \sum_{i=1}^n \sum_{j=1}^m \mathbb{E}\left[\left(\mathbf{d}_i^j - \mathbf{p}_i \right) \left(\mathbf{d}_i^j - \mathbf{p}_i \right)^\top \right] \right|_*$$
$$= \left| \frac{1}{nm_*} \sum_{i=1}^n \sum_{j=1}^m \mathbb{E}\left[\mathbf{d}_i^j (\mathbf{d}_i^j)^\top \right] - \mathbf{p}_i \mathbf{p}_i^\top \right|_* \le \max_{1 \le j \le m} \frac{1}{n} \sum_{i=1}^n p_{i,j} (i - p_{i,j}^2) = \frac{|P\mathbf{1}|_\infty}{n}$$

Similarly, we have

$$\left| \frac{1}{nm_*} \sum_{i=1}^n \sum_{j=1}^m \mathbb{E}\left[Z_i^\top Z_i \right] \right|_* = \left| \frac{1}{nm_*} \sum_{i=1}^n \sum_{j=1}^m \mathbb{E}\left[\left(\mathbf{d}_i^j - \mathbf{p}_i \right)^\top \left(\mathbf{d}_i^j - \mathbf{p}_i \right) \mathbf{e}_i \mathbf{e}_i^\top \right] \right|_*$$
$$= \left| \frac{1}{nm_*} \sum_{i=1}^n \sum_{j=1}^m \mathbb{E}\left[\left(\mathbf{d}_i^\top \mathbf{d}_i - \mathbf{p}_i^\top \mathbf{p}_i \right) \mathbf{e}_i \mathbf{e}_i^\top \right] \right|_* \le \frac{1}{n}.$$

We complete the proof by plugging the bounds for U and σ_Z .

1.3 Proof of Theorem 2

Proof. We consider any solution $Q \in \Delta$. Since \hat{Q} is the optimal solution to Eq. (1) in the main paper, we have $\langle \nabla \mathcal{L}(\hat{Q}), \hat{Q} - Q \rangle \leq 0$, i.e.

$$-\frac{1}{m_*}\sum_{i=1}^n\sum_{j=1}^m\frac{d_{i,j}}{\hat{Q}_{i,j}}\left(\hat{Q}_{i,j}-Q_{i,j}\right)+\varepsilon\langle\partial|\hat{Q}|_{tr},\hat{Q}-Q\rangle\leq 0,$$

where $\partial |\hat{Q}|_{tr}$ is a subgradient of $|\hat{Q}|_{tr}$. Using the fact that

$$\langle \partial |\hat{Q}|_{tr} - \partial |Q|_{tr}, \hat{Q} - Q \rangle \ge 0,$$

we can replace $\langle \partial | \hat{Q} |_{tr}, \hat{Q} - Q \rangle$ with $\langle \partial | Q |_{tr}, \hat{Q} - Q \rangle$, which results in the following inequality

$$-\frac{1}{m_*}\sum_{i=1}^n\sum_{j=1}^m\frac{d_{i,j}}{\hat{Q}_{i,j}}\left(\hat{Q}_{i,j}-Q_{i,j}\right)+\varepsilon\langle\partial|Q|_{tr},\hat{Q}-Q\rangle\leq 0.$$

2

Define $Z_{i,j} = (\hat{Q}_{i,j} - Q_{i,j})/\hat{Q}_{i,j}$. We have

$$-\frac{1}{m_*}\sum_{i=1}^n\sum_{j=1}^m\frac{d_{i,j}}{\hat{Q}_{i,j}}\left(\hat{Q}_{i,j}-Q_{i,j}\right) = -\frac{1}{m_*}\sum_{i=1}^n\langle \mathbf{d}_i\mathbf{e}_i^\top, Z\rangle = -\langle P, Z\rangle - \langle M, Z\rangle.$$

Thus the bound in Eq. (8) in the main paper is modified as

$$-\sum_{i=1}^{n}\sum_{j=1}^{m}\frac{P_{i,j}}{\hat{Q}_{i,j}}\left(\hat{Q}_{i,j}-Q_{i,j}\right)+\varepsilon\langle\partial|Q|_{tr},\hat{Q}-Q\rangle\leq\sum_{i=1}^{n}\sum_{j=1}^{m}\frac{M_{i,j}}{\hat{Q}_{i,j}}\left(\hat{Q}_{i,j}-Q_{i,j}\right).$$

Since

$$-\sum_{j=1}^{m} \frac{P_{i,j}}{\hat{Q}_{i,j}} \left(\hat{Q}_{i,j} - Q_{i,j} \right) = -\sum_{j=1}^{m} \frac{1}{\hat{Q}_{i,j}} \left(P_{i,j} - \hat{Q}_{i,j} \right) \left(\hat{Q}_{i,j} - Q_{i,j} \right).$$

we have

$$-\sum_{j=1}^{m} \frac{P_{i,j}}{\hat{Q}_{i,j}} \left(\hat{Q}_{i,j} - Q_{i,j} \right) = \sum_{i=1}^{n} \sum_{j=1}^{m} \frac{(\hat{Q}_{i,j} - P_{i,j})^2}{2\hat{Q}_{i,j}} + \frac{(\hat{Q}_{i,j} - Q_{i,j})^2}{2\hat{Q}_{i,j}} - \frac{(Q_{i,j} - P_{i,j})^2}{2\hat{Q}_{i,j}}$$

Define matrix $B \in \mathbb{R}^{n \times m}$ as $B_{i,j} = M_{i,j}/\hat{Q}_{i,j}$. Using the fact $\hat{Q}_{i,j} \in [\mu_-, \mu_+]$ and result from Lemma 1, we have

$$\frac{1}{2}|P - \hat{Q}|_1 + \frac{|\hat{Q} - Q|_F^2}{2\mu_+} + \varepsilon \langle \partial |Q|_{tr}, \hat{Q} - Q \rangle \leq \frac{|M|_*}{\mu_-} |\hat{Q} - Q|_{tr} + \frac{|P - Q|_F^2}{2\mu_-}.$$

We write the Singular value decomposition of Q as

$$Q = \sum_{i=1}^{r} \sigma_i \mathbf{u}_i \mathbf{v}_i^{\top},\tag{1}$$

where r is the rank of Q, σ_i is the *i*-th singular value of Q, and $(\mathbf{u}_i, \mathbf{v}_i)$ are the left and right singular vectors of Q. Let $U_{\perp} \in \mathbb{R}^{n \times (n-r)}$ and $V_{\perp} \in \mathbb{R}^{m \times (m-r)}$ be the orthogonal bases complementary to U and V, respectively. Define the linear operators \mathcal{P}_Q and \mathcal{P}_Q^{\perp} as

$$\mathcal{P}_Q(Z) = UU^{\top}Z + ZVV^{\top} - UU^{\top}ZVV^{\top}, \ \mathcal{P}_Q^{\perp}(Z) = Z - \mathcal{P}_Q(Z).$$

According to (1), the subgradient $\partial |Q|_{tr}$ is given by the set \mathcal{W}

$$\mathcal{W} = \left\{ UV^{\top} + U_{\perp}WV_{\perp} : W \in \mathbb{R}^{(n-r)\times(m-r)}, |W|_{*} = 1 \right\}.$$

Thus by choosing an appropriate matrix W for the subgradient $\partial |Q_{tr}|$, we have

$$\langle \partial |Q|_{tr}, \hat{Q} - Q \rangle \ge -|\mathcal{P}_Q(\hat{Q} - Q)|_{tr} + |\mathcal{P}_Q^{\perp}(\hat{Q} - Q)|_{tr}$$

and therefore

$$\frac{1}{2}|P - \hat{Q}|_{1} + \frac{|\hat{Q} - Q|_{F}^{2}}{2\mu_{+}} + \varepsilon |\mathcal{P}_{Q}^{\perp}(\hat{Q} - Q)|_{tr}$$

$$\leq \varepsilon |\mathcal{P}_{Q}(\hat{Q} - Q)|_{tr} + \frac{|M|_{*}}{\mu_{-}}|\hat{Q} - Q|_{tr} + \frac{|P - Q|_{F}^{2}}{2\mu_{-}}.$$

Using the fact

$$\varepsilon \geq \frac{1}{\mu_{-}}|M|_{*},$$

we have

$$|P - \hat{Q}|_1 + \frac{|\hat{Q} - Q|_F^2}{\mu_+} \le 4\varepsilon |\mathcal{P}_Q(\hat{Q} - Q)|_{tr} + \frac{|P - Q|_F^2}{\mu_-}.$$

We consider two cases. In the first case, we assume

$$|P - \hat{Q}|_1 \le \frac{1}{\mu_-} |P - Q|_F^2,$$

in which the bound in theorem trivially holds. In the second case, we have the opposite

$$|P - \hat{Q}|_1 > \frac{1}{\mu_-} |P - Q|_F^2,$$

which implies

$$\frac{|\hat{Q}-Q|_F^2}{\mu_+} \le 4\varepsilon |\mathcal{P}_Q(\hat{Q}-Q)|_{tr},$$

and therefore

$$|\mathcal{P}_Q(\hat{Q}-Q)|_{tr} \le 4\varepsilon r\mu_+.$$

We complete the proof by plugging the above bound.

1.4 Proof of Theorem 4

Proof. Following the same analysis as that for Theorem 2 in the main paper (see Section 1.3 in this supplementary for its proof), we have

$$\sum_{i=1}^{m} \frac{(p_i - \hat{q}_i)^2}{\hat{\mathbf{q}}_i} \le \sum_{i=1}^{m} \frac{z_i}{\hat{q}_i} (p_i - \hat{\mathbf{q}}_i)$$

Using the fact $\hat{\mathbf{q}}_i \in [\mu_-, \mu_+]$, we have

$$|\mathbf{p}_i - \hat{\mathbf{q}}_i|_2^2 \le \frac{\mu_+}{\mu_-} |\mathbf{z}|_2 |\mathbf{p} - \hat{\mathbf{q}}|_2,$$

4

and therefore

$$|\mathbf{p}_i - \hat{\mathbf{q}}|_2 \le rac{\mu_+}{\mu_-} |\mathbf{z}|_2.$$

We finally complete the proof by using the fact

$$\sum_{i=1}^{m} \frac{(p_i - \hat{q}_i)^2}{\hat{q}_i} \ge |\mathbf{p} - \hat{\mathbf{q}}|_1.$$

1.5 Proof of Theorem 5

Proof. We will use the Chernoff bound, i.e. X_1, \dots, X_{m_*} be independent draws from a Bernoulli distribution with $\mathbb{P}(X = 1) = \mu$. We have

$$\mathbb{P}\left(\frac{1}{m_*}\sum_{i=1}^{m_*} X_i \ge (1+\delta)\mu\right) \le \exp\left(-\frac{\delta^2 \mu m_*}{3}\right),$$
$$\mathbb{P}\left(\frac{1}{m_*}\sum_{i=1}^{m_*} X_i \le (1-\delta)\mu\right) \le \exp\left(-\frac{\delta^2 \mu m_*}{2}\right).$$

Using the Chernoff bound, we have, with a probability $1 - 2 \exp(-\delta^2 \mu m_*/2)$

$$|X - \mu|^2 \le \delta^2 \mu^2.$$

By taking the union bound, we have, with a probability $1 - 2e^{-t}$

$$|\mathbf{z}|_2 \le \sqrt{\frac{t + \log m}{\mu_- m_*}} |\mathbf{p}|_2.$$

2 Statistics about the Refined Datasets

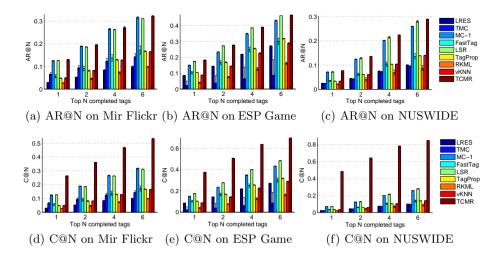
Table 1. Statistics for the datasets used in the experiments. These datasets are not the original datasets but refined according to our setup. Note NUS-WIDE has two types of tags: the one automatically crawled from Flickr and used for model training, and the one manually annotated.

	ESP Game	IAPR TC12	MirFlickr	NUS-WIDE
Number of Images	10,450	12,985	5,231	20,968
Visual feature dimension	1000	1000	1000	500
Vocabulary size	265	291	372	420
Average tags per image	6.41	7.07	5.82	10.4
Min/max tags per image	5/15	5/23	4/43	9/15
Average images per tag	253.0	315.5	81.9	519.6
Min/max images per tag	16/3,439	14/4,752	10/781	78/5,058
Number of observed tags $(m_*)^*$	4	4	3	4

* The number of observed tags when training our proposed model throughout the experimental section if without specific explanation.

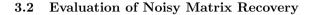
3 Supplementary Experimental Results

In this section, we further present the experimental results of our proposed TCMR in comparison with the baseline approaches.



3.1 Comparison to the state-of-the-art Tag Completion Methods

Fig. 1. Tag completion performance of the proposed method and state-of-the-art baselines on Mir Flickr, ESP Game and NUS-WIDE datasets, reported by AR@N and C@N. This figure can be viewed as supplemental to Fig. 1 in the main paper.



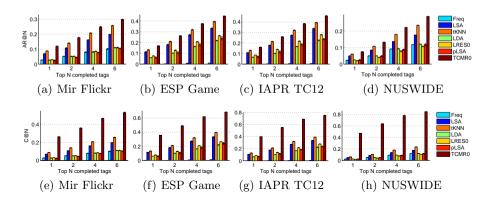


Fig. 2. Comparison of different topic models and matrix completion algorithms without taking into account the visual feature. The top row is evaluated by AR@N, and the bottom row is evaluated by C@N. This figure can be viewed as supplemental to Fig. 2 in the main paper.

3.3 Sensitivity to the Number of Observed Tags

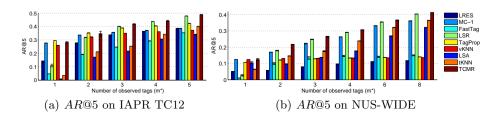


Fig. 3. Tag completion performance with varied number of observed tags, with AP@5 reported. This figure can be viewed as supplemental to Fig. 3 in the main paper.