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Abstract. We propose a multi-stage approach to curve extraction where
the curve fragment search space is iteratively reduced by removing un-
likely candidates using geometric constrains, but without affecting recall,
to a point where the application of an objective functional becomes ap-
propriate. The motivation in using multiple stages is to avoid the draw-
back of using a global functional directly on edges, which can result
in non-salient but high scoring curve fragments, which arise from non-
uniformly distributed edge evidence. The process progresses in stages
from local to global: (i) edges, (ii) curvelets, (4iii) unambiguous curve
fragments, (iv) resolving ambiguities to generate a full set of curve frag-
ment candidates, (v) merging curve fragments based on a learned pho-
tometric and geometric cues as well a novel lateral edge sparsity cue,
and (vi) the application of a learned objective functional to get a final
selection of curve fragments. The resulting curve fragments are typically
visually salient and have been evaluated in two ways. First, we measure
the stability of curve fragments when images undergo visual transfor-
mations such as change in viewpoints, illumination, and noise, a critical
factor for curve fragments to be useful to later visual processes but one
often ignored in evaluation. Second, we use a more traditional compari-
son against human annotation, but using the CFGD dataset and CFGD
evaluation strategy rather than the standard BSDS counterpart, which
is shown to be not appropriate for evaluating curve fragments. Under
both evaluation schemes our results are significantly better than those
state of the art algorithms whose implementations are publicly available.

1 Introduction

Interest in contour extraction, an age-old fundamental problem in computer vi-
sion, which diminished beginning in the late 1990’s with a paradigm shift towards
the use of keypoint-based approaches, has recently seen a revival, especially in
application to object recognition and multi-view applications. Contours, which
along with regions have been a classic intermediate-level representation of im-
ages, are attractive since they are robust to illumination variation, view vari-
ation, and other visual transformations. An increasing number of approaches
now rely on extracted contours for recognition [6,16,20,31,11], or for 3D object
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recognition and pose estimation [21], and others, leading to a number of re-
cent approaches to contour extraction [22,28]. Multiple terms such as boundary,
contour, silhouette, curve, edges, etc., have been used with some ambiguity to
denote at least three distinct notions: (¢) edge maps, line tokens, and other local
and unorganized representations of a contour where a pixel/point is denoted as
a contour point; (i4) saliency maps representing at each pixel the probability of
a contour, or a subset of contours such as silhouette (boundaries), e.g., Pb [18,2]
and others; (ii1) curve fragments which are essentially chains of long ordered
edge points [27,13,14,15,5,22,11,17,4,24,9]. Relatively fewer papers address the
latter, but it is a arguably the most useful. The focus of this paper is to extract
contour fragments, Fig 1.

a)
Fig.1. A brief overview of some of the stages in our curve extraction approach: a)
Initial Edge Map, b) Curvelet Map, zoomed in to show details, ¢) Contour fragments
from [27], d) Contour Fragments resulting from this work. Readers are invited to zoom
in to compare the two contour fragments shown in randomized color

The early work of Fischler et al. [8] is canonical of work which followed the next
three decades in this area: a local road detector generates a spatial map which is
then searched by the A* algorithm for the minimum cost path between any two
given points. We show in Section 2 that previous work essentially follows this
pattern by searching the space of curves using a linear objective functional. The
drawback of this type of a model is that for any given path depicting a low cost
(high edge evidence), there is a key underlying assumption that cost is uniformly
distributed. This assumption, however, is not always true and this caveat allows
for paths passing through very high strength evidence but otherwise sparse,
leading to either numerous false positives or missed detections.

Fig 2 shows examples of curve fragments achieving good response from the
global optimization process which are not salient because they are in fact spa-
tially sparse in edge evidence. The existence of such curves can overwhelm those
arrangements of edges which have consistency but possibly low edge evidence.
We posit that the jump from edges to curve fragments needs to be mediated
by multiple stages of increasingly more global considerations, each maintaining
recall while reducing the space of undesirable curves, thus safely limiting that
the curve fragment search space. This is in analogy to the 20 question approach
but done in stages.

Specifically, the curve extraction process proceeds in six stages: (i) edge maps
are first computed at thresholds generating the highest recall, therefore also
generating the highest level of false positives; (ii) the formation of curvelets from
neighboring edges at each edge, identifies edges with geometrically consistent
support and potential neighbors. This allows false positives to be reduced with
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Fig. 2. An example demonstrating the drawback of directly going from edges to curve
fragments: top row, left to right: original image and its edge map, some selected con-
tours which score well based on a standard objective functional but which are not
salient, the edge map zoomed in the area of the blue curve without and with the blue
curve superimposed. Second row: additional examples.

a very insignificant drop in recall; (iii) edges whose local curvelet structure
indicates an unambiguous groupings with their neighbors are grouped and all
these edges are replaced with the resulting curve fragment; (i) the ambiguity
in grouping the remaining edges is explicitly represented in a hypothesis graph
rooted at end-points of contour fragments formed in the previous stage. The
ambiguity is then resolved by applying an objective functional operating locally
which takes into account smoothness and minimizes gaps; (v) The resulting curve
fragments are often over-fragmented, so geometric and photometric cues and a
novel edge sparsity cue introduced here are learnt in combination to merge pairs
of curves sharing an end-point; (vi) The resulting curve fragments are rated by
a learned objective functional using cues almost identical with the above, to
prune false positives. The end result of our process is a contour fragment graph,
representing curve fragments and their relative arrangements at junctions.

The results are evaluated in two ways. First, the stability of curve fragments
when images undergo visual transformations is examined. Second, results are
compared against human annotations using the boundary evaluation framework
introduced by [18] on the Berkeley Segmentation DataSet (BSDS) [18] as well
as the curve evaluation framework introduced in [10] on the Curve Fragment
Ground-Truth Dataset (CFGD). In all cases it is shown that our approach im-
proves upon the state of the art.

2 Related Works

The need for non-linearity at the level of edge detection was identified by Iverson
and Zucker [12] who proposed that instead of a linear sum over the support of
an edge detector, a non-linear function in the form of a logical-linear operation
be used. Our approach is similar to this idea at the level of curve fragments. A
Curve Fragment (CF) is formally defined as a piecewise smooth parameter-
izable curve segment, C(s) = (x(s),y(s)), s € [0,1]. The literature on boundary
detection is broad, diverse, and spans a few decades. Much of this work, however,
focuses on edge or saliency map detection and relatively few focus on detecting
curve fragments. We present a large portion of the existing literature in the
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following abstract framework. Let V' = {v;]i = 1,..., N} represent a set of pos-
sible samples along the curve fragments: These can be image pixels [5], image
edges [30], or small grouping of edges (super-nodes) in the form of line tokens [14]
or local subgraph [13]. Let E = {e;;|d(v;,v;) < do, Vv;, Vv, } represent all possi-
ble links among these candidate curve samples. The graph G(V, E) is therefore a
superset of all possible curve fragments. The curve extraction problem can then
be cast as selecting a set of links £* C E where

E* = argmin|7,(E) + fug(E\ B)], (1)

and where fr, and fi, are objective functionals that capture characteristics of
the foreground curve and the background clutter, respectively. For example, in
the min-cover approach [5], v; are image pixels and the algorithm seeks curves to
minimizing an objective function in the form of Equation 1. The two approaches
KGS [30,13] and FPG [14] follow a two-stage strategy: in KGS [30,13], normal-
ized cut [26] divides the graph into clusters which then represent v; as a super
node. In FPG [14] short straight lines are first formed and represent v;. Both
methods then proceed to solve an optimization problem of the form described
in Equation 1 using a linear objective function (see supplementary material for
further detail). This two-stage optimization increases efficiency, but has serious
drawbacks: The initial clustering in normalized cut can introduce spurious links
in the k-way normalized cut [29], which includes non-convex optimization, ran-
dom initialization results in random clusters which in turn lead to poor stability,
e.g., over a video sequence. Similarly, the initial stage in FPG [14] needs to be
conservative due to the geometric limitations of the line model, leaving much of
the work for the second stage.

In our approach, we have avoided both problems by employing a range of sim-
ple to complex models covering local to global information arranged in stages. Our
approach bears a strong relationship with compositional systems such as [11,7],
which begin with Gabor-like filters and progressively construct higher level con-
structs by composing simples structures. Our work, however has only bottom-
up processing and may benefit from a full compositional structure. The work of
Todorovic [22] is also hierarchical and generates a vast collection of contour frag-
ment candidates which though extensive are selected to form a final output. The
latter stage of this work can probably work with the results of this paper.

3 Managing Grouping Ambiguity

The goal of the multi-stage approach is to entertain all possible curve hypoth-
esis and then progressively remove unlikely ones, i.e., maintaining recall while
increasing precision, all based on geometric constraints, as explained below.

Stage 1) Edge Detection: The set of candidate curves is significantly reduced
by only initiating them through detected edges. The caveat is that curves with
significant gaps would not have a representation in the gap area, so these curves
would have to rely on representation in the non-gap areas to be initiated; see more
below. The idea of initiating curve candidates from edges implies that the results
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of edge detection should not be pruned at this early stage. Rather, this step should
maintain the highest possible recall at the expense of also maintaining numerous
false positives, Fig 1. The edges are connected by a neighborhood graph:

Definition 1. The Edge Topology Graph (ETG) is a graph whose nodes
are image edges and where links exist between any two edges which are linked by
some curvelet, Fig 3 (d).
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Fig.3. (a) And edge map, (b) An Edge Neighborhood Graph connects each edge
to every edge in a local neighborhood, (c¢) The set of discrete curvelets, (d) The Edge
Topology Graph (ETG), (e) The Curve Fragment Map (CFG) is formed by identifying
unambiguous and geometrically viable 1-chains and replacing the image edges and
connecting links by a single curve fragment

Stage 2) Curvelet Formation: The next stage in removing unlikely candi-
dates is to require a curve segment to have more than one edge support. We
follow the approach of [27] who considered all geometrically reasonable combi-
nations of edges, referred to as curvelets, in some neighborhood typically (7x7).
The purpose of using curvelets is twofold: (i) establish candidate pairing among
edges from which candidate curve fragments can be constructed, and (i) discard-
ing all potential pairings which do not participate in a geometrically consistent
relationship say in a set of say five edges. This stage removes only those curve
fragments whose edge support is below five edges, which implies a very minimal
reduction in recall, but a significant reduction in false positives. Note that this
is quite different than a greedy approach where the most likely combination is
considered. Rather, this approach retains almost all of the likely combinations,
relegating the job of deciding which may be veridical to a later, global stage.
Stage 3) Forming unambiguous curve fragments: Since all pairings of
edges which have passed the above stage are considered viable, ambiguities arise
when an edge forms pairings with more than one edge, occurring often in junc-
tions, corners, but also in other portions of a curve. However, in numerous other
cases an edge forms pairing with only one other edge (each end of an edge
is considered separately). In this case an unambiguous curve fragment forms,
which need not be challenged [27]. The formation of these unambiguous curve
fragments to replace all edges and their groupings which led to it helps resolves
ambiguity in their neighborhood, as described next. Observe that thus far no ob-
jective function has been used, but rather the geometric configuration of edges
with barely minimal contrast has been used to reduce the search space.

Definition 2. The Curve Fragment Graph (CFG) is a transformation of
the ETG where these nodes and links which form unambiguous and geometrically
viable 1-chains are replaced by a single contour fragment, Fig 3 (e).
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Stage 4) Resolving Grouping Ambiguity: The approach to resolve the
ambiguity in grouping the remaining edges is to first construct a graph of all
possible groupings. The first observation is that grouping ambiguity occurs in
clusters of edges, thanks to the formation of unambiguous curve fragments. The
canonical curves can enumerated by considering possibilities starting from the
end point of an existing unambiguous curve fragments: (i) The end point is truly
an end point, with on continuities, e.g., endpoint of A in Fig 4a. (ii) The curve
continues to another curve with ambiguity in the specific paths among a cluster
of options, e.g., continuations of B onto C in Fig 4a. (iii) the continuations of a
curve onto one or two curves or both, as in the continuations of C onto D and E
as in Fig 4a, representing a Y-junction or T junction. (iv) The curve continues
but does not terminate onto another curve fragment, e.g., as in G in Fig 4a.
Observe that in many cases clusters of possible curves agree on the underlying
topology but disagree slightly about the geometry of connectivity. The set of
possible continuations can be represented by a graph, Fig 4c:

Definition 3. The Contour Hypothesis Graph (CHG) is a rooted graph
with the root node representing a contour fragment end-point (the anchor contour
end-point) with links representing the next edge selection and with with nodes
representing image edges. The leaf nodes, each representing a unique path from
the root, give the set of all contour fragments continuing the anchor contour at
the root.

- d)

Fig.4. a) Several distinct types of ambiguities with candidate paths from end-points.
The region labeled “H” represents a noisy area not connected to any viable contour
fragments. b) Newly formed CFG is shown after the resolution of the ambiguities
using quality metric as described in the text. ¢) A Contour Hypotheses Graph (CHG)
rooted at the end point ex of contour fragment Ck. In this case, six contributions are
possible which include ex+1. d) A realistic example of how the CHG represents and
manages ambiguity in grouping among three end-points.

The construction of CHG follows a best-first strategy guided by the qual-
ity of the path constructed thus far. Quality is represented by an energy func-
tional E capturing the saliency of a contour is described below. Three limitations
are imposed on the construction: (i) The total number of nodes cannot exceed
K = 1000. This is experimentally never reached; (i) The energy of a path can
not exceed a Threshold Ey; and, (i) the individual link energy cannot exceed
a threshold E, a large threshold devised to prune away the very unlikely con-
tinuations. It should be noted that the contour hypothesis graph is typically
very constrained since it represents local grouping ambiguity between contour
fragment end-points, thus performance is not affected significantly by changes
in the above system parameters.
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Contour Saliency Measure: The contour hypothesis graph localizes ambigu-
ities to clusters of topologically equivalent but geometrically different groupings.
The latter can be resolved by employing a standard energy function, represent-
ing structural saliency [25]. Specifically, given an ordered sequence of edges,
C = (eg,e1,...en), the energy E(C) depends on two factors (i) maximizing
smoothness by minimizing orientation difference |0;41 — 6;|, where 6; is the ori-
entation of edge e;, and (ii) minimizing the gap length or the Euclidean Distance
between pairs of subsequent edges |e;+1 — e;|. Finally, the energy is normalized
by the number of edges to represent a measure that can fairly capture short and
long sequences of edges:

N
1
BC)= o 2 (wrlein —eif +(1—w) 0 —6:f), 0<w<1  (2)
=0

where we set w = 0.2 which is optimized by grid search in (0,1) for highest
F-measure.

It should be noted that the mutli-stage approach above does not attempt to
bridge gaps beyond what is possible within a small local neighborhood. Rather,
gaps beyond a couple of pixels need to be completed in a post processing stage
such as those presented in [23,19].

4 Learning-Based Merging of Curve Fragments

The result of the previous set of stages is a set of curve fragments which are repre-
sented as a graph, where nodes represent curve fragment endpoints or junctions
where two or more curve fragments come together Fig 5a. These curve fragments
are typically small and cascaded, so that over-fragmentation of expected con-
tour is perceptually evident. Thus, additional grouping is required. Consistent
with the progression from local information (edges) to increasing more global
information (curvelets, hypothesis graph) in previous stages, which chiefly in-
volve geometric information, the next stage uses a slightly more global basis of
reasoning. While the chief organizational principle has thus far been geometric
continuity, the resulting curve fragments are typically sufficiently long to allow
the use of photometric and geometric cues in deciding whether additional group-
ing is required and in disambiguating conflicts when such grouping is warranted.
Specifically, the main question is whether two cascaded curve fragments, i.e.,
those that share an end point in exclusion of other curve fragments (no T or Y
junctions) should be merged or not, essentially a classification problem, Fig 5b.
We consider the following set of photometric and geometric cues in relation
to whether they contribute to the merge/not-merge decision and to what extent.
First, the photometric cues are length-normalized integrals of those photomet-
ric cues traditionally used in edge detection: (i) Brightness gradient: [ VB(s) ds;
(ii) Saturation gradient: [ V.S(s)ds; (iii) Hue gradient: [ VH(s)ds; These three
cues are computed for each of the two curve fragments and then compared. (iv)
Texture differences between the respective sides of the two connected curve
fragments, i.e., differences between the texture attributes of regions 1 and 2
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Fig.5. (a) The curve fragment graph structure provides an opportunity to reduce
the over-fragmentation by using various cues to label each node sharing two curve
fragments as either “merge” or “do not merge.” The decision uses only local portions
of curve fragments as shown in b). (c) shows curve fragments after this stage.

in Fig 5(b), and regions 3 and 4, respectively. These differences are captured by
the Chi-Square distance between the histograms of textons in each region, and
then summed for the two pairs of regions.

Second, the geometric cues are also traditional measures: (v) Length-normalized
integral of absolute curvature: [ |k(s)| ds ; (vi) Wiggliness: the number of inflection
points along the curve fragment; These two cues are computed for each of the two
curve fragments and then compared. Finally, (vii) Geometric Continuity: the an-
gle between the tangents of the two curve fragments at their connecting node is a
measure of how likely the two curve fragments are a single curve fragment.

Third, we introduce a novel cue which to the best of our knowledge has not
been reported before, namely, (viii) Lateral Edge Sparsity: this is defined as the
number of edges in a narrow neighborhood of the curve fragment, see the regions
in Fig 5b. We observe that veridical contours lack edges in a small neighborhood
and therefore conjecture that the cue is inversely correlated with the likelihood
that a candidate curve is veridical (see next section). In addition to being a cue
for veridicality, this cue can also be used as an attribute to the two potentially
connecting curve fragments, expecting the number to be small for both curves.

Fig. 6. The histogram of each of the eight cues, shown separately for “merge” in red
and “do not merge” in blue. Observe that each cue in isolation offers a modest measure
of distinction between the two cases, while the distinction is significantly compounded
when all cues are used in conjunction with each other.

We explore the utility of these eight cues by using a logistic regression classifier
on a training set where positive (merge) and negative (do not merge) examples
are specified. Specifically, we train on the curve fragments annotated in the
Contour Fragment Ground-Truth Dataset (CFGD) which is introduced in [10].
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We use the first 20 images of the CFGD dataset for training and leave the
remaining 30 for the testing stage . By matching the candidate pair of curve
fragments to ground-truth curve fragments, the connection node is selected as
“merge” or “do not merge” depending on whether the corresponding ground-
truth curve is connected. The histograms of positive (merge) and negative (do
not merge) samples for each cue reveal the discriminative power of each cue in
isolation, Fig 6. The cues act in concert giving the probability of the “merge”
vs “do not merge,” which when exceeding a selected threshold (0.5 by default)
leads to a concrete decision.

The above discussion has focused on augmenting the geometric continuity mea-
sures of previous stages with more global photometric and geometric measure with
the goal of merging the typically over-fragmented curve fragments arising from lo-
cal geometric grouping in previous stages. While this will be shown to be effective,
the opposite problem must also be addressed: in certain instances, the geometric
cues happen to be so powerful that they result in long curve fragments. In such
cases, caution is required to verify that indeed the geometric factors are not incon-
sistent with photometric cues.? We therefore use the same machinery in reverse:
we virtually break a long curve at the points along its length and consider whether
the two pieces of the curve should be merged: the probability of (re)merging at
each point of the curve is calculated, local minima are identified, and if the prob-
ability is below the merge threshold, breaks are introduced.

5 Learning-Based Sifting of Curve Fragments

The curve fragments obtained in our approach are the end result of a very cautious
process: extremely low edge thresholds, maintaining all possible local groupings in
the form of curvelets, stringing together unambiguous curvelets while sorting out
ambiguous ones in a hypothesis graph, and resolving ambiguity by grouping cues
all results in making sure that any contour hypotheses with the slightest degree
of evidence is retained. As a result, it is unlikely that a veridical contour is missed
in the process (very high recall), while at the same time it is highly likely that the
process generates (hallucinates) false positives from scant data (low precision).
Since the high degree of false positives can overwhelm processes relying on contour
fragments, e.g., for recognition, a final stage is needed to reduce the false positive
while necessarily also reducing the recall.

This is done by learning a veridicality measure for curve fragments based on
training data. Specifically, curve fragments are attributed with several image-
based measures, essentially the same cues presented in the previous section, so
that each curve fragment is represented as a point in a high-dimensional space.
The ground-truth curve fragments of a training set from CFGD separate curve
fragments into positive and negative exemplars: Veridical (or false positive) curve
fragments are randomly sampled from those computed curve fragments which

! Since producing erroneously grouped curves can cause irreversible damage, e.g., con-
fusing object and background (as many camouflaged objects hope to achieve), it is
wiser to er on the side of caution.
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match (do not match) the ground truth curve fragments under the matching
method of [10]. Finally, a query curve fragment interrogates this space to decide
which class it belongs to. This approach is analogous to [18] who use training
data in cue combination on edge data.

The cues used to indicate veridicality are very similar to those used to in-
dicate whether two connected curve fragments should be merged. Specifically,
these cues are the photometric cues of brightness, saturation, and hue gradients,
and the geometric cues of total curvature, wiggliness, and finally lateral edge
sparsity. We also use curve fragment length as a cue in addition?. Fig 7 shows
the histograms of each cue on veridical and false positive contours, showing
meaningful distinctions.

Fig. 7. The comparison of histograms of various cues for veridical (red) and false
positive contours (blue), on the CFGD data depicting various degrees of separation

To combine the various cues we use a logistic regression classifier. The classifier
is trained on the first 20 images of the CFGD and the rest are reserved for testing.
Utilizing the resulting classifier output, each contour is assigned a probability
of being veridical, and the curve fragment map is thresholded to yield a final
set of curve fragments. This approach is quite flexible and the same framework
can be applied to any other curve extraction system [13,14,15]. To quantitatively
evaluate the extracted curve fragments the classifier probability is thresholded at
varying levels to generate the PR curve, see Fig 13. The visual examples shown
in Fig 1 and Fig 14 correspond to the highest F-measure of the PR curve.

6 Experiments

The algorithm is evaluated in two ways, one using stability analysis and one using
human annotation. Both evaluations are compared to those curve extraction
algorithms for which (i) code is available and (ii) an output is in the form of
an independent set of ordered edges is available. Among a series of candidate
algorithms we considered [13,14,15,5,22,23,11,28], only [13,14,15] satisfy these
criteria.

2 We have not included texture gradients due to technical difficulties arising just before
the paper deadline.
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6.1 Contour Stability /Self Consistency

A key requirement of extracted contour fragments is that they should remain
stable as the viewing pose and viewing distance change, as illumination changes,
as noise is introduced into the system, etc. Baker and Nayar [3] introduced
global measures of coherence that reported self consistency of edge detectors,
e.g. colinearity. We now expand on this idea to stability of extracted curves
under general visual transformations as a form of evaluating contour fragments.

Illumination Stability Test: A requirement of contour fragment algorithms is
stability with moderate illumination variations. Figure 8a) shows several frames
of a sequence from the Robot Dataset [1] where the lighting is varied over a
wide range. Despite the large range of variations, our method produces contour
fragments, Figure 8b), that exhibit a high degree of invariance to illumination
when compared to competing methods.

T

)

b)

Fig. 8. Illumination Curve Stability Test: a) Several Images from the Robot Dataset [1]
where images undergo illumination changes. b) Scatter plots where each dot represents
an evaluation using [10] of curve fragments between two subsequent images.

Multi-View Stability Test: Fig 9 compares the stability of various curve
extraction methods on multiple views of the same scene taking from slightly
different poses.
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Fig. 9. Stability of curve fragments with slight changes in viewpoint is demonstrated
on the Capitol Dataset images (a). Scatter plot where each dot represents an evaluation
using [10] of curve fragments between two subsequent images is shown in (b).
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Stability Test under Noise: A more sensitive evaluation is to test each contour
extraction algorithm’s stability under random noise. Fig 10 During this test,
images are generated through adding five different level of Gaussian noise, and
each algorithm’s stability is measured by matching contour fragments generated
from noise image to the curve fragments extracted from original image.

Fig. 10. Stability under noise: First row shows an image with five different levels of
noise. Second rows shows extracted contours for each. Third row measure the stability
of extracted contours. It is clear that our method produces the most stable results.

Fig.11. The contour fragments shown in (b) and (c) represent two distinct groupings,
yet at the edge map level (a), they are completely equivalent. BSDS evaluation takes
into account edge position (not even edge orientation which by itself is very significant)
but not which edges go together. This motivates a ground truth which explicitly rep-
resents ordering among edge points. BSDS only annotates silhouettes (d) as compared
to CFGD [10] (e) which annotates all contours, including internal contours.

6.2 Evaluation Based on Human Annotation

The standard approach for boundary evaluation is the BSDS framework. This
dataset and evaluation strategy is inappropriate for evaluating curve fragments
for a number of reasons: (i) the human annotators are asked to delineate bound-
aries by painting regions. As such non-closed internal contours have no possibility
to be annotated. (#) The annotators are asked to delineate meaningful object
silhouettes through semantic segments. Thus, they were discouraged from mark-
ing clearly perceivable contours, e.g., zebra patterns in Fig 11. (44) The BSDS
evaluation evaluates edges not contours which are instead treated as a set of
unorganized edges; (iv) even for edge evaluation only the match in edge location
is checked but edge orientation, which is critical, is not included in the evalua-
tion. Thus, random contours on a busy image have a good chance of matching
ground truth. In fact, including edge orientation error in the evaluation changes
the results and the rankings of algorithms.
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Fig. 12. Berkeley boundary evaluation on BSDS given the same edge input Pb [18]
(a) and TO [27] (b), respectively, for a number of linkers. Applying our method on Pb
does not improve the performance when compared to the raw Pb input. However, our
full pipeline using TO with SEL results in higher recall compared to other methods.
We note that KGS is limited on the total number of edges due to the limited range of
the eigensolver system.
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Fig.13. Using the CFGD evaulation to compare the performance of several curve
extraction algorithms using the Pb [18] (a) and TO [27] (b) edge input. Observe that
SEL produces the highest recall for both edge maps.

6.3 Edge Evaluation on BSDS

Despite these shortcomings it is informative to evaluate the extracted contours
based on the evaluation of edge detection. Using Pb [18] as the baseline and
the input, we compare our algorithm’s performance to KGS [13], FPG Kokki-
nos [14], Kovesi [15] in Fig 12a). The results show that the PR curves between Pb
and Pb+Sel have nearly identical performance. This is due to the fact that the
curve linking process maintains a high edge recall, throws out few edges. Iden-
tical performance between BSDS evaluation of edge detector output and edge
linking output is consistent with other methods in Fig 12a), and can be seen
from Fig 12 b) when comparing algorithms using the third order edge detector
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(TO) [27]. KGS [13] gets much lower performance than the others because of its
computational difficulty in solving eigensystem.

6.4 Curve Evaluation on CFGD

We rely on the curve evaluation framework introduce by CFGD [10] to evalu-
ate edge grouping accuracy. Figures 13a and 13b compare contour extraction
algorithms using retrained Pb and TO as a common edge input, respectively.
While for the Pb input the algorithms perform rather similarly, for the TO input
our algorithm (SEL) performs distinctly better, producing a higher recall rate.
Visual comparisons qualitatively confirm this in Fig 14. It can be seen that SEL
generates long smooth curve fragments covering most veridical boundaries while
rarely groups boundaries from different objects or object parts together.

Fig.14. A visual comparison of four curve extraction algorithms: from left to right
columns: KGS [13] using Pb, FPG Kokkinos [14], Kovesi [15] and our method (SEL),
all using TO. The selection of edge map type is based on which gives the best perfor-
mance. Each is individually sifted by the veridicality probability threshold that gives
the highest F-measure score. The color images are show in grey for better visualization.

7 Conclusion

There are three major contributions in this paper. First, a multi-stage approach
is presented which relies on geometry in forming curve fragment pieces from
edges and utilizes multiple curve-level cues in grouping over-segmented curve
fragments as well as measuring the veridicality of curve fragments. Second, a hy-
pothesis graph is proposed for the representation and management of grouping
ambiguities in an approach based on “least early commitment” which demon-
strably gives better contour fragments. Third, a learning-based approach and a
novel and effective lateral edge sparsity cue is proposed that effectively reduces
the false positive groupings and sifts out veridical curve fragments. The resulting
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system is shown to lead to improved contour fragments when validated against
human-annotated data, and which is stable with noise, viewing and viewing
angle variations, and to moderate illumination variation.
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