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Julien Bohné1,2, Yiming Ying3, Stéphane Gentric2, and Massimiliano Pontil1

1 University College London, Department of Computer Science, London, UK
m.pontil@cs.ucl.ac.uk

2 Safran Morpho, Issy-les-Moulineaux, France
{julien.bohne,stephane.gentric}@morpho.com

3 University of Exceter, Department of Computer Science, Exceter, UK
y.ying@exeter.ac.uk

Abstract. Linear metric learning is a widely used methodology to learn
a dissimilarity function from a set of similar/dissimilar example pairs. Us-
ing a single metric may be a too restrictive assumption when handling
heterogeneous datasets. Recently, local metric learning methods have
been introduced to overcome this limitation. However, they are subjects
to constraints preventing their usage in many applications. For example,
they require knowledge of the class label of the training points. In this
paper, we present a novel local metric learning method, which overcomes
some limitations of previous approaches. The method first computes a
Gaussian Mixture Model from a low dimensional embedding of train-
ing data. Then it estimates a set of local metrics by solving a convex
optimization problem; finally, a dissimilarity function is obtained by ag-
gregating the local metrics. Our experiments show that the proposed
method achieves state-of-the-art results on four datasets.

Keywords: Dissimilarity learning, local metric learning, face recogni-
tion, nearest neighbor classification.

1 Introduction

An effective dissimilarity function is of great importance for many pattern recog-
nition applications such as face verification, speech recognition or text catego-
rization. As it might be hard to design such a function by hand for each task,
especially when the input dimensionality is large, learning dissimilarity func-
tions from labeled data has received a growing interest over the last years, see,
for example, [4,7,24] and references therein.

A well studied class of dissimilarity functions is a linear metric of the form
(xi − xj)

�M(xi − xj) where xi and xj are two data points which we wish to
compare and M is a positive semidefinite matrix (PSD). This approach has been
shown to be quite effective on various tasks but it suffers a strong limitation: it
makes use of a single linear metric to compare data over all the input space which
is inappropriate to handle heterogeneous data. This observation is the root of
the development of local metric learning methods which adapt the dissimilarity
function to the local specificities of the data. For illustrative purpose let us
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consider two examples. It is well known that in digit classification some digits are
easily mistaken for another such as “1” and “7” or “3” and “8”, it seems therefore
reasonable to reduce the number of misclassification to focus on different features
to discriminate digits in the “1-7” region and in the “3-8” one. Our second
example is face verification: should we put the emphasis on the very same features
to compare two pictures of Caucasian males and two pictures of Asian females?
Our answer is “no” and our experiments show that local metric learning improves
the performance for these two applications.

Dissimilarity function can be employed in nearest neighbor classifiers or to
take decisions based on the thresholding of the dissimilarity. Those two situations
are different as the former depends only on the ranking of the nearest neighbors
whereas the latter is concerned about the absolute meaning of the dissimilarity.
In this work we propose a flexible local metric learning method called Large
Margin Local Metric Learning (LMLML) which can be employed in both settings
and can handle an arbitrary large number of classes. Its training procedure does
not need one to know the class labels but only a set of pairs labeled “similar”
(both points belong to the same class) or “dissimilar” (the two points belong to
different classes). Our method computes a set of local metrics which are combined
into an adaptive dissimilarity function with the help of a soft partitioning of the
training data. The optimization of the local metrics is formulated as a convex
problem which favors a large margin solution. The problem also involves a novel
regularization term encouraging matrices which are close to a simple baseline
solution. Our experiments show that LMLML outperforms or matches state-of-
the-art results on various datasets.

After describing the related work in the next section we present LMLML and
explain how to train the model in Section 3 and demonstrate its effectiveness on
various datasets in Section 4. Finally, in Section 5 we summarize our findings.

2 Related Work

Global metric learning methods such as ITML [4], LDML [7] or LMNN [24]
are precursors of this work. They formulate metric learning as the optimization
of an objective function which decreases when the distances of similar pairs is
made small while increasing those of dissimilar pairs. Some of these methods
also include a regularization term which aims at limiting the risk of over-fitting.

Local metric learning has recently been investigated from several angles. It
has sometimes been linked to semi-supervised clustering such as in [1] where
labeled data are used to find local transformations of the data points in order to
improve a clustering process. This kind of method cannot compute dissimilarity
measures between pairs of never seen points which is the goal of our work.

Metric learning is often used in nearest neighbor schemes (NN) to perform
multi-class classification. Several local metric learning algorithms have been de-
veloped to improve NN classifiers. Weinberger and Saul proposed an extension of
LMNN to local metric (MM-LMNN [23]), in which a specific metric is associated
to each class and all the metrics are jointly learned to optimize a classification cri-
terion. LMNN has also been extended to a multi-tasks setting [5] where multiple
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metrics are jointly learned [17]. Our work can be considered to be a general-
ization of these methods as it uses a weighted combination metrics instead of
activating a single metric for each comparison (see Section 3.2).

KISSME [11] has also been extended to local metric in [12] where one KISSME
metric is learned separately for each class. These class-specific metrics are av-
eraged with a global one to limit the risk of over-fitting due to the fact that
each metric might be learned using only a limited number of training samples.
GLML [15] proposes to use local metric to limit the performance bias due to
finite sampling using the class conditional probability distribution.

All the previously presented methods suffer from the same drawback, namely
they need enough training samples per class to estimate the metrics and there-
fore cannot easily be employed when the number of classes is very large. To
overcome this problem [22] introduces a local metric learning method based on
finite number of linear metrics named PLML. The number of metrics is different
from the number of classes and hence the method can scale to a larger number
of classes. However this method is specifically designed for NN classification as
it can only compute the dissimilarity of pairs for which at least one point is in
the training set. This strongly limits the range of tasks PLML can deal with and
for example prevent its use for face verification.

As we shall see in the next sections, our approach overcomes the limitations
mentioned above and, as we demonstrate by a set of experiments, obtains better
results than previous local metric learning methods.

3 Large Margin Local Metric Learning

This section describes the proposed method. We start by presenting our data
preprocessing and then detail LMLML’s model and each step of its optimization.

3.1 Data Preprocessing

A preprocessing is applied to the data before training the model. This step serves
two purposes: first it reduces the dimensionality to speed up the computation
for both training and testing, and second it reduces the noise thereby improving
the overall performance of the algorithm.

Like most of the metric learning methods we first center the dataset and
reduce the dimensionality to a n-dimensional space by PCA; n is often chosen
so that 95% of the energy is preserved. Let D = {(i, j)} denote the index set of
training pairs and let yij be a label which is equal to 1 if (xi, xj) is a similar pair
and -1 otherwise. We compute the within-class scatter matrix defined by

S = U

⎛
⎝ ∑

(i,j)∈D|yij=1

(xi − xj)(xi − xj)
�

⎞
⎠U� (1)

where U is the matrix formed by the n leading eigenvectors of the covariance
matrix of the data, and then multiply the data by S−1/2 to make the classes, on
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average, isotropic. This transformation is known under different names such as
mapping in the intra-personal subspace in face recognition [3] or Within-Class
Covariance Normalization (WCCN) in the speaker recognition community [8].
The transformed data points are now x′ = S−1/2U(x−m) where m is the mean
of the data. Like in [3], we finally rescale each feature vector so that it has a unit
L2-norm. To simplify the notation, whenever we mention a feature vector x in
the reminder of the document, it in fact refers to the n-dimensional preprocessed
vector x′/‖x′‖2.

3.2 Model

The square distance associated with a pair of data points (xi, xj) using the
matrix M ∈ Sn

+ (the set of n× n PSD matrices) is defined by

d2(xi, xj ,M) = (xi − xj)
�M(xi − xj). (2)

In LMLML the metric is adapted to each pair so the matrix M is replaced by a
matrix-valued function M : Rn × R

n �→ Sn
+. It is defined, for every xi, xj ∈ R

n,
as a convex combination a K + 1 matrices

M(xi, xj) =

K∑
k=0

wk(xi, xj)Mk (3)

where wk(xi, xj) are nonnegative weights which we define below. The smooth-
ness of the function M is a very desirable property because it guarantees the
dissimilarity function to be local and also because abrupt changes would make
the thresholding of the dissimilarity more difficult to handle. In order to ensure
this property, we use weights wk which vary smoothly across the input space. As
we want the dissimilarity function to be local it makes sense to use a soft parti-
tioning of the input space to compute the weights wk(xi, xj) and we propose to
rely on a Gaussian Mixture Model (GMM) with K components as follow:

wk(xi, xj) =

{
β if k = 0

P (k|V xi) + P (k|V xj) otherwise
(4)

where V ∈ R
r×n is a dimensionality reduction matrix to be described in Sec-

tion 3.3, β is a positive constant and P (k|V x) is the posterior probability that
the point V x has been generated by the Gaussian k. Notice that ∀xi, xj ∈
R

n,
∑K

k=0 wk(xi, xj) = 2 + β. The GMM has to be computed on a low dimen-
sional space, typically less than 50, to ensure the smoothness of wk because
P (k|V x) tends not to be smooth otherwise. We illustrate this in Section 4.3.
The GMM is trained using the standard Maximum Likelihood EM algorithm.
Even if this procedure is totally unsupervised, the soft partitioning depends on
the labels as V is learned in a supervised manner.

Thanks to the weights wk(xi, xj), each local metric has a strong influence
only within a specific region, Mk has a large weight in M(xi, xj) if xi or xj is
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strongly associated with Gaussian k and even more so if both are. In the face
verification example mentioned in the introduction, the soft partitioning tends to
roughly regroup faces by gender and ethnicity (see Section 4.4). Thus M(xi, xj)
emphasizes those features which are most discriminative to compare people with
similar gender/ethnicity than xi and/or xj .

The metric M0 is associated with a constant weight and is therefore a global
metric, it handles the part of the dissimilarity function which is common to the
whole input space. The metrics Mk with 1 ≤ k ≤ K deal with the local adapta-
tions of the dissimilarity function over the regions defined by the Gaussians of the
GMM. Our model is a generalization of global metric and purely local metric as
the parameter β allows to balance the influence of the global metric M0 and the
local metrics Mk in the matrix M(xi, xj). The larger K is, the more the model
will be able to handle subtle local adaptations but the more it might overfit.
Among values obtaining comparable performance during cross-validation, the
smallest should be preferred because speed and memory occupancy for training
and testing grow linearly with K. The impact ofK on the performance is studied
in Section 4.3. If K = 0 or β → ∞ our model is equivalent to a global linear
metric.

One could think that it is not necessary to add the M0 metric in our model
because the very same dissimilarity function can be written without M0 by
integrating it into the others Mk. However the actual formulation allows one to
use all the training points to learn the part of the dissimilarity function which is
common to the whole space and this leads to better generalization performance.

We summarize here the 4 steps of LMLML’s training:
1. Data preprocessing (Section 3.1),

2. Optimization of V which maps the data into a low dimensional embedding
(Section 3.3),

3. Training of the GMM and computation of the weights wk(xi, xj) using (4),

4. Optimization of the PSD matrices M0, . . . ,Mk (Section 3.4).

3.3 Low Dimensional Embedding

The weights wk(xi, xj) are based on the soft partitioning of the space derived
from the GMM. Training the GMM on a discriminative low dimensional em-
bedding is one of the key points of our method for two reasons. First, the low
dimensionality favors the smoothness of weight functions. Second, for local met-
ric to be effective it is needed that points which are hard to discriminate using a
global metric have similar weights so that the local metrics focus on the locally
discriminative information. To fulfill these two requirements the computation of
the embedding is inspired by low rank global metric learning methods [20]. Let
V ∈ R

r×n denote the transformation matrix embedding the data into the low
dimensional feature space of size r. We define the following loss function based
on the hinge loss:

�γ (y, z) = max

(
0, 1− y

γ
(1− z)

)
(5)
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where y ∈ {−1, 1} is a label, z a dissimilarity value and γ the margin width
parameter. We propose to find the transformation V by minimizing the objective
function

J(V, α) =
1

|D|
∑

(i,j)∈D
�γ

(
yij , d

2(xi, xj , V
�V )

)
+ λ‖V �V − αI‖F (6)

with respect to V and α, d2 is the distance function defined by (2), | · | is the
cardinality operator and λ is a parameter tuning the strength of the regulariza-
tion. Thanks to the preprocessing step described in Section 3.1 the Euclidean
distance is already a reasonable metric so, to limit over-fitting, the regularizer
favors solutions close to the identity up to a scale factor parameter α. The scale
factor being unknown, the optimization is also performed with respect to α.

The parameter γ is typically between 0.5 and 1: only the more difficult pairs
impact the objective function when γ is small but a larger proportion of them
does if γ is large. Its optimal value depends on how helpful easy pairs are to
improve the performance on the part of the ROC curve we care about. It also
depends on the size of the training set: larger values of γ are better with small
training sets because when few pairs are available it is better not to discard too
many of them even if they are not the most helpful ones. Both λ and γ have to
be selected by cross-validation but can be set by looking only at the performance
of low dimensional transformation alone. Objective functions similar to (6) have
already been proposed in the literature [20,13], they mainly differ by the choice
of the regularizer.

This optimization problem is not convex so there is no guarantee to find the
global minimum but in practice we observed that the initialization of the op-
timization does not impact much the final performance. We use a stochastic
mini-batch gradient descent to minimize J(V, α). At each iteration, it uses the
gradient of JD′(V, α) which is the approximation of the objective function us-
ing only a randomly selected subset of size t of the training set D′ ⊂ D. Its
computation is straightforward and gives

∂JD′(V, α)

∂α
=

αt− ‖V ‖2F
‖V �V − αI‖F , (7)

∂JD′(V, α)

∂V
=

1

|D′|
∑

(i,j)∈D′

∂�γ
(
yij , d

2(xi, xj , V
�V )

)
∂V

+ λ
∂‖V �V − αI‖F

∂V
(8)

with

∂�γ
(
yij , d

2(xi, xj , V
�V )

)
∂V

=

⎧⎪⎨
⎪⎩

0 if yij(1− d2(xi, xj , V
�V )) < γ

2yijV (xi−xj)(xi−xj)
�

γ otherwise

, (9)

∂‖V �V − αI‖F
∂V

=
2V (V �V − αI)

‖V �V − αI‖F . (10)
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3.4 Local Metrics Optimization

LMLML training is a two steps procedure: we first learn the low dimensional
transformation and the GMM allowing to compute the weights wk(xi, xj) as pre-
viously described, and then we optimize over the PSD matrices Mk considering
the weights fixed. In this section, we explain how to achieve the latter step.

We define an objective function similar to (6) but adapted to local metrics:

H(M,α) =
1

|D|
∑

(i,j)∈D
�γ

(
yij , d

2(xi, xj ,M(xi, xj))
)
+λ′

K∑
k=0

‖Mk − αkI‖F (11)

where M = {M0, . . . ,MK}, α = {α0, . . . , αK} is a vector of scale factors and λ′

tunes the intensity of the regularization; λ′ is usually very close to λ of (6) but
can be tuned by cross-validation to optimize the performance of LMLML. We
seek to minimize H(M,α) with respect to M and α under the constraint that
∀k ∈ {0, . . . ,K}, Mk ∈ Sn

+.
When replacingM(xi, xj) by its definition (3) in the expression of the squared

distance (2), we notice that d2(xi, xj ,M(xi, xj)) is linear with respect to each
of the matrices Mk so �γ is convex. Each term of the regularizer can be writ-

ten as ‖ [vec(Mk)
�, α

]
A‖2 with the appropriate matrix A ∈ R

(n2+1)×n2

. The
composition of a convex function with a linear mapping is convex (see [2], 3.2.2)
therefore H(M,α) is jointly convex.

The optimization of a constrained problem can be slow but we can transform
it into an unconstrained problem. We make the change of variable Mk = L�

k Lk

where Lk ∈ R
n×n, define the objective function H ′ such that H ′(L,α) =

H(M,α) where L = {L0, . . . , LK} and optimize H ′. This new problem is no
longer convex but as it has been shown in [13], if we consider two functions f
and h such that f(L) = h(L�L) then every minimum of f corresponds to a
minimum of h. The proof can easily be extended to the multi metric case and
therefore, asH is convex, we can optimize the unconstrained problemH ′ without
risking to be stuck in a non optimal local minimum. Notice that this reasoning
does not apply to the minimization of (6) because the matrix V is rectangular
whereas the Lk are square. Using a rectangular matrix is equivalent to adding
a rank constraint on the metric and therefore makes the initial optimization
problem non convex.

The optimization is also performed using a stochastic mini-batch gradient
descent. Let H ′

D′(L,α) be the approximation of the objective function using
only a subset of size t of the training set D′ ⊂ D, its gradient is

∂H ′
D′(L,α)

∂αk
=

αkt− ‖Lk‖2F
‖L�

k Lk − αkI‖F , (12)

∂H ′
D′(L,α)

∂Lk
=

1

|D′|
∑

(i,j)∈D′

�γ
(
yij , d

2(xi, xj ,M(xi, xj))
)

∂Lk
+ λ′ ∂‖L�

k Lk − αkI‖F
∂Lk

(13)
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with

�γ
(
yij , d

2(xi, xj ,M(xi, xj))
)

∂Lk
=

⎧⎪⎨
⎪⎩

0 if yij(1− d2(xi, xj ,M(xi, xj))) < γ

2yijwk(xi,xj)Lk(xi−xj)(xi−xj)
�

γ otherwise

(14)

∂‖L�
k Lk − αkI‖F

∂Lk
=

2Lk(L
�
k Lk − αkI)

‖L�
k Lk − αkI‖F . (15)

Note that in LMLML, the Lk are jointly optimized: all the metrics impact
the value of M(xi, xj) and therefore the gradient of each Lk.

3.5 Parameters Setting

The regularization strength λ′ and the number of local metrics K are the two
key parameters of LMLML. They have to be set by cross-validation for each
dataset, the others parameters don’t need to be fine tuned. The dimensionality
after PCA n is common to most metric learning algorithm and is usually chosen
so that 95% of the energy is preserved. Parameter γ is not very sensitive, it
takes value in [0.5, 1] and should be close to 0.5 on big datasets and closer to
1 on smaller ones. Among the additional parameters added specifically to deal
with the local metrics, namely K, r and β, only K needs to be tuned, we have
set r = 30 and β = 1.5 in all our experiments.

4 Experiments

The set of experiments presented in this section demonstrates the performance
of LMLML on various datasets and provides some insights into the method.

4.1 Datasets and Setup

MNIST. Handwritten digits classification has been widely used to assess the
performance of dissimilarity functions for classification. The MNIST1 dataset
is composed of 70000 images of size 28 × 28, 60000 for training and 10000 for
testing. We used the same setup as in [22] to compare the performance with
other dissimilarity measures. The PCA is computed directly on the pixel values
and 164 dimensions are kept after the PCA to retain 95% of the energy. The
classification is performed using a simple nearest neighbor classifier.

FRGC. Face verification is a very popular application of dissimilarity function
learning. The task consists in determining whether two images depict the same
person, usually by thresholding a dissimilarity measure. The identities used for
testing are not included in the training set. FRGC Experiment 1 [18] is a face

1 http://yann.lecun.com/exdb/mnist/

http://yann.lecun.com/exdb/mnist/
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dataset of more than 15000 images of more than 500 people. The pose of the
subject and the illumination have been controlled during the acquisition so com-
pared to datasets like Labeled Faces in the Wild presented hereafter this dataset
is fairly easy. However, on this type of dataset, the interest is focused on the
verification rate at low false positive rates (1% and below). This is a realistic
setting for many security applications of face recognition (like smartphone un-
locking or passport check at the border) where a false accept is a security breach
and therefore must be very rare. After aligning the images using the eyes loca-
tions, we computed UoCTTI HOG descriptors [6] extracted using the VLFeat
library [21] to obtain 6076-dimensional feature vectors. We retained 700 dimen-
sions after the PCA and trained all the dissimilarity functions we compare on
these vectors.

LFW. Label Faces in the Wild (LFW) [9] is another face verification dataset.
It is composed of 13233 images of 5749 people taken from Yahoo! News in wide
range of acquisition conditions (pose, illumination, expression, age, etc.) there-
fore considered to be challenging. We have followed the same feature extraction
procedure as [3]: the “aligned” image are first cropped to 150 × 80 to remove
most of the background, then descriptors composed of histograms of Local Bi-
nary Patterns [16] are extracted and their dimensionality is reduced to 300 by
PCA. The within-class whitening is also activated on LFW. As discussed in
Section 4.2 the choice of the training pairs has a great impact on the overall
performance of dissimilarity function methods. To get rid of this bias we report
the performance on LFW in the Image Restricted setting where only a limited
number of labeled training pairs are provided but not the identity information
associated with each image making impossible the use of all possible pairs. We
followed the recommended 10-folds cross-validated experiment for evaluation [9]
and selected the parameters and the threshold using a 9-folds cross-validation
scheme for each training.

Reuters. Finally we demonstrate the performance of LMLML on the text cate-
gorization dataset Reuters-21578 R522. It consists of 9100 text documents which
appeared on the Reuters newswire in 1987, 6532 in the training test and 2568
in the testing set. Each text belongs to one of the 52 topics and every topic has
at least one text in the training set and one in the testing set. The classes are
very unbalanced as some topics have more than 1000 text documents whereas
others have just a few. Each text is described as a histogram of word occurrence
spanning 5180 terms. A very large number of dimensions should be kept after
the PCA to preserve 95% of the energy but to speed up the experiments we kept
only the first 100 dimensions retaining only 62% of the energy.

2 http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html

http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html
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4.2 Choosing Training Pairs from Class Labels

Many dissimilarity function learning methods consist in optimizing an objective
function depending on pairs of feature vectors, see for example [4,7,22,3,13]. The
number of possible pairs grows quadratically with the number of training points
therefore it is often impracticable to use all of them because the training would
require a prohibiting amount of time. The choice of the training pairs has a huge
impact on the performance of the method. On some datasets like LFW in the
Image Restricted setting the pairs are provided with the dataset but most of the
time the pairs have to be created from the class labels, in this section we give
some guidelines about how to choose the training pairs.

When the dissimilarity function is employed for nearest neighbor classification
like on the MNIST and Reuters datasets, the training pairs should consist of
neighboring points because nearest neighbor classifiers base their decision only
from such points. We propose to proceed as follow: for each data point x, create
q similar pairs, formed by x and each of its q closest neighbors of the same
class, and q dissimilar pairs, formed by x and each of its q closest neighbors of a
different class. This results in 2q training pairs per data point. For both MNIST
and Reuters we used q = 5.

Dissimilarity measures are also often thresholded to take a decision such as in
face verification application. The choice of the threshold leads to a specific trade-
off between false positive error and verification rates and this choice depends on
the target application. On a dataset like FRGC the number of possible similar
pairs is limited and all of them can be used during training but a selection must
be made for the dissimilar ones. As people are mainly interested in performance
at low false positive rates on such datasets, the training set should include a large
number of dissimilar pairs. To speed up the training, we propose a simple hard
dissimilar pairs mining scheme. We first randomly pick a number of dissimilar
pairs equal to the number of similar pairs and train our model with this set.
Then we compute the dissimilarity for a large number of dissimilar pairs and
select the 5 or 10% hardest pairs to learn the metrics again. This step could be
repeated many times but in practice we observed little improvement after the
first iteration.

4.3 Results on MNIST

We argued in Section 3.2 that the dimensionality of the data needs to be re-
duced before computing the GMM in order to ensure the smoothness of the
posterior probability P (k|x) with respect to x and therefore of the weights wk

and the function M. We performed an experiment on MNIST to support our
claim. We computed low dimensional embeddings of several dimensionalities us-
ing the procedure described in Section 3.3 and for each performed the following
operations:

1. Estimation of the GMM parameters (for this experiment we have arbitrary
chosen K = 5),



Large Margin Local Metric Learning 689

2. Computation of the posterior probability distribution P (·|x) for every x in
the training set,

3. Computation of the Bhattacharyya distance

dB (P (·|xi), P (·|xj)) = − log
∑
k

√
P (k|xi)P (k|xj) (16)

between the distribution associated with each x and those of its 3 nearest
neighbors.

Figure 1a shows the 75th and 90th percentiles of the computed Bhattacharyya
distance function of the dimensionality of the embedding. We can see that
larger embedding dimensionality leads to larger Bhattacharyya distance between
nearby points which means less smooth weights wk and therefore justify our
choice of a low dimensional embedding. When r = 30, the largest weight ac-
counts for less than 80% of the total for 18% of MNIST samples.

We also studied on this dataset the impact of the parameter K, the number
of local metrics used in LMLML. As the training of the GMM only finds a local
minimum we performed the training 10 times for each value of K and report the
mean and standard deviation of the classification rate on Figure 1b. We see that
the local metrics significantly outperform the global one (K = 0) even if only
2 metrics are used. The classification rate increases for K up to 17 and stays
stable afterwards. The speed and memory occupancy for training and testing
grows linearly with K so smaller values should be favored. We also notice that
LMLML’s overall performance has little sensitivity to the local minima proneness
of the GMM as the average standard deviation is only 0.015%.
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Fig. 1. (a) Percentiles of Bhattacharyya distance between neighbors function of the
embedding dimensionality. (b) Impact of K on LMLML’s performance.

On the MNIST dataset we compare LMLML with 6 others methods designed
for nearest neighbor classification using the same features: 2 global metric learn-
ing algorithms LMNN [24] and BoostMetric [19], 3 local metric learning methods
MM-LMNN [23], GLML [15] and PLML [22] and a multi-class SVM with one-
against-all strategy (the best kernel has been chosen by inner cross-validation).
The performance of the other methods have been taken from [22]. Table 1 re-
ports the results. It is worth noticing that the idea of local metric learning needs
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to be carefully handled to be effective, MM-LMNN and GLML obtain worse
results than the global metric learning methods. A possible explanation is that
they learn one metric per class and fail to share the information among the
classes. LMLML (K = 19 set by cross-validation) has an accuracy of 98.10%
and outperforms all the other methods including non linear SVM.

Table 1. Classification Rates on MNIST

Local Metric Learning & SVM Global Metric Learning

Method Class. Rate Method Class. Rate

LMLML K = 19 98.10% LMLML K = 0 97.49%

SVM [22] 97.62% LMNN [24] 97.30%

PLML [22] 97.30% BoostMetric [19] 96.03%

MM-LMNN [23] 93.24%

GLML [15] 84.00%

4.4 Results on FRGC

To perform face verification a method needs to be able to compute a dissimilarity
with pairs of never seen points so we cannot compare LMLML to the local metric
learning methods presented in Section 2. Figure 2 shows the ROC curves of
LMLML, KISSME [11], ITML [4] and LDML [7]. We used the code available on
their respective author’s website and cross-validated their parameters in the same
way we did with LMLML following the authors’ recommendations. Our approach
obtains better verification rates at all false positive rates. We also experimented
LMNN but it works poorly on this dataset. This result is not surprising as LMNN
is designed to find a good metric for nearest neighbor classification but not for
thresholding.

Fig. 2. ROC curves on FRGC
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In order to gain more insights into the good performance achieved by our
method we observed the distribution of the faces among the different Gaussians
of the GMM. Each line of Figure 3 shows faces for which the posterior probability
is greater than 0.7 for a specific Gaussian. Thanks to the use of our discriminative
low dimensional embedding, the GMM capture interesting properties of the faces:
the first group is mostly populated of Asian people (both males and females),
the second of Caucasian females, the third and fourth of Caucasian males and
the last one of Asian females. This grouping is totally unsupervised as no gender
or ethnicity information has been given to the algorithm and allows LMLML to
adapt the dissimilarity function to the specificities of these groups and contribute
to its good performance on FRGC.

Fig. 3. Samples of faces belonging to the different Gaussians of the GMM, each line is
constituted of faces for which P (k|V x) > 0.7 for a specific Gaussian

4.5 Results on LFW

The best methods on LFW rely on fine tuning of the feature extraction: combi-
nation of several image descriptors, detection of numerous feature points, use of
multiple alignments of the images. To fairly evaluate our approach we followed
the feature extraction procedure described in [3,14] and compare our results to
those given in these papers in Table 2. CSML’s accuracy is copied from [14] and
all the others come from [3].

LMLML obtains the 2nd best performance with 0.8613 just behind Sub-SML
which got 0.8673. However, the parameter selection process consistently chooses
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Table 2. Accuracy on LFW

Method Accuracy Method Accuracy

LMLML 0.8613 ± 0.0053 ITML [4] 0.7998 ± 0.0039

Sub-SML [3] 0.8673 ± 0.0053 Sub-ITML [3] 0.8398 ± 0.0048

CSML [14] 0.8557 ± 0.0052 LDML [7] 0.8065 ± 0.0047

KISSME [11] 0.8337 ± 0.0054 Sub-LDML [3] 0.8227 ± 0.0058

DML-eig [25] 0.8228 ± 0.0041 SILD [10] 0.8007 ± 0.0135

K = 0 for all the folds meaning that local metrics does not help on this dataset.
The main explanation for this observation might be that the major challenge of
LFW is the wide intra-class variability and this issue is not addressed by local
metric learning as local metrics mainly help to discriminate similar pairs from
dissimilar ones which are composed of close by feature vectors.

4.6 Results on Reuters

As we noted before this dataset is composed of a large number of classes and
is very unbalanced. This makes local metric learning methods which learn one
metric per class such as MM-LMNN [23] or GLML [15] not well suited. We
compared LMLML with one global metric learning method: LMNN, and one
local learning metric method: PLML. We used the code downloaded from their
respective author’s website and cross-validated their parameters. The results are
the following: LMLML K = 3: 89.03%, LMLML K = 0: 88.75%, LMNN: 88.87%
and PLML 87.39%. LMLML obtains the best performance but is only slightly
better than LMNN. Once again these results show that handling local metric
can be tricky as the global metric learning LMNN outperforms PLML.

5 Conclusion

In this paper, we have introduced a new local metric learning algorithm. The
data are embedded into a discriminative low dimensional space to compute a
soft partitioning which allows to define a smooth locally adapting dissimilarity
function. Our method overcomes the limitations of previous local metric learning
methods, it is as flexible as global metric learning methods and can therefore be
applied to wide variety of scenarios. The good performance of LMLML has been
demonstrated on four different datasets including the popular and challenging
LFW. In the future, LMLML could be extended to a more generic multi metrics
method by performing the soft partitioning with respect to other criteria such
as image quality. Furthermore, an interesting direction for future research is to
integrate the soft partitioning and the learning of the local metrics into a single
optimization problem.
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21. Vedaldi, A., Fulkerson, B.: VLFeat: An open and portable library of computer
vision algorithms (2008), http://www.vlfeat.org/

22. Wang, J., Kalousis, A., Woznica, A.: Parametric local metric learning for nearest
neighbor classification. In: NIPS, pp. 1610–1618 (2012)

23. Weinberger, K., Saul, L.: Fast solvers and efficient implementations for distance
metric learning. In: ICML, pp. 1160–1167 (2008)

24. Weinberger, K., Saul, L.: Distance metric learning for large margin nearest neighbor
classification. JMLR 10, 207–244 (2009)

25. Ying, Y., Li, P.: Distance metric learning with eigenvalue optimization. JMLR 13,
1–26 (2012)

http://www.vlfeat.org/

	Large Margin Local Metric Learning
	1 Introduction
	2 Related Work
	3 Large Margin Local Metric Learning
	3.1 Data Preprocessing
	3.2 Model
	3.3 Low Dimensional Embedding
	3.4 Local Metrics Optimization
	3.5 Parameters Setting

	4 Experiments
	4.1 Datasets and Setup
	4.2 Choosing Training Pairs from Class Labels
	4.3 Results on MNIST
	4.4 Results on FRGC
	4.5 Results on LFW
	4.6 Results on Reuters

	5 Conclusion
	References




