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Abstract. This work presents a novel surface matching and registration method
based on the landmark curve-driven canonical surface quasiconformal mapping,
where an open genus zero surface decorated with landmark curves is mapped to
a canonical domain with horizontal or vertical straight segments and the local
shapes are preserved as much as possible. The key idea of the canonical map-
ping is to minimize the harmonic energy with the landmark curve straightening
constraints and generate a quasi-holomorphic 1-form which is zero in one pa-
rameter along landmark and results in a quasiconformal mapping. The mapping
exists and is unique and intrinsic to surface and landmark geometry. The novel
shape representation provides a conformal invariant shape signature. We use it as
Teichmüller coordinates to construct a subspace of the conventional Teichmüller
space which considers geometry feature details and therefore increases the dis-
criminative ability for matching. Furthermore, we present a novel and efficient
registration method for surfaces with landmark curve constraints by computing
an optimal mapping over the canonical domains with straight segments, where
the curve constraints become linear forms. Due to the linearity of 1-form and
harmonic map, the algorithms are easy to compute, efficient and practical. Exper-
iments on human face and brain surfaces demonstrate the efficiency and efficacy
and the potential for broader shape analysis applications.

1 Introduction

In computer vision, efficient shape representations for surfaces are highly desired to
effectively deal with the shape analysis problems, such as shape indexing, matching,
recognition, classification, and registration [6,8,9,16]. Canonical surface mappings such
as conformal mappings provide shape representations with good properties, which are
global and intrinsic and have the guarantee of existence and uniqueness.

In this work, we compute a special category of quasiconformal mappings for surfaces
decorated landmark curves, whose angle distortion (quasiconformality) is implied by
the landmark curve straightening constraints. Such mappings are canonical and intrin-
sic. They give a novel type of shape representation, which encodes the landmark curves’
geometry and their relation to background surface context, and provides a global and in-
trinsic shape signature to classify surfaces in shape space. Specially, the shape signature
is invariant if the surface encounters a conformal transformation (conformal invariant).
Using this as the Teichmüller coordinates, we construct a landmark-driven Teichmüller
space, which is a subspace of the conventional Teichmüller space, constrained by the
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landmark curves. We then apply this canonical shape representation for matching and
registration purposes for the case of landmark curve decorated surfaces.

1.1 Motivation

In practice, features on surface are preferred for surface matching and registration
purposes. Such features usually include feature points, landmark curves, or regions
of interest. For example, in medical applications, anatomical landmarks are used in
computer-aided diagnosis and tumor or abnormality detection, such as sulci and gyri
curves in brain mapping and facial symmetry curves in adolescent idiopathic scoliosis
(AIS) and autism diagnosis. These landmarks may be manually labeled by doctors or
automatically extracted. Conformal mapping is computed for pure surfaces without any
interior constraints. Surfaces to be registered can be first mapped to 2D canonical do-
mains conformally and then a mapping over them is built with feature constraints [7].
One strategy to handle landmark curve constraints is to slice surface open along them,
and map them to boundaries of canonical domain by hyperbolic metric [18], but it is
highly nonlinear.

In general, surface mapping will introduce angle and/or area distortions inevitably.

θ

μ

If angle distortion is reduced to the limit (zero), then the mapping is con-
formal (C). If the angle distortion is bounded, then the mapping is qua-
siconformal (QC). Geometrically, conformal mapping maps infinitesimal
circles to circles, while quasiconformal mapping maps infinitesimal el-
lipses to circles. The distortion from ellipse to circle is encoded into Bel-
trami coefficient, denoted as μ , which is complex-valued. A conformal mapping has
zero μ everywhere. A quasiconformal mapping corresponds to a μ ; and a μ determines
a quasiconformal mapping uniquely up to a Möbius transformation.

In practice, it is hard to prescribe μ for the desired mapping; however, it is easy to
set target canonical shapes for landmark curves (straight lines or circular arcs/loops).
Therefore, in this work, we use landmark straightening constraints to adapt surface
conformal structure, such that the resulting quasiconformal mapping preserves the lo-
cal shapes as much as possible (see Fig. 1). This mapping is intrinsic to surface and
landmark geometry and reveals the characteristics of landmark curves.

This landmark-driven canonical form will pave a novel way for efficient and effective
matching and registration of surfaces decorated with landmark curve cases. It provides
a global shape signature by combining the conformal module of the background do-
main and the configuration of the canonically mapped landmark curves, and used to
construct a Teichmüller space which considers more dimensional information (surface
features) besides the surface itself. For example, conformal mapping cannot differen-
tiate topological disk surfaces, because they share the same conformal structure. If we
consider the landmark curve constraints, then the topological disks can be compared us-
ing the locations and sizes of the straightened landmark curves on the canonical domain.
Moreover, the canonical quasiconformal mapping provides an approach to introducing
the landmark curve constraints to registration process in a linear way, which is efficient.
It deals with landmark curves with surface together, without changing topology, and
is linear and easy to compute. It is fundamental and will foster a broad range of real
applications with landmark curve constraints in both engineering and medicine.
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(a) 3D surface (b) conformal map (c) canonical quasiconformal map

Fig. 1. Surface mapping for a human facial surface. The mouth landmark lm is employed

1.2 Related Works

In the past decade, a lot of research [5,17] focuses on conformal mapping methods,
including the least square conformal maps [11], differential forms [3], discrete curvature
flows [2], and so on. According to surface uniformization theorem [4], any arbitrary
surface can be conformally mapped to one of three canonical spaces, the unit sphere,
the Euclidean plane or the hyperbolic disk, which has been carried out [7].

As a general mapping, quasiconformal mapping has been arousing more and more
attention recently. The surface conformal mapping framework can be generalized to
compute surface quasiconformal mappings by an auxiliary metric[22] or holomorphic
Beltrami flow [12], with a given Beltrami coefficient μ . Recently, extremal quasicon-
formal map with a unique extremal μ becomes an active topic [19]. In our q.c. mapping,
we don’t have μ as input; μ is induced by the landmark constraints intrinsically.

Furthermore, feature landmarks, usually feature points, are applied to adapt the con-
formal mapping to be quasiconformal mapping such that the points are aligned to the
prescribed targets and used for surface registration [22]. Sparse landmarks were also
introduced in Kurtek et al.’s approach [10], which computes the registration and defor-
mation process simultaneously for genus-0 surfaces. In this work, we focus on landmark
curves, their mapping positions are not prescribed but computed automatically, thus the
mapping is intrinsic to surface and landmark curve geometry. Recent work [18] treats
landmark curves as surface boundaries based on nonlinear hyperbolic harmonic map.

Recently, Teichmüller space, which studies conformal equivalence class of surfaces,
has been studied for shape indexing, dynamics analysis, and morphology analysis. Dif-
ferent Teichmüller coordinates were introduced. Classical geodesic length spectrum for
high genus surfaces [8] and conformal module for genus zero surfaces with bound-
aries [23] describe surface conformal structure directly. Conformal welding signatures
for 2D shapes by Sharon and Mumford [16,13] and for 3D shapes [24] describe cor-
relation among non-intersecting contour(s) on surface through conformal structures of
surface components surrounded by contours. All above are created on canonical confor-
mal mappings. Instead, our proposed landmark-driven canonical quasiconformal map-
ping gives a novel Teichmüller coordinates, which describes correlation among open
curve(s) and non-trivial loop(s) on surface through one single quasiconformal struc-
ture. Here, each landmark has no self-intersection; “horizontal” landmarks may only
intersect “vertical” landmarks, and vice versa. Also, this signature is conformal invari-
ant and intrinsic to surface and landmark geometry.
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1.3 Approach Overview

In detail, for a genus zero surface with landmark curves, we map it to a canonical
parameter domain D(u,v) such that each landmark curve is mapped to a straight seg-
ment parallel to u-axis (horizontally) or v-axis (vertically), while the local shapes are
preserved as much as possible. The computational strategy is to incorporate landmark
straightening conditions into the computation of conformal mapping based on the holo-
morphic 1-form method. Mathematically, this problem is formulated as solving a sparse
linear system with boundary conditions. According to Hodge decomposition theorem
[4], any differential 1-form can be composed of a closed 1-form, an exact 1-form, and a
harmonic 1-form. A conformal mapping can be generated by integrating a holomorphic
1-form of the surface. Correspondingly, a quasiconformal mapping can be induced by
a harmonic 1-form, plus an exact 1-form which is also closed. We compute a special
exact 1-form to constrain the final 1-form to be zero along landmark curves in u or v
direction (vertically or horizontally), while minimizing the harmonic energy of the de-
sired 1-form. The resulting 1-form is quasi-holomorphic and its integration generates a
rectangular quasiconformal mapping. By an exponential map, the rectangular map can
be mapped to a circle domain, where straight segments become concentric arcs. Figure
1 shows the mappings for a human facial surface (a small puncture at nose tip, which is
mapped to the disk center), where the curved mouth landmark curve on conformal map
is mapped to a circular (horizontal) arc on the canonical quasiconformal map. The vari-
ation from surface conformal structure is driven by landmark straightening constraints.

The result exists and is unique. Due to the linear nature of 1-form, the algorithm has
linear time complexity, and is efficient and practical. The induced intrinsic shape sig-
nature, Teichüller coordinates, is then applied to construct a Teichmüller space surface
matching. The L2 norm between Teichmüller coordinates defines the similarity metric
of two surfaces. Using the canonical mapping, the surfaces with landmark curve con-
straints can be registered over the canonical domains by linear harmonic map, where
the landmark constraints between straight segments are converted to linear forms.

1.4 Contributions and Novelties

This work presents a novel method for surface matching and registration based on the
novel canonical surface quasiconformal mapping for landmark curve decorated sur-
faces. To our best knowledge, this is the first work to conquer landmark curves on
surface cases in the way of canonical quasiconformal map. The details are as follows:

1. To present a novel canonical surface quasiconformal mapping based on holomor-
phic 1-form, where the quasiconformality is driven by landmark curve straight-
ening constraints intrinsically. Besides that, the mapping is coherent to surface
uniformization theorem; surfaces are mapped to rectangle or circle domain and
the local shapes are preserved as much as possible. We call this technique Quasi-
conformal Straightening (QCS). The method is linear, stable and easy to compute.

2. To obtain a novel shape representation for landmark curve decorated surfaces,
which generates an intrinsic, unique and global shape signature, called QCS Sig-
nature, as shape index for matching. We employ this conformal invariant as Te-
ichmüller coordinates to construct a subspace of the conventional Teichmüller space,
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Fig. 2. Illustrations of canonical surface mappings

which is aware of geometry of landmark curves and increases the discriminative
ability for real applications, such as to differentiate topological disks in Teichmüller
space. The surface distance is given by the L2 norm between the signatures.

3. To present a novel landmark curve constrained surface registration method using
the proposed canonical quasiconformal mappings. The landmark curve decorated
surfaces become straight segment decorated 2D domains; then an optimal mapping
is built over them. By taking the linear advantage of straight segments, the curves
can be easily aligned. Similarly, the method is linear, robust and efficient in practice.

Experiments on a diverse set of 3D human facial and brain surfaces were performed
to demonstrate the efficiency and efficacy of the proposed framework for surface match-
ing and registration. The proposed landmark-driven framework is fundamental and
practical for general shape analysis purposes in various engineering and medical fields
especially for those anatomical geometric data.

2 Theoretical Background

2.1 Quasiconformal Mapping

Consider a complex-valued function φ : C → C mapping the z-plane to the w-plane,
z = x+ iy, w = u+ iv. Suppose φ is differentiable. The complex partial derivative is
defined as ∂

∂ z := 1
2 (

∂
∂x − i ∂

∂y ),
∂
∂ z̄ =

1
2 (

∂
∂x + i ∂

∂y ). The Beltrami equation for φ is given
by

∂φ
∂ z̄

= μ(z)
∂φ
∂ z

, (1)

where μ is called the Beltrami coefficient, which is a complex-valued function. If μ = 0,
then φ satisfies the Cauchy-Riemann equations, ∂u

∂x = ∂v
∂y ,

∂u
∂y = − ∂v

∂x , and is called a
holomorphic function, which preserves angles. The resulting mapping is a conformal
mapping. Otherwise, if 0 < ‖μ‖∞ < 1, where ‖ · ‖∞ denotes the L∞ norm, then φ is a
quasiconformal mapping with bounded angle distortion.

2.2 Holomorphic 1-form for Conformal Mapping

We use general genus zero surfaces with boundaries (embedded in R2 orR3) to illustrate
the computational method of conformal mappings based on Hodge theory [4,7].
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Quadrilateral Domain. For a quadrilateral domain Ω with four boundary segment
components, ∂Ω = γ0 + γ1 + γ2 + γ3, i.e., with four boundary corners, p0, p1, p2, p3,
the holomorphic 1-form ω = (τ1,

∗ τ1) is computed by two exact harmonic 1-forms,
τ1 = d f1,τ2 = d f2, such that

⎧
⎪⎨

⎪⎩

Δ f1 = 0
f1|γ3 = 0
f1|γ1 = 1
∂ f1
∂ n |γ0

⋃
γ2
= 0

and

⎧
⎪⎨

⎪⎩

Δ f2 = 0
f2|γ0 = 0
f2|γ2 = 1
∂ f2
∂ n |γ1

⋃
γ3
= 0

. (2)

The conjugate ∗τ1 = cτ2, where c is a scalar function. The integration of ω gives a
rectangular conformal map, where γ0, γ2 are mapped to horizontal boundaries of the
rectangle while γ1,γ3 are mapped to vertical ones (see Fig. 2(a)).

Doubly-Connected Domain. If a compact domain Ω has only two boundary
components, ∂Ω = γ0 − γ1, then it is called a doubly-connected domain. The whole
domain is mapped to an annulus, where two boundaries are mapped to concentric cir-
cle boundaries. The holomorphic 1-form τ1 or ∗τ1 is orthogonal to both boundaries,
τ1 = ω1 + c∗ω1, where ω1 corresponds to γ1, such that

∫

γ j
ωi = δ j

i , where δ j
i is the

Kronecker symbol. The integration of such a holomorphic 1-form from base point p
generates the rectangular map, where the domain is sliced open by a curve τ . Then by
the exponential map, the circular map is generated (see Fig. 2(b)).

Simply-Connected Domain. Suppose Ω is a compact domain on the complex plane
C. If Ω has a single boundary component, then it is called a simply-connected domain.
By a puncture at an interior point, the domain becomes a doubly-connected one and
then the above computation can be applied. The whole domain is mapped to a unit disk.
Such kind of mappings differ by Möbius transformations.

Multiply-Connected Domain. Suppose Ω has multiple boundary components, ∂Ω =
γ0 − γ1 − γ2 · · ·γn, where γ0 represents the exterior boundary component and γi, i = 1..n
represent the interior ones, then Ω is called a multiply-connected domain. It can be
mapped to a unit disk with circular holes, called circle domain, where one boundary
is mapped to the exterior unit circle, and others are mapped to inner circles. The com-
putation is to iteratively perform the basic operation of mapping a doubly-connected
domain to a canonical annulus based on Koebe’s iteration method [7].

The existence and uniqueness of conformal and quasiconformal mappings for
multiply-connected domains are guaranteed by the generalized Riemann mapping the-
orem [4] and the generalized measurable Riemann mapping theorem [1].

Theorem 1 (Generalized Measurable Riemann Mapping [1]). Suppose Ω ⊂ C is
a multiply-connected domain. Suppose μ : Ω → C is a measurable complex function,
such that ‖μ‖∞ < 1. There exists a quasiconformal mapping φ : Ω →D whose Beltrami
coefficient is μ , where D is a circle domain. Such kind of quasiconformal mappings
differ by Möbius transformations.
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2.3 Conformal Module

Let S be a topological surface and all the possible Riemannian metrics on S be G = {g}.
Two metrics g1, g2 are conformally equivalent, g1 ∼ g2, if there exists a function λ :
S → R, such that g1 = e2λ g2.

All domains can be classified by conformal equivalence relation. Each class shares
the same conformal invariant, called conformal module, which defines a unique and
global shape signature. According to Reimann mapping theorem [4], every simply-
connected domain is conformally equivalent to the open unit disk and such kind of
mappings differ by Möbius transformations. Therefore,

Theorem 2. All simply-connected domains are conformally equivalent.

The conformal module for a rectangle domain is defined as the ratio of the height
over the width. For a circle domain it is represented as the centers and radii of inner
circles. By a Möbius normalization mapping one inner circle to be concentric, the topo-
logical annulus only requires 1 parameter in its conformal module. In general case, there
are n > 1 inner circles, the conformal module requires 3n− 3 parameters. All confor-
mal equivalence classes form a 3n− 3 Riemannian manifold, the so-called Teichmüller
space. The conformal module can be treated as the Teichmüller coordinates.

3 Algorithm for Canonical Surface Quasiconformal Mapping

The main goal of our algorithm is to compute the canonical quasiconformal mapping
with landmark straightening constraints for genus zero surfaces with boundaries. In
practice, the surfaces are approximated by triangular meshes embedded in R3, denoted
as M = (V,E,F), where V,E,F are the sets of vertices, edges, and faces, respectively.

Assume the desire mapping is f : (M,L) → (D, �), surface mesh M is mapped to a
planar parameter domain D, and D has the local coordinates (u,v). Here, we use the
quadrilateral case for discussion. The computational pipeline is as follows:

Step 1: Prepare Landmark Curves. We use L = {lk,k = 1..m} to denote the set of m
interior landmark curves on M. Assume L = LH ∪LV , where LH ,LV are to be mapped
to horizontal and vertical straight segments, respectively. Each landmark is represented
as a chain of vertices, lk = [v1,v2, . . . ,vnk ], where nk is the number of the vertices on lk.

Step 2: Compute Quasi-holomorphic 1-form. The quasi-holomorphic 1-form to be
computed will be ω = τ1 +

√−1∗τ1, where τ1 = d f1, ∗τ1 = λ τ2, and τ2 = d f2:
1. Compute the harmonic functions f1, f2: Combining the straightening constraint con-
ditions into Eqn. (2), we have

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Δ f1 = 0
f1|γ3 = 0
f1|γ1 = 1
∂ f1
∂ n |γ0

⋃
γ2
= 0

f1|lV
k
= sk

and

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Δ f2 = 0
f2|γ0 = 0
f2|γ2 = 1
∂ f2
∂ n |γ1

⋃
γ3
= 0

f2|lH
k
= tk

, (3)

where n is the normal vector to the boundary, sk, tk are unknown variables, computed
automatically for each landmark curve. Two types of straightening constraints are: 1)
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Fig. 3. Landmark-driven quasiconformal mapping for a doubly-connected domain. It contains
four (4) horizontal landmarks (loops) and ten (10) vertical landmarks. Checker-board texture
mappings and histograms of Beltrami coefficients (by |μ|) demonstrate the quasiconformality.

Horizontal: for lk ∈ LH , v(vi) = sk, i = 1 . . .nk; and 2) Vertical: lk ∈ LV , u(vi) = tk, i =
1 . . .nk. The Laplace-Beltrami operator Δ is approximated by the cotangent weight wi j,
Δ f (vi) = ∑[vi ,v j ]∈E wi j( f (v j)− f (vi)). For edge [vi,v j], suppose two adjacent faces are

[vi,v j,vk] and [v j,vi,vl ]. Then its weight is defined as wi j = cotθ i j
k + cotθ i j

l , [vi,v j] 
∈
∂M; or wi j = cotθ i j

k , [vi,v j] ∈ ∂M, where θ i j
k is the corner angle at vk in [vi,v j,vk].

2. Compute harmonic 1-forms by gradient computation: τ1 = ∇ f1,τ2 = ∇ f2.
3. Compute conjugate 1-form of τ1 by Hodge star operator: �τ1 = λ τ2 (λ is a scalar),
by minimizing the energy E(λ ) = ∑[vi,v j ,vk]∈F |∇ f2 −λ n×∇ f1|2Ai jk, where Ai jk is the
area of face [vi,v j,vk], and n is the normal vector to the face.
4. Compute ω = τ1 +

√−1 �τ1.
The problem turns to minimizing the harmonic energy, E( f ) = ∑[vi,v j ] wi j( f (v j)−

f (vi))
2, by considering the landmark constraints in Eqn. (3).

Step 3: Computing Quasiconformal Mapping. We generate the quasiconformal map-
ping by integrating the obtained quasi-holomorphic 1-form ω over M, f (q) =
∫

γ(p,q)∈M ω , ∀q ∈ V, where γ(p,q) is an arbitrary path from the base vertex p to the
current vertex q. On the planar domain, f (p) = (0,0), f (γi), f (lk) are all straight lines.

The computational algorithms for other genus zero surface cases are similar. They
share the same key component of minimizing harmonic energy with landmark straight-
ening constraints. By the exponential map, the rectangular domain is converted to circle
domain, where the straight lines are mapped to circular arcs. Figure 3 shows a doubly-
connected case. The difference from the conformal map can be evaluated by the angle
distortion of checker-board textures and the distributions of Beltrami coefficients (mean
of |μ |: 0.15 vs. 0.001). Figure 4 shows the examples for a human facial surface with
multiple landmark curves. In theory, the solution exists and is unique [15]. The result-
ing mapping preserves local shapes as much as possible and is intrinsic to geometry of
both surface and landmark curves. The algorithm solves sparse linear systems and have
linear complexity. In practice, the conjugate gradient method is applied.

4 Algorithm for Surface Matching

The proposed quasiconformal mapping φ : (S,L) → (D, �) offers an intrinsic canoni-
cal shape representation for surfaces decorated with landmark curves. We employ the
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positions and the lengths of the canonical-shaped landmarks and the conformal mod-
ules of the background domain as the shape signature, called QCS signature, which
is a conformal invariant. We use it as Teichmüller coordinates to construct the Te-
ichmüller space. The L2 norm between signatures gives the distance between two dec-
orated surfaces.

Quadrilaterals. A quadrilateral surface with m landmarks is mapped to a rectangle
domain with horizontally or vertically straightened landmarks (see Fig. 4). Assume the
bottom-left corner of the rectangle domain is set to be the origin (0,0). Then the QCS
signature is defined as

QCS(S) = {xH
j

w
,

yH
j

h
,

dH
j

w
}
⋃

{xV
k

w
,

yV
k

h
,

dV
k

h
}
⋃

Mod(D), (4)

where h,w denote the height and the width of D, respectively, (xH
j ,y

H
j ) represents the

left endpoint of φ(l j), l j ∈ LH , (xV
k ,y

V
k ) represents the bottom endpoint of φ(lk), lk ∈ LV ,

dk denotes the length of the segment φ(lk), lk ∈ L, and Mod is the conformal module of
D, h/w, as defined in Sect. 2. Then the Teichmüller space is 3m+ 1 dimensional.

(n+ 1)-Connected Domains. General genus zero (g = 0) domains with n+ 1 bound-
aries and m landmarks are mapped to circle domains (normalized onto unit disk) with
radial straight or concentric circular landmarks. Then the QCS signature is defined as

QCS(S) = {r j,
θ 1

j

2π
,

θ 2
j

2π
}
⋃

{r1
k ,r

2
k ,

θk

2π
}
⋃

Mod(D), (5)

where (r j ,θ 1
j ,θ 2

j ) denotes the radius and argument angles of the concentric circular arc
φ(l j), l j ∈ LH ; (r1

k ,r
2
k ,θk) denotes the radii and the argument angle of the radial straight

segment φ(lk), lk ∈ LV , and Mod is the conformal module of circle domain D, including
the center positions and radii of the inner circles, as defined in Sect. 2. Assume D is
normalized by a Möbius transformation. We use T0,n,m to denote the Teichmüller space
of open genus zero (g = 0) surfaces with n inner boundaries and m landmarks.

– For multiply-connected domains, dimT0,n>1,m>0 = 3m+(3n− 3).
– For simply-connected domains, dimT0,n=0,m>0 = 3m− 2.
– For doubly-connected domains, dimT0,n=1,m>0 = (3m− 1)+ 1= 3m.

For each open landmark curve with two endpoints on boundary in quadrilaterals or
non-trivial landmark loop in connected domains, the total dimension decreases by 2.

5 Algorithm for Surface Registration

The main strategy is to map decorated surfaces to canonical planar domains with canon-
ically shaped (straight) landmark curves using the proposed quasiconformal map and
then convert surface registration problems to image registration problems, where the
landmark curve constraints become linear constraints between images.
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(S1,L1)
f−−−−−→ (S2,L2)

φ1

⏐
⏐



⏐
⏐

φ2

(D1, �1)
h−−−−−→ (D2, �2)

Registration Framework. Suppose (Sk,Lk), k = 1,2 are
the source and target surfaces Sk decorated with landmark
curves Lk, respectively. In order to compute the registration
f : (S1,L1) → (S2,L2), we first map decorated surfaces to
decorated canonical domains, φk : (Sk,Lk)→ (Dk, �k), then
construct the optimal mapping h : (D1, �1)→ (D2, �2), such
that straight line �1 is aligned with straight line �2 and the harmonic energy of the map-
ping is minimized. The registration is given by f = φ−1

2 ◦ h ◦φ1.
This novel quasiconformal map-based registration framework works for landmark

curve constrained surfaces with general deformations, subsuming rigid motion, isome-
try, and conformal transformation. This framework can be generalized to more general
surfaces and handle point-curve mixed constraints. In contrast, existing works using
conformal map-based framework [22,21] mainly focus on registration of surfaces dec-
orated with feature point constraints. They cannot introduce each landmark curve as a
whole; accordingly, a heuristic alternative is to sample the curve to isolated points then
apply the point-constrained registration method [14] .

Algorithm with Landmark Curve Constraints. The computation is based on the opti-
mization of constrained harmonic energy to smooth out distortion as much as possible.
We generate a harmonic map h : (D1, �1) → (D2, �2), ∇h = (h1,h2), to minimize the
energy E(h) =

∫

D1
|∇ ·∇h|2dA with the Dirichlet and Neumann boundary conditions

on both canonical domain boundaries and horizontal or vertical landmarks. Suppose Dk

are rectangles, ∂Dk = γk
0 + γk

1 + γk
2 + γk

3 , where (γ1
i ,γ2

i ), i = 0..3 denotes a pair of corre-
sponding boundaries, and Lk = LH

k
⋂

LV
k . We use (l1, l2) and (p1, p2) to denote a pair of

segments and endpoints to be aligned, respectively, and solve
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Δh1 = 0
h1|γ1

3
= φu

2 |γ2
3
−φu

1 |γ1
3

h1|γ1
1
= φu

2 |γ2
1
−φu

1 |γ1
1

∂ h1
∂ n |γ0

⋃
γ2
= 0

h1|lV
1
= φu

2 |lV
2
−φu

1 |lV
1
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. (6)

Then h(p) = p+∇h(p), p ∈ D1. The desired mapping f = φ−1
2 ◦ h ◦φ1.

The registration accuracy can be evaluated by an energy form E( f ) =
∫

p∈S1
(H(p)−

H( f (p)))2 +(K(p)−K( f (p)))2 +(λ (p)−λ ( f (p)))2, where H,K,λ denote the mean
curvature, the Gauss curvature, and the conformal factor, respectively.

6 Experimental Results

The proposed landmark-driven canonical quasiconformal mapping provides a funda-
mental approach to surface matching and registration, and have broad applications in
vision, graphics, and medical imaging. Here, we develop experiments on human facial
and brain surfaces to demonstrate the efficiency and efficacy.

Experimental Settings. We consider a set of anatomical facial landmark curves: 1)
the curve along eyebrows lb; 2) the geodesic curve between inner eye corners le; 3)
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ln lb

le

lm

(a) 3D face (b) C-map tex-map (c) QC-map tex-map (d) another case

Fig. 4. Landmark-driven canonical quasiconformal mappings for a human facial surface

the geodesic curve between mouth corners lm; and 4) the symmetry axis curve ln =
ln1 ∪ ln2 , split into two parts by nose tip, as shown in Fig. 4(a). In canonical mapping,
we set LH = {lb, le, lm} and LV = {ln} or {ln1 , ln2}. For brain surfaces, we consider the
anatomical sulci and gyri curves. The algorithms are tested on a desktop with 3.7GHz
CPU and 16GB RAM. The whole pipeline is automatic. For mapping a facial surface
with 120k triangles and a brain surface with 20k triangles, the averaged running times
are 10 seconds and 3 seconds, respectively. The registration process including two such
q.c. maps and another mapping over 2D domains totally costs 3 times the mapping time.

6.1 Feature-Aware Shape Signature

Figure 4 shows the mapping results for a 3D facial surface decorated with multiple
landmark curves. Upper row: Surface with prescribed four boundary corners, a quadri-
lateral, is mapped to a rectangle; Bottom row: Surface is mapped to a unit disk. Col-
umn: (a) 3D views of the landmark curve decorated surface; (b) conformal maps; (c)
canonical quasiconformal maps with landmark straightening constraints; (d) quasicon-
formal maps with a constraint change on eyebrow landmark. The angle distortions are
illustrated by the texture mapping results. Table 1 gives the numerical results for QCS
signatures of the two cases in (c), computed by Eqn. (4).

6.2 Content-Based Surface Matching

As stated in Theorem 2, conformal mappings keep the same structure for the topological
disk surfaces and cannot differentiate them in Teichmüller space. The QCS signature
is aware of feature details and has the discriminative ability. In our experiments, we
employ the QCS signature for shape matching on two categories of human facial scans
which have been successfully tested: 1) 5 human facial expression sequences from the
same subject (each has 400 frames) (see Fig. 5), and 2) human facial surfaces from
different subjects (BU-3DFE database [20], 100 subjects with various expressions) (see
Fig. 6). Table 1 gives the QCS signatures computed by Eqn. (5).

In Fig. 5, the expression change is mainly around mouth area, so we introduce one
landmark lm to study the dynamics to conquer the conformal equivalence of topological
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Table 1. Shape signatures

Models Signatures
Fig. 4(c) upper-bottom (0.260,0.849,0.638; 0.433,0.728,0.278; 0.371,0.285,0.398; 0.576; 0.954)
(lb; le; lm; ln;Mod) (0.373,0.135,0.363; 0.238,0.141,0.346; 0.254,0.617,0.849; 0.475)
Fig. 5 left-right (lm) (0.508,0.214), (0.519,0.266), (0.492,0.294), (0.527,0.282)
Fig. 6 left-right (0.398,0.234;0.334,0.149,0.356), (0.415,0.223;0.344,0.145,0.36),
(lm; le) (0.384,0.213;0.355,0.143,0.365), (0.426,0.183;0.307,0.147,0.376),

(0.427,0.197;0.384,0.14,0.359), (0.463,0.236;0.366,0.156,0.343)

Fig. 5. Surface matching for a deforming facial expression sequence from the same subject. The
mouth landmark lm is employed. The bottom-left small disk shows the conformal mapping result.

disk faces. The L2 norm geometric distances (similarity of expressions) to the leftmost
expression d(Sk,S0) = 0,0.053,0.071,0.082,k= 0..3. In Fig. 6, we use QCS signatures
to differentiate the faces from different subjects. The geometric distances (similarity of
faces) to the leftmost d(Sk,S0) = 0,0.023,0.035,0.067,0.069,0.074,k= 0..5.

The experimental results show that the QCS signature is promising for large-scale
content-based shape retrieval applications for 2D images and 3D objects, such as face
recognition, brain surface classification, and general geometric search engine.

6.3 Landmark-Curve Constrained Surface Registration

Our registration algorithm has been successfully tested on two categories of 3D nonrigid
surfaces: 1) human facial surfaces with different expressions from the same subject
(see Fig. 7), and neutral faces from different subjects (see Fig. 8), and 2) human brain
surfaces from control group and patient group (see Fig. 9). Each pair has big geometry
variance and the deformation is quasiconformal. The geometric registration accuracy is
evaluated by the energy form E( f ) in Sect. 5. E( f ) = 0.03 for Fig. 7, E( f ) = 0.05 for
Fig.8, and E( f ) = 0.08 for Fig. 9. The registration effects can also be visually checked
by the consistent texture mapping results.

Our proposed method takes the curve constraints as linear constraints. For better un-
derstanding, we performed a comparison test, as shown in Fig. 8(b), where 9 point con-
straints are sampled to replace curve constraint. The result is not smooth, significantly
different from our result (see the close-up view in (b)). The accuracy can be improved
by dense sampling, but this will generate more cost. All the results demonstrate the
advantages of our method in terms of the accuracy, efficiency and practicality.

6.4 Performance Discussion

Efficiency, Robustness and Generality: The 1-form method solves positive definite
sparse linear systems, therefore has linear time complexity. The solution exists and is
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Fig. 6. Surface matching by landmark-driven quasiconformal mappings for neutral facial surfaces
from different subjects. The inner eye corner and mouth landmarks le, lm are employed.

(a) S1 (b) S2 (c) QC-registration (d) C-map (e) close-up view

Fig. 7. Facial surface registration between different expressions from the same subject

unique in theory [15]. The 1-form method is stable and robust to handle small geomet-
ric and topological noises or variations under different modalities (resolution, quality,
smoothness, boundary noise, small holes or handles) and multiple and complicated dec-
orative landmark curves (open and closed); it is easy to implement and fast to compute.
The proposed QCS technique can be incorporated into the 1-form computation for gen-
eral topological surfaces [7]. In addition, due to the generality of quasiconformal map,
the proposed registration method is general to handle any types and intensities of de-
formations, including small or significantly large rigid motions, isometries, conformal
transformations, and quasiconformal deformations.
Novelty, Comparison and Practicability: To our best knowledge, this is the first work to
compute landmark curve driven canonical quasiconformal map, and use the canonical
shape representation for landmark curve-decorated surface matching and registration.

Compared with conformal maps of pure surfaces, the generated intrinsic canonical
quasiconformal map studies the nature of curves in surface and the influence to confor-
mal structure, and provides the feature-aware shape signature and global representation.
The conformal welding signature [16,13] needs to divide the whole surface to multi-
ple components by closed contours; it cannot deal with open curves. Different from
other conformal invariant shape signatures of pure surfaces such as conformal modules
[23,8], the QCS signature encodes landmark geometry, therefore is more capable to rep-
resent a shape both globally and locally; and especially it can be used to differentiate
the topological disk surfaces.

Most existing conformal map based registration methods can only handle point con-
straints, or treat the landmark curves as isolated points in the mapping process [23,14].
The hyperbolic harmonic map method [18] slices the landmark curves open to be
boundaries and uses the hyperbolic metric; the computation is highly nonlinear. Our
proposed method has significant difference: it provides linear constraints between
straightened curves and has practical advantage due to linearity of 1-forms. Our method
deals with surface and landmark curves as a whole without changing topology. Kurtek
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(a) curve constraint (b) point constraints

Fig. 8. Facial surface registration for two subjects. (a) lip landmark curve constraint is employed;
(b) curve constraint is sampled as point constraints.

(a) S1 (b) S2 (c) QC-registration (d) C-map (e) close-up view

Fig. 9. Brain surface registration with convoluted landmark curves

et al.’s approach [10] handles sparse feature points; given two isometric surfaces with
different embeddings, our shape metric gives 0, and theirs doesn’t.

Flexibility and Potential Impacts: The user can freely select landmark curves and de-
sign their straightening styles according to the application needs. In order to arrange
the landmarks properly and avoid large distortions, we can first observe their shapes on
conformal mapping domain, for example in Fig. 4(b), where the styles can be automat-
ically extracted by comparing the averaged slope of the curve with the u and v-axis. It
has potential for artwork design and large-scale shape retrieval in industry.

7 Conclusion

We present the novel surface matching and registration method based on the intrinsic
canonical surface quasiconformal mapping, which maps the landmark curves to be the
horizontal or vertical straight lines on canonical 2D domain and preserves the local
shapes as much as possible. The mapping is unique and intrinsic to surface and land-
mark curve geometry. It gives the novel conformal invariant shape signature to construct
the feature-aware Teichmüller space for surface matching. It is easy to deal with surface
registration with straightened landmark curve constraints. All the algorithms are based
on 1-form and have linear time complexity and are efficient and practical. Experiments
on matching and registering facial and brain scans demonstrate the efficiency and ef-
ficacy, which is promising for broader computer vision applications where landmark
curves are naturally associated. In future, we will explore more under the proposed
framework.
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