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Abstract. Registering pairs or groups of images is a widely-studied
problem that has seen a variety of solutions in recent years. Most of
these solutions are variational, using objective functions that should sat-
isfy several basic and desired properties. In this paper, we pursue two ad-
ditional properties – (1) invariance of objective function under identical
warping of input images and (2) the objective function induces a proper
metric on the set of equivalence classes of images – and motivate their im-
portance. Then, a registration framework that satisfies these properties,
using the L2-norm between a novel representation of images, is intro-
duced. Additionally, for multiple images, the induced metric enables us
to compute a mean image, or a template, and perform joint registration.
We demonstrate this framework using examples from a variety of image
types and compare performances with some recent methods.

Keywords: metric-based registration, elastic image deformation,
post-registration analysis, mean image, multiple registration.

1 Introduction

The problem of image registration is one of the most widely studied problems
in medical image analysis. Given a set of observed images, the goal is to register
points across the domains of these images. This problem has many names: regis-
tration, matching, correspondence, reparameterization, domain warping, defor-
mation, etc., but the basic problem is essentially the same – which pixel/voxel on
an image matches which pixel/voxel on the other image. The registration prob-
lem can be subdivided into categories in several ways. One way is to consider how
many images are being registered: the pairwise registration where two images are
matched and the groupwise or multiple registration where more than two images
are being matched. Another possible division is based on modality - unimodal
registration which is performed within a single modality and multimodal regis-
tration which is performed for images across multiple imaging modalities. In this
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paper we will restrict to unimodal image registration since we are also interested
in comparing and statistically analyzing registered images, beyond the problem
of registration.

Although the registration problem has been studied for almost two decades,
there continue to be some fundamental limitations in the popular solutions that
make them suboptimal, difficult to evaluate and limited in scope. To explain
these limitations let F be a certain set of Rn-valued functions on a domain D,
made precise later. A pairwise registration between any two images f1, f2 ∈ F is
defined as finding a mapping γ, typically a diffeomorphism from D to itself, such
that pixels f1(s) and f2(γ(s)) are optimally matched to each other for all s ∈ D.
To develop an algorithm for registration one needs: (1) an objective function for
formalizing the notion of optimality, and (2) a numerical procedure for finding
the optimal γ. Although the numerical techniques for optimization, i.e. item (2),
have become quite mature over the last ten years, the commonly-used objective
functions themselves have several fundamental shortcomings. It is the choice of
objective function that is under the focus in this paper. The registration problems
are commonly posed as variational problems, with the most common form of an
objective function being

L (f1, f2 ◦ γ) ≡
∫
D

‖f1(s)− f2(γ(s))‖2 ds+ λR(γ), γ ∈ Γ, (1)

where ‖·‖ is the Euclidean norm, R is a regularization penalty on γ, typically in-
volving its first and/or second derivatives, λ is a positive constant and Γ denotes
the space of relevant deformations. Several variations of this functional are also
used. We highlight shortcomings of these methods using a broader discussion
about desired properties of an objective function in the next section.

1.1 Desired Properties in an Objective Function

We start with the question: What should be the properties of an objective func-
tion for registering images? The answer to this question is difficult since we may
desire different results in different contexts. In fact, one can argue that we may
never have a “perfect” objective function that matches an expert’s intuition and
solution. Still, there is a fundamental set of properties that is desirable, even es-
sential, in for registration; some of these have been discussed previously in [3,17].
Some of them have been achieved in the previous papers while others have not.
We list these properties next, starting with some notation. Note that some of
them are overlapping, in the sense that they, individually or jointly with others,
imply some others. Let L(f1, (f2, γ)) denote the objective function for matching
f1 and f2 by optimizing over γ (here γ is assumed to be applied to f2 resulting
in (f2, γ) ∈ F). The bracket (f, γ) denotes the group action where γ ∈ Γ acts
on f ∈ F defined by (f, γ)(s) ≡ (f ◦ γ) (s), ∀s ∈ D. Then, the desired properties
of L are:

1. Symmetry. For any f1, f2 ∈ F , we want

L(f1, f2) = L(f2, f1) .
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2. Positive Definiteness. For any f1, f2 ∈ F we want L(f1, f2) ≥ 0 and

L(f1, f2) = 0 ⇔ f1 = f2 a. e. .

3. Lack of Bias. If f1, f2 are constant functions then for any γ ∈ Γ ,

L(f1, f2) = L(f1, (f2, γ)) .

4. Invariance to Identical Warping. For any f1, f2 ∈ F and γ ∈ Γ , we have

L(f1, f2) = L ((f1, γ), (f2, γ)) .

5. Triangle Inequality. For any f1, f2, f3 ∈ F ,

L(f1, f3) ≤ L(f1, f2) + L(f2, f3) .

6. (An additional property of Γ .) Γ is a group with composition. For any
γ,γ′ and γ” ∈ Γ ,
i) γ ◦ γ′ ∈ Γ
ii) (γ ◦ γ′) ◦ γ” = γ ◦ (γ′ ◦ γ”)
iii) there exists an γid ∈ Γ such that γid ◦ γ = γ ◦ γid = γ
iv) there exits a h ∈ Γ such that γ ◦ h = h ◦ γ = γid.

Despite seemingly different appearances, the properties 1 to 4 are the same or
closely related to those introduced previously in [17]. Specifically, properties 1, 4
and 6 together imply what was termed “Symmetry”, and property 4 and 6 imply
“Invariance under SDiff+ but are actually stronger. Property 5 is introduced to
the list so that properties 1, 2 and 5 altogether imply that L is a proper metric
on F .

Property 4: Invariance to Identical Warping is listed as a standalone
property not only because it is fundamental but also one of the most important.
Why? Consider the two images f1 and f2 shown in the left panel of Fig. 1. Even
though the two images are different, their corresponding pixels are nicely aligned.
The middle panel shows an example of a warping function γ to be applied to
both images and the right panel shows the warped images f1 ◦ γ and f2 ◦ γ. It
is easy to see that the correspondence between pixels across two images remains
unchanged. Thus, since L is a measure of registration or correspondence between
images, we need L(f1, f2) = L ((f1, γ), (f2, γ)). However, if we take the commonly
used L2-norm as an objective function (the first term in Eqn. 1), then function
values are not the same, as shown below the images. In summary, an identical
warping of any two images keeps their registration unchanged and, hence, in
order to properly measure the level of registration, an objective function must
have this property of invariance to identical warping. We seek a framework that
achieves all of the properties listed above.

To specify the proposed framework, define an equivalence relation between
images as follows: let f ∼ g iff there is a γ ∈ Γ such that g = (f, γ), and let
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Fig. 1. Illustration of invariance to identical warping. The values of objective functions
are not the same: ‖f1 − f2‖L2 = 0.1085 and ‖f1 ◦ γ − f2 ◦ γ‖L2 = 0.1305.

[f ] = {g | g ∼ f} denote the orbit of an image f . Our goal is to establish a
metric on the set of equivalence classes or orbits, the so-called quotient space of
F under the action of Γ . However, since Γ is an open set, the resulting orbits
are also open sets and it is difficult to establish a proper metric between these
orbits. Thus, instead, we define the quotient space F/Γ as the set of closures of
all equivalence classes, i.e. F/Γ = {closure([f ]) | f ∈ F}. If L is a proper metric
on F and, additionally, if properties 4 and 6 also hold, then it can be shown that
the quantity infγ∈Γ L(f1, (f2, γ)) defines a proper metric on F/Γ . The distance
between any two equivalence classes [f1] and [f2] is well defined:

d([f1], [f2]) ≡ inf
γ∈Γ

L(f1, (f2, γ)) = inf
γ′∈Γ

L(f2, (f1, γ′)) . (2)

This metric on the quotient space therefore provides us with a tool to measure
the difference between registered images. Note that in case L is a proper metric,
then property 4 implies the action of Γ on F is by isometries. It can be shown
that if d([f1], [f2]) = 0, then f1 ∈ [f2] and vice-versa.

This setup allows us to study another important property – “inverse con-
sistency” – introduced in [3]. It states that for all f1, f2 ∈ F , if

γ̃ ∈ argmin
γ∈Γ

L(f1, (f2, γ)) then γ̃−1 ∈ argmin
γ∈Γ

L(f2, (f1, γ)).

It is natural to have this property since it implies that the optimal registration
between two images remains the same even if they are treated in the reverse
order. Note that a combination of 1, 4 and 6, along with the definition in Eqn.
2, implies inverse consistency.

The requirement for Γ to be a group is important to derive other properties.
While most papers use the full diffeomorphism group for Γ , some papers work
with a subset of deformations, e.g. spline-based deformations, and that can be
problematic as discussed later.

1.2 Past and Current Literature

While the objective function given in Eqn. 1 is one used most often, several
variations have also been applied. For instance, sometimes the first term is re-
placed by mutual information [23,4], minimum description length [5,21], etc., or
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the second term is replaced by the length of a geodesic in the warping space (as
in the LDDMM approach [6,20,1,13]). Some methods conceptualize the average
image under the large deformation diffeomorphisms setting as an unbiased atlas
([8,12]). However, these methods do not use a formal metric for registration. An-
other idea is to impose regularization differently, e.g. using Gaussian smoothing
of images (diffeomorphic demons [19,22]). Some methods optimize the objective
function over a proper subgroup Γ0 ⊂ Γ (e.g. the set of volume-preserving dif-
feos [17]), some on Γ , some on larger a group Γb that contains Γ (e.g. the one
including non-diffeomorphic mappings also) and some on even larger deforma-
tion spaces that are not groups (e.g. thin plate splines [2,16,7]). Rather than
going through individual methods and their properties in details, we summarize
their satisfaction of desired properties in Table 1. It is interesting to note that
not a single past method satisfies property 4 without drastically restricting the
deformation group Γ . The inverse consistency is, similarly, seldom satisfied.

Table 1. Properties of Objective Functions for Registration

Properties 1. Sym. 2. P.D. 3. Lack Bias 4. Inv. 5. Tri. Ineq. 6. Group

L2 � � � ✗ � ✗

L2 +R(γ) � � ✗ ✗ � ✗

CC [18] � - ✗ � - �1

MI [23] � - � ✗ - ✗

Demons [22] � � ✗ ✗ � ✗

LDDMM [1] � � ✗ ✗ � �
GL2 [17] � � � � � �2

GL2 +R(γ) � � ✗ ✗ � �
1 is invariant to the general linear group.
2 is invariant to the special group of volume and orientation preserving diffeomor-
phisms.
- indicates where the property is not proper to be evaluated under the context.

If we have a proper metric on the quotient space F/Γ , it leads to additional
tools for post-registration analysis. Here one analyzes registered images and ap-
plies statistical techniques such as PCA for dimension reduction and modeling.
The question is: What should be the metric for these modeling procedures?
Currently one performs registration using a certain objective function and then
chooses a separate metric to perform post-registration analysis. Ideally, one
would like an approach that can align, compare, average, and model multiple
images in a unified framework that leads to efficient algorithms and consis-
tent estimators. The objective function presented in this paper not only satisfies
the invariance and the inverse consistency properties but also provides a metric
on the quotient space for unified image comparison and analysis. Therefore, we
have called our framework a metric-based method for registration, comparison
and analysis of images. This idea was prompted by recent work on shape anal-
ysis of surfaces [10]. Although we utilize the same idea, the details are different
because the representation and the Riemannian metric are not the same.
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The rest of this paper is organized as follows. In Section 2, we introduce a new
mathematical representation of images and a metric for image registration that
satisfies all the desired properties. In Section 2.3, we develop the idea of mean
images or templates under the chosen metric, and use these means to perform
multiple image registration. Section 3 presents results on synthetic and real data.
Finally, in Section 4, we present some concluding remarks.

2 Metric-Based Image Registration

In this section we lay out the framework for joint image registration and com-
parison under a new objective function which is a proper metric. This method
applies to mathematical objects whose range space has dimension at least as
high as that of their domain, as f : D → R

n, where n ≥ m = dim(D). In case
of 2D (3D) images, this means that pixels have at least two (three) coordinates
which is the case for colored images, or multimodal images (with different imag-
ing modalities as the pixel coordinates). The scalar (gray scaled) images can be
transformed as described later to satisfy this condition.

2.1 Image Representation and Pairwise Registration

Let the image space be F = {f : D → R
n | f ∈ C∞(D)} and Γ = Diff+(D)

is a subgroup of Diff+ (the orientation-preserving diffeomorphism group) that
preserves the boundary of D. Hereafter we will use ‖f‖ for the L2-norm of any f
and |A| to denote the determinant of a square matrix A unless stated otherwise.

Definition 1. The right action of Γ on F is defined by the mapping F×Γ → F
given by (f, γ) = f ◦ γ.

It is easy to see that this action is not by isometries under the L2-metric.
That is, for any two f1, f2 ∈ F , and a general γ ∈ Γ , we have ‖f1 − f2‖ =
‖f1 ◦ γ − f2 ◦ γ‖. Thus, the important property 4, invariance to simultaneous
warping, is not satisfied and, consequently, one cannot work with the L2-norm
in the image space directly. Instead, we will use a mathematical representation
of images defined by a mapping called the q-map, that has been prompted by
recent work in shape analysis of surfaces [10]. Here, we adopt it for analyzing
images as follows.

Let (x1, . . . , xm) : D → R
m be coordinates on (a chart of) D and Jf(s) be

the Jacobian matrix of f at s with the (j, i)-th element as ∂f j/∂xi(s). Define
the “generalized area multiplication factor” of f at s for arbitrary n ≥ m as
a(s) = |Jf(s)|V where |Jf(s)|V = ‖ ∂f

∂x1 ∧ ∂f
∂x2 ∧ · · · ∧ ∂f

∂xm ‖. Here ∧ denotes the
wedge product. The two special cases are: if m = n = 2, then a(s) = |Jf(s)|; if
m = 2 and n = 3, then a(s) = ‖ ∂f

∂x1 (s)× ∂f
∂x2 (s)‖.

Definition 2. For an f ∈ F , define a mapping Q : F → L2 such that for any
s ∈ D, Q(f)(s) =

√
a(s)f(s).
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For any f ∈ F , we will refer to q = Q(f) as its q-map; note that q : D → R
m.

Also, we remark that this is a general version of q-map for arbitrary R
n that

extends the work of [10]. Assuming the original set of images to be smooth,
the set of all q-maps is a subset of the L2-space. Intuitively, the q-map leaves
uniform regions as zeros while preserving edge information in such a way that
it is compatible with change of variables, i.e., stronger edges get higher values.
The corresponding action of Γ on L2 is given as follows.

Lemma 1. The right action of Γ on the L2-space, corresponding to the one
given in Definition 1, is given by the mapping L2×Γ → L2 as (q, γ) =

√|Jγ|(q◦
γ), where Jγ(s) denotes the Jacobian matrix of γ at s.

Note that the mapping Q is equivariant, i.e. it can be shown that for an image
f and γ, Q((f, γ)) = (Q(f), γ), where the action on the left side is given by
Definition 1 and the action on the right is given by Definition 1.

This leads to the most important property of this mathematical representation
as the following.

Proposition 1. The reparametrization group Γ acts on the L2-space by isome-
tries under the L2-norm, i.e. ∀q1, q2 ∈ L2, ∀γ ∈ Γ, ‖(q1, γ)− (q2, γ)‖ = ‖q1 − q2‖.
Proof.

‖(q1, γ)− (q2, γ)‖2 =

∫
D

|q1(γ(s))− q2(γ(s))|2 |Jγ(s)| ds = ‖q1 − q2‖2 . (3)

Setting q2 ≡ 0, ∀q1 ∈ L2 and γ ∈ Γ , we have ‖q1‖ = ‖(q1, γ)‖. Thus, warping of
images is actually a unitary operator under this representation.

Definition 3. Define an objective function between any two images f1 and f2,
represented by their q-maps q1 and q2, as L(f1, (f2, γ)) ≡ ‖Q(f1)−Q((f2, γ))‖ =
‖q1 − (q2, γ)‖.
The registration is then achieved by minimizing the objective function:

γ∗ = arginf
γ∈Γ

L(f1, (f2, γ)) = arginf
γ∈Γ

‖q1 − (q2, γ)‖ , (4)

Upon closer inspection, Proposition 1 is exactly the same as property 4 –
invariance to identical warping – in Section 1. In view of this, the L2-norm
between q-maps of images becomes a proper measure of registration between
images since it remains the same if the registration is unchanged. This leads
to a quantity that will serve as both the registration objective function and an
extrinsic distance between registered images as defined in Eqn. 2. We will refer
to the method as MBIR, i.e. , the metric-based image registration method.

The objective function L given in Definition 3 satisfies all the properties listed
earlier as those desired for registration. Specifically, it satisfies invariance to
simultaneous warping (property 4). In case our transformation model Γ is
a group then this framework satisfies the inverse consistency as stated in
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Section 1. Additionally, the optimal registration is not affected by scaling and
translations of image pixels: let g1 = c1f1+d1 and g2 = c2f2+d2 with c1, c2 ≥ 0
and d1, d2 ∈ R

n, if γ∗ = arg infγ L(f1, (f2, γ)) then γ∗ = arg infγ L(g1, (g2, γ))
as well. We point out that there are some unresolved mathematical issues con-
cerning the existence of a unique global solution for γ∗, especially its existence
inside Γ rather than being on its boundary. We leave this for a future discussion
and focus on a numerical approach that estimates γ∗.

The proposed objective function in Eqn. 4 has only one term (similarity term)
and the regularity term appears to be missing. However, the similarity term also
has a built-in regularity, since it includes the determinant of the Jacobian, |Jγ |,
in (q, γ). Additional regularity can also be introduced to the framework as is
done in the LDDMM framework.

2.2 Gradient Method for Optimization Over Γ

The optimization problem over Γ stated in Eqn. 4 forms the crux of our registra-
tion framework and we will use a gradient descent method to solve it. Since
Γ is a group, we use the gradient to solve for the incremental warping γ, on
top of the previous cumulative warping γo, as follows. (In this way the required
gradient is an element of Tγid

(Γ ), the tangent space of Γ at identity γid, and one
needs to understand only that space.) We define a cost function with respect to
γ as the functional

E (γ) = ‖q1 − φq̃2(γ)‖2 , (5)

where φq : Γ �→ [q] is defined to be φq(γ) = (q, γ) and q̃2 = (q2, γo) with γo being
the current deformation. Given a set of orthonormal basis elements, say B, of
Tγid

(Γ ), the gradient at γid takes the form ∇E(γid) =
∑

b∈B(∇bE (γid)) b, where
∇bE(γid) is the directional derivative of E at γid. Let φq,∗ be the differential of
φq at γid in the direction of b. Then ∇bE(γid) = 〈q1 − φq̃2(γid), φq,∗(b)〉. Brackets
denote the L2 inner products. There exists an explicit form of φq,∗ such that for
b ∈ Tγid

(Γ ) and j = 1, 2, . . . , n, the coordinate functions of φq,∗(b) are given by:

φj
q,∗(b) =

1

2
(∇ · b)qj + (∇qj)b , (6)

where∇· denotes the divergence operator. The form is the same as that is derived
for parameterized surfaces in [10]. The basis elements are constructed using ideas
of Fourier basis functions (See [24] for details).

2.3 Distance in the Quotient Space

Recall that in the LDDMM framework the regularity part of the objective func-
tion comes from a proper distance on Γ , computed as geodesic length under a
Riemannian metric. If we study two images within an equivalence class using
LDDMM (as A shown in Fig. 2), then the first term will go to zero and only
the regularity term will remain. Thus, within equivalence classes, LDDMM pro-
vides a proper distance for comparing images. However, when two images are not
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Fig. 2. Illustration of quotient space and orbits

equivalent, the variation left after registration is nonzero and needs a metric for
analysis. In other words, one needs a metric between equivalence classes (shown
in Fig. 2 as B), or a metric on the orbit space. Our framework naturally induces
a metric of that type. In case the variation in Γ is also of importance, we can
combine our metric (B) with a metric on A for analysis.

As stated in Eqn. 2, the minimal value of the objective function L introduced
in Definition 3 induces a distance in the quotient space F/Γ . To explain further,
we define [q] to be the set of all warpings of a q-map. Since all elements of [q] can
be obtained using warpings (including the boundary of the orbit) of the same
image, we deem them equivalent from the perspective of registration. Let L2/Γ
be the (quotient) set of all such equivalence classes of q-maps. Define

d([f1], [f2]) = d([q1], [q2]) ≡ inf
γ∈Γ

L(f1, (f2, γ)) = inf
γ∈Γ

‖q1 − (q2, γ)‖ , (7)

It can be shown that the quantity d([q1], [q2]) (or d([f1], [f2])) forms a proper
distance on the quotient space L2/Γ . At the same time since g ∈ [f ] indicates
Q(g) ∈ [Q(f)], this quantity is a proper measure to quantify the level of regis-
tration.

Mean Image and Groupwise Registration
An important problem in image analysis, especially medical image analysis, is
to compute a “typical” or an “average” of several images from the same class
and use it as a template. Then, the individual images can be registered to the
sample mean in a pairwise manner, resulting in a group registration. By regis-
tering member images to the group mean, one can analyze their variations from
the typical template image. Suppose there is a set of N images, {fi}Ni=1. Their
Karcher mean is defined as the image that minimizes the sum of squares of the
distances to the given images, i.e. [μ] = argminf∈F

∑n
i=1 d

2([fi], [f ]). The algo-
rithm to find the Karcher mean is a standard one, and helps us find a mean
image fμ deformable to the underlying image, such that fμ ∈ [μ]. With this
mean, we can register groups of images to the mean image rather than to an
arbitrarily chosen template, as is often done in current methods.
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3 Experiments

In this section we present various image registration results in order to validate
our method. We provide examples of pairwise registration on both synthetic
images and brain MRIs. In order to improve the registration of images with larger
deformations, we also show results in landmark-aided registration for a better
solution. We demonstrate the utility of our method to compute mean images as
templates for registering multiple image. The problem of image classification is
also considered using the proposed metric and the results are compared to those
from other methods.

Recall that in case of grayscale images, with n = 1, our method does not
apply directly since n < dim(D). Instead, we make use of image gradients ∇f =
(fu, fv) for (u, v) ∈ [0, 1]2 and register objects in the form of g = (f, fu, fv) ∈ R

3.
In other words, the vector-valued image g : D → R

3 forms the input data for
registration. Such image gradients are a type of edge measure and are often used
in their own right as robust spatial features for image registration.

3.1 Pairwise Image Registration

We first present some results on synthetic images to demonstrate the use of the
registration framework suggested in Eqn. 4. Fig. 3 shows images f1 and f2 that
are registered twice, first by taking f1 as the template image and estimating
γ21 that optimally deforms f2 using Eqn. 4. Then, the roles are reversed and
f2 is used as the template to obtain γ12. We show the two converged objective
functions, ‖(q1, γ12)− q2‖ and ‖q1 − (q2, γ21)‖, associated with the optimal γ12
and γ21 to verify symmetry. The cumulative diffeomorphisms γ21◦γ12 and γ12◦γ21
are also used to demonstrate the inverse consistency of the proposed metric. As
mentioned above, the theory shows that γ12 and γ21 are expected to be inverses
of each other. We show the original images f1 and f2 with the matching warped
images f2◦γ21 and f1◦γ12 respectively. The diffeomorphisms γ12 and γ21 used to
register the images are also presented. By composing them in different orders we
expect the resulting diffeomorphisms to be the identity map. In order to better
visualize that the composed diffeomorphisms are close to identity, we apply them
to checkerboard images and observe that the composed diffeomorphisms γ21◦γ12
and γ12 ◦ γ21 are close to the identity map.

In Fig. 4, we present registration results using 2D brain MR images. In order
to illustrate our method, in each of the two experiments, we show (1) the original
images overlapped f1/f2 and (2) overlapped images after registration (f1/f2 ◦
γ21 and f2/f1 ◦ γ12). The overlapped images show image pairs in a common
canvas such that red and green denote positive and negative image differences
respectively.

Landmark-Aided Registration. Our framework can be extended to incorporate
landmark information during registration and all of the nice mathematical prop-
erties of the objective function are preserved. Assume that there are a fixed
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f1 (f1, γ12) (f2, γ
−1
12 ) γ12 γ12 ◦ γ21 Energy

f2 (f2, γ21) (f1, γ
−1
21 ) γ12 γ21 ◦ γ12 Energy

Fig. 3. Registering Synthetic Smooth Grayscale Images. γ12 = argminγ∈Γ L(f2, (f1, γ))
and γ21 = argminγ∈Γ L(f1, (f2, γ)). ‖q1 − q2‖ = 0.2312, ‖q1 − (q2, γ21)‖ = 0.0728 and
‖(q1, γ12)− q2‖ = 0.0859.

number, say K, of distinct landmark points, P = {p1, p2, . . . , pK}, in the im-
age domain D. They are typically chosen according to the application but fixed
within the analysis. The landmark-guided registration is achieved by defining a
subgroup of Γ , denoted by ΓP , as:

ΓP = {γ ∈ Γ |γ(pi) = pi, i = 1, 2, . . . ,K} . (8)

Given two images f1, f2 with landmark information P , the images can be regis-
tered in two steps in an iterative way:

1) Register the landmark points P and apply an initial deformation to f1 to
form fP

1 such that the landmarks are at the same locations in fP
1 and f2.

2) Register fP
1 to f2 using Eqn. 4 restricting to the subgroup ΓP .

Similar technique of forming landmark-constrained basis on S
2 has been used

on closed surfaces as described in [11]. In the second step, searching over ΓP
ensures correspondences of landmarks established in step 1 are preserved. The
registration is refined without moving the landmarks. This search is based on a
basis BP in Tγid

(ΓP) constructed such that its elements, the vector fields on D,
vanish at the landmark locations {pi}.

We remark that ΓP forms a subgroup of Γ and, as a result, the desired proper-
ties discussed earlier are still satisfied. This approach may be termed landmark-
guided registration where the landmarks are treated as hard constraints.

We show results on MRIs with landmarks in Fig. 5. In the first example,
presented in the first row of Fig. 5, the optimally deformed f1 is displayed at
the end as (f1, γ). The deformation in the skull is so large that our original
method fails to reach a global minimizer of the objective function. By adopt-
ing the landmark-aided registration, we at first get a deformed image fP

1 , with
nicely matched landmarks and the skull deformed correspondingly. Then, fP

1 is
further deformed to register the intensity details without moving the landmarks.
The final result (fP

1 , γ) matches f2 with no artifacts around the skull. Another
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Example 1

Example 2

f1/f2 f1/f2 ◦ γ21 f2/f1 ◦ γ12

Fig. 4. Two examples of brain MR image registration. First columns show overlapped
original images f1 and f2; second columns show overlapped images f1 and deformed
f2; third columns show f2 and deformed f1.

example is shown in the bottom two rows of Fig. 5. Generally, the registration
with landmarks outperforms the identity map as the initial condition of our
procedure, especially when the deformations are large.

3.2 Registering Multiple Images

We use part of the MNIST database of handwritten digits to illustrate our
method to compute the mean image and multiple image registration. In Fig. 6
we present the mean image of each digit computed without and with registration,
respectively. We also show an example using brain MRIs in Fig. 7. Four brain
images without alignment are shown on the top row with the corresponding mean
image. This mean without registration appears blurred due to misalignment. On
the bottom row, the images are aligned to the Karcher mean as described in
Section 2.3. We can see that with multiple registration the mean image imporves
the bluriness issue.

3.3 Image Classification

The framework introduced in this paper establishes a proper distance on the
quotient space of q-maps of images. These distances can be used for pattern
analysis of images such as clustering or classification. To illustrate this idea, we
use a subset of the MNIST database of images of handwritten digits from 0
to 9. It contains ten images of handwritings for each digit. In addition to the
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f1 f2 f lm
1 (f lm

1 , γ) (f1, γ)

f1 f2 f lm
1 (f lm

1 , γ) (f1, γ)

Fig. 5. Two examples of brain image registration with landmarks. First two columns
show original images f1 and f2. The third column shows the deformed images f lm

1

using only landmarks; forth column shows final deformed images (f lm
1 , γ) with fP

1 as
the initial condition; the last column shows registered images (f1, γ) without involving
landmarks.

No Alignment With Alignment

Fig. 6. First row contains the mean image without registration for digit groups (0-9);
second row contains corresponding mean images with registration

baseline L2-distance, or sum of squared distances (SSD) (without any warping),
we compare our method to three other methods - diffeomorphic demons [22],
FAIR [15] and NiftyReg [14].

For computing distance matrices between all pairs of images, the digits are
registered in a pairwise manner using each of the three methods and then the
SSD is computed for the registered images as a measure of distance. In the
case of our method the distance defined in Eqn. 7 is used. Using the leave-one-
out nearest-neighbor (LOO-NN) classifier, the rates of correct classification are
listed in Table 2. Provided as a baseline, the L2-distance without any registration
provides a rate of classification of 76% with our method performing the best with
94%.

Table 2. Classification of MNIST Digits

Method MBIR Demons FAIR NiftyReg

% 94 86 85 83
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No Alignment Mean

With Alignment Mean

Fig. 7. Mean images of brain MRIs. Upper row: unregistered images and the cross-
sectional mean; bottom row: mean with registration and images registered to it.

4 Conclusion

We have proposed a novel framework to register, compare and analyze images in
a unified manner. This framework results in an objective function for registration
that is both inverse consistent and invariant to random warpings of images. Fur-
thermore, this function forms a proper metric on the quotient space of images,
modulo the deformation group, and can be used to define and compute sample
means of given images. This last item is based on computing an extrinsic distance
between images in the representation space L2. With this framework, our method
gives better results for pairwise registration and comparison, and multiple im-
age registration and analysis. Furthermore, it allows the use of pre-determined
(registered) landmark on images to help improve registration performance.
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