
Image Tag Completion by Noisy Matrix
Recovery

Supplementary Document

Zheyun Feng∗, Songhe Feng‡, Rong Jin∗, Anil K. Jain∗
∗{fengzhey, rongjin, jain}@cse.msu.edu, ‡shfeng@bjtu.edu.cn

∗Michigan State University, ‡Beijing Jiaotong University

Abstract. In this supplementary document, we present
– Detailed proofs of Lemma 1, Lemma 2, theorem 2, theorem 4 and

theorem 5 in the main paper.
– Detailed statistics about the refined datasets.
– Supplementary experimental results, mainly in terms of AR@N and

C@N .
Note all the notations are the same as used in the main paper.

1 Detailed Proofs

1.1 Proof of Lemma 1
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1.2 Proof of Lemma 2

Proof. To facilitate our analysis, we rewrite each di as

di =

m∗∑
j=1
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i ,

where dj
i is the image tag vector corresponding to the j-th word sampling for

the tag vector of the i-th image. To utilize Lemma 2, we define Zi,j as
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and therefore
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We complete the proof by plugging the bounds for U and σZ .

1.3 Proof of Theorem 2

Proof. We consider any solution Q ∈ ∆. Since Q̂ is the optimal solution to Eq.
(1) in the main paper, we have 〈∇L(Q̂), Q̂−Q〉 ≤ 0, i.e.

− 1

m∗

n∑
i=1

m∑
j=1

di,j

Q̂i,j

(
Q̂i,j −Qi,j

)
+ ε〈∂|Q̂|tr, Q̂−Q〉 ≤ 0,

where ∂|Q̂|tr is a subgradient of |Q̂|tr. Using the fact that

〈∂|Q̂|tr − ∂|Q|tr, Q̂−Q〉 ≥ 0,

we can replace 〈∂|Q̂|tr, Q̂−Q〉 with 〈∂|Q|tr, Q̂−Q〉, which results in the following
inequality
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Define Zi,j = (Q̂i,j −Qi,j)/Q̂i,j . We have
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Define matrix B ∈ Rn×m as Bi,j = Mi,j/Q̂i,j . Using the fact Q̂i,j ∈ [µ−, µ+]
and result from Lemma 1, we have
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We write the Singular value decomposition of Q as

Q =

r∑
i=1

σiuiv
>
i , (1)

where r is the rank of Q, σi is the i-th singular value of Q, and (ui,vi) are
the left and right singular vectors of Q. Let U⊥ ∈ Rn×(n−r) and V⊥ ∈ Rm×(m−r)

be the orthogonal bases complementary to U and V , respectively. Define the
linear operators PQ and P⊥Q as

PQ(Z) = UU>Z + ZV V > − UU>ZV V >, P⊥Q (Z) = Z − PQ(Z).

According to (1), the subgradient ∂|Q|tr is given by the set W
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Thus by choosing an appropriate matrix W for the subgradient ∂|Qtr|, we have
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and therefore
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We complete the proof by plugging the above bound.

1.4 Proof of Theorem 4

Proof. Following the same analysis as that for Theorem 2 in the main paper (see
Section 1.3 in this supplementary for its proof), we have

m∑
i=1

(pi − q̂i)2

q̂i
≤

m∑
i=1

zi
q̂i

(pi − q̂i).

Using the fact q̂i ∈ [µ−, µ+], we have

|pi − q̂i|22 ≤
µ+

µ−
|z|2|p− q̂|2,



Image Tag Completion by Noisy Matrix Recovery - Supplementary 5

and therefore
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We finally complete the proof by using the fact
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1.5 Proof of Theorem 5

Proof. We will use the Chernoff bound, i.e. X1, · · · , Xm∗ be independent draws
from a Bernoulli distribution with P(X = 1) = µ. We have
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2 Statistics about the Refined Datasets

Table 1. Statistics for the datasets used in the experiments. These datasets are not the
original datasets but refined according to our setup. Note NUS-WIDE has two types
of tags: the one automatically crawled from Flickr and used for model training, and
the one manually annotated.

ESP Game IAPR TC12 MirFlickr NUS-WIDE

Number of Images 10,450 12,985 5,231 20,968

Visual feature dimension 1000 1000 1000 500

Vocabulary size 265 291 372 420

Average tags per image 6.41 7.07 5.82 10.4

Min/max tags per image 5/15 5/23 4/43 9/15

Average images per tag 253.0 315.5 81.9 519.6

Min/max images per tag 16/3,439 14/4,752 10/781 78/5,058

Number of observed tags (m∗)
∗ 4 4 3 4

∗ The number of observed tags when training our proposed model throughout the
experimental section if without specific explanation.

https://www.flickr.com/
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3 Supplementary Experimental Results

In this section, we further present the experimental results of our proposed
TCMR in comparison with the baseline approaches.

3.1 Comparison to the state-of-the-art Tag Completion Methods
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Fig. 1. Tag completion performance of the proposed method and state-of-the-art base-
lines on Mir Flickr, ESP Game and NUS-WIDE datasets, reported by AR@N and
C@N . This figure can be viewed as supplemental to Fig. 1 in the main paper.
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3.2 Evaluation of Noisy Matrix Recovery
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(h) NUSWIDE

Fig. 2. Comparison of different topic models and matrix completion algorithms without
taking into account the visual feature. The top row is evaluated by AR@N , and the
bottom row is evaluated by C@N . This figure can be viewed as supplemental to Fig.
2 in the main paper.

3.3 Sensitivity to the Number of Observed Tags
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(b) AR@5 on NUS-WIDE

Fig. 3. Tag completion performance with varied number of observed tags, with AP@5
reported. This figure can be viewed as supplemental to Fig. 3 in the main paper.
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