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Abstract. We present an approach to enhance the accuracy of structure
from motion (SfM) in the two-view case. We first answer the question:
“fewer data with higher accuracy, or more data with less accuracy?” For
this, we establish a relation between SfM errors and a function of the
number of matches and their epipolar errors. Using an accuracy estima-
tor of individual matches, we then propose a method to select a subset of
matches that has a good quality vs. quantity compromise. We also pro-
pose a variant of least squares matching to refine match locations based
on a focused grid and a multi-scale exploration. Experiments show that
both selection and refinement contribute independently to a better ac-
curacy. Their combination reduces errors by a factor of 1.1 to 2.0 for
rotation, and 1.6 to 3.8 for translation.

1 Introduction

3D reconstructions from pictures are increasingly being used to model real scenes
or objects. For some applications such as video games or virtual film sets, cap-
turing the general shape and appearance is enough. The reconstruction method
does not have to be particularly accurate. However, in industrial settings, where
3D models are used for measurement, accuracy is crucial. Moreover, even for
less demanding tasks, accurate reconstruction reduces the quantity of required
images, thus reducing the costs and increasing the applicability. Better estimates
also lessen the impact of outliers.

In this paper, we propose a method to greatly enhance the accuracy of two-
view structure from motion (SfM), i.e., the estimation of the camera poses (posi-
tions and orientations) and of the basic structure of the scene (3D point cloud).
As 3D reconstruction methods strongly rely on the quality of the estimated cal-
ibration, this is a crucial initial step. In most cases, being wrong at calibration
time cannot be recovered later.

Match Selection. Most SfM approaches are based on the detection and match-
ing of interest points (features) in image pairs [11]. Given point matches between
two images, we can estimate a fundamental matrix F relating them. If internal
calibration parameters are known (calibration matrix K), this also provides an
estimate of the camera motion (rotation R, translation t) and 3D position of
matched points. As feature detection and matching is not perfect, two main
things can go wrong in the SfM process: the matches can be either incorrect
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or inaccurate. There is actually a grey area between these notions: incorrect
matches reduce SfM accuracy, sometimes to the point of making it fail, while
inaccurate matches are considered as good enough for calibrating, even though
they also degrade SfM accuracy. Incorrect matches are generally dealt with us-
ing RANSAC [9] or one of its numerous variants [7,8,19,26]. It separates “good
matches” (inliers) from “wrong matches” (outliers), trying to find the largest
consensus on an estimated fundamental matrix, using a threshold (fixed or adap-
tive) to assess consistency. While this robust selection method can eliminate
many outliers, a number of false positives can remain among the selected inliers
because the rejection criterion is mostly based on the distance to epipolar lines,
which provides a necessary but not sufficient condition (ambiguity along lines).

Compromises at two different levels impact SfM accuracy. First of all, statisti-
cally, the more matches to calculate the fundamental matrix, the more accurate
the estimation. A first compromise thus concerns the RANSAC selection crite-
rion: if it is too permissive, matches considered as inliers are more numerous but
are also more likely to be contaminated by wrong matches, and accuracy drops;
if the criterion is too strict, there are too few inliers to get a good accuracy. The
second compromise concerns the accuracy heterogeneity of individual inliers:
keeping only the most accurate inliers can naturally improve SfM accuracy; but
it can also degrade it as the estimation is based on fewer points. The first com-
promise has indirectly been widely studied: people try to select as many good
matches as possible, while excluding as many wrong matches as possible. But
the second compromise, quality vs. quantity, has been poorly addressed. This
paper presents an original method to find a good balance between the number
of inliers to consider for SfM estimation and their expected accuracy.

Match Refinement. Another way to obtain a better SfM accuracy is to im-
prove the accuracy of feature detection and matching.

Due to differences in imaging conditions, in particular changes of viewpoint or
illumination, a salient point or region detected in one image is not detected in the
other image at the exact same location. The most popular features are by design
only invariant (at most) to affine transformation (e.g., Harris-affine [18], MSER
[17], ASIFT [20]), or to small affine transformation (e.g., SIFT [16]). But they
are not invariant under perspective transformation, which is enough to offset
most detections. Methods to add some perspective invariance to existing feature
detectors have been proposed, but they require full 3D information (depth map
or mesh) [13,28], which is computationally expensive or requires more than just
image data; others are suited to specific classes of scenes only, mostly urban
environments, as they strongly rely on the presence of vanishing points and
large planar surfaces [2,5]. Besides, they have been designed to improve the
repeatability of feature detection and matching, which is generally measured
using a threshold on the relative overlap of corresponding regions [18], not in
terms of the closest distance between feature centers.

Traditionally, two detected feature points can nonetheless be considered as
matching although their position in the images does not correspond exactly to
the same 3D point in the observed scene. For a number of tasks, being close is
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enough. But for highly accurate calibration, it is not satisfactory. In fact, we do
not care whether a specific 3D point is accurately identified in both images, such
as the very tip of a corner. What we need is possibly arbitrary pairs of points in
the images as long as they correspond to extremely close 3D points. In this sense,
feature detection and matching is just a way for us to identify corresponding
regions rather than corresponding points: their center generally corresponds only
to close but different 3D points. Our match refinement only uses them as initial
estimates to find a neighboring pair of points that is likely to correspond to
closer 3D points because they have a better photometric consistency (assuming
an unknown affine transformation).

Finely relating image regions can be addressed with optical flow methods [3].
But they are not well adapted here because they suppose small variations, both
in viewpoint (very small baseline, quasi-affine transformation) and in illumina-
tion (controlled light scenes). Refining the position of image regions to overlap
them better has been studied in the photogrammetry community. One of the
most popular methods is adaptive least squares matching (LSM), that tries si-
multaneously to find radiometric and geometric corrections to best fit two im-
ages patches [10]. The most complex geometric correction generally considered
in this framework is affine transformation, because projective transformations
are assumed to be sufficiently approximated by an affinity. We present here an
improvement of LSM based on a focused irregular grid and made robust with
coarse-to-fine exploration. We show that it outperforms affine correction.

Our Contributions follow the structure of the paper: We establish an empiri-
cal statistical relationship between the inaccuracy of matches, their number, and
various indicators of SfM inaccuracy (Section 2). We describe an original method
that exploits this relationship to select matches that are likely to improve SfM
accuracy (Section 3). We present a novel method to locally refine the position
of matches to improve their accuracy (Section 4). We show on extensive experi-
ments that both methods improve substantially the accuracy of structure from
motion, and even more when combined (Section 5). Section 6 concludes.

2 Statistical Behavior of SfM Errors

2.1 Theoretical Results

We consider a pair of images I, I ′, obtained by cameras C,C′ with 3× 4 projec-
tion matrices P, P ′ and 3× 3 calibration matrices K,K ′. We also consider a set
of matches M between I and I ′, i.e., pairs of points m = (x,x′) where x is the
projection of a 3D point X on I, i.e., x = PX in homogeneous coordinates, and
where x′ is a point in I ′ considered as matching with x, possibly with some in-
accuracy. In the general case, a fundamental matrix FM between I and I ′ can be
estimated from matches M , and FM may in turn be used with K,K ′ to estimate
projection matrices PM , P ′

M on I, I ′. The resulting reprojection error of x in I ′,
i.e., the discrepancy in I ′ between the exact reprojection of X by P ′ and the
estimated reprojection of X by P ′

M is the distance e2D(M,m) = d(P ′X,P ′
MX).
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In case images I and I ′ are related by homography H , and considering
matching points x′ as possibly inaccurate measurements of reprojected points
P ′X = Hx in I ′, Hartley and Zisserman [11, §5.1.3, Eq.(5.5)] show that, if these
measurements are subject to independent Gaussian noise with standard devia-
tion σ2D(M), then the estimation error e2D(M) of reprojected points in I ′ by the
estimated homography HM , or equivalently via P ′

M , is:

e2D(M) = Em∈M [ e2D(M,m)2/|M | ]1/2 = 2 σ2D(M)/
√
|M |. (1)

Dividing the estimation error by 2 thus requires 4 times as many matches, or
matches with location error divided by 2. This bound is optimal (assuming no
other errors such as distortion), and achieved for the Maximum Likelihood Esti-
mator (MLE). Finding a similar bound for the fundamental matrix is impractical
because it is a non convex problem in very high dimension. We do not try to
solve it, but we draw inspiration of the MLE bound in what follows.

Another reading of (1) is that if we can find a subset Msub⊂M such that
matching points x′ in Msub are subject to independent Gaussian noise with stan-
dard deviation σ2D(Msub) < σ2D(M) compared to their expected location Hx,
and if σ2D(Msub)/

√|Msub| < σ2D(M)/
√|M |, then eMsub

< eM , and HMsub
is

thus a better estimate ofH thanHM . Now if we have a way to evaluate σ2D(Msub)
for any Msub, the optimal subset M∗

sub of matches for estimating H is:

M∗
sub = argmin

Msub⊂M
σ2D(Msub)/

√
|Msub|. (2)

HM∗
sub

minimizes reprojection errors w.r.t. ground truth H (not w.r.t. HM∗
sub

that has a trivial solution with any 4 points).
To our knowledge, a similar result is not known for the fundamental matrix.

The situation is more complex in this case as estimating F , with 7- or 8-point
methods, relies on SVD and/or requires solving complex polynomial systems.

2.2 Empirical Results

As a theoretical result is difficult to obtain, we study empirically the influence
of |M | and σ2D(M) on SfM accuracy. Using a collection of images with accurate
ground-truth calibration, presenting various feature distributions, we measure:

– FM is the fundamental matrix estimated from M using ORSA (a RANSAC
variant) and iterative re-weighted least squares (IRLS) [19].

– eF (M) is the root mean square error (RMSE) of the distance eF (M,m) of x′

to the FM -epipolar line of x in I ′, for m=(x,x′)∈M .
– eR(M) = ∠RgtR

−1
M is the angle between the ground-truth rotation Rgt and

its estimate RM based on M .
– et(M) = ∠(tgt, tM ) is the angle between the ground-truth translation direc-

tion tgt and its estimate tM .

– e3D(M,R, t) is the RMSE of the distance of the 3D point X̂ triangulated
from x,x′ using a given rotation and translation R, t, to the ground-truth
3D point X , for m=(x,x′)∈M . We also define e3D(M) = e3D(M,RM , tM ).
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Realistic, Semi-synthetic Dataset. Estimating SfM errors requires a ground
truth for both calibration and matched points. While accurate camera calibra-
tions can be determined using LiDAR data [23], it is difficult to construct a
significant number of accurate ground-truth point matches. For this, we resort
to semi-synthetic ground-truth datasets: the images, the camera poses and the
distribution of matching points are real, but the actual point locations are ad-
justed to make sure they are error-free.

Concretely, given a pair of images I, I ′ with known calibration Pgt, P
′
gt, we

detect and match SIFT feature points in each image. We use a descriptor distance
ratio to next best match at most 0.8, which is the standard setting [16]. As these
matches may still contain outliers, we first clean them using the K-VLD method
of Liu and Marlet [15], that eliminates many false matches, including near the
epipolar lines, and then using ORSA, an adaptive state-of-the-art variant of
RANSAC by Moisan and Stival [19], known for its robustness in practical SfM
systems [21]. It results in an almost outlier-free set of matches M̃ . Treating
them as inliers, for each match m̃=(x̃, x̃′)∈ M̃ , we construct a 3D point X
by triangulation using ground truth calibration Pgt, P

′
gt, and reproject it onto

images I, I ′ as new 2D points (x,x′)=m. The resulting set of matchesMgt yields
a perfect ground truth that is realistic in terms of feature distribution in images
(location and number) and in space.

We then add noise by randomly moving in image I ′ the matched points x′,
using an isotropic Gaussian distribution with given standard deviation σ2D.
This asymmetric setting reproduces the theoretical hypothesis mentioned in Sec-
tion 2.1. (Adding noise to points in both images experimentally leads to almost
identical results, scaled by a constant.) To also conform to this hypothesis, the
noise is independent of the characteristics of the features that originated the syn-
thetic points, such as scale. Moreover, we add variation to the number of matches
by randomly selecting only a given ratio r. This defines new sets M =M(σ2D, r).

In our experiments, we use Strecha et al.’s dataset [23]. It consists of 6 groups
of 8 to 30 images with both internal and external accurate ground-truth calibra-
tion. We consider all pairs of consecutive images in all image groups, in which
we detect and match SIFT features. The number of matches typically varies be-
tween 300 and 6000. For each image pair, we consider discrete ratios of matches
r = k2/100 with k = 4, . . . , 10 (thus different point configurations), and discrete
deviation σ2D = 0.2+ 0.3k with k = 0, . . . , 6 (in pixels). For each combination of
r and σ2D, we sample 50 noisy variants of the data, estimate their SfM accuracy,
and average the corresponding error measures by quadratic mean (RMS).

Analysis. Adding noise σ2D and ratio r as M =M(σ2D, r) has a direct impact
on epipolar error eF (M) and on rotation and translation errors eR, et. It has an
impact in turn on the error e3D of estimated 3D points, which depends both on
noisy matches M and estimated calibration RM , tM .

We observe that e3D, eR and et all are highly correlated to N = |M | and σ2D:
although there are some variations, we notice experimentally that log e3D, log eR
and log et are more or less linear with respect to logN when σ2D is fixed, with
some slope α depending on the image pair, and more or less linear with log σ2D
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Fig. 1. Dotted curves: estimated α/β for different image pairs (the order is irrelevant).
Plain curves: regression correlation coefficient between eR, et, or e3D, and σα
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when N is fixed (but not the configuration), with some slope −β also depend-
ing on the image pair. It is confirmed by computing the regression correlation
coefficient (RCC) of e3D, eR, et with σα

2D/Nβ, which is in general very close to 1,

as can be seen in Figure 1 (bottom 3 curves, plotted on the same diagram).
Besides, we also found empirically that σ2D is more or less proportional to eF ,

not only to the exact epipolar error. We thus hypothesize the relation:

eR, et, e3D ∝
σ

α
2D

Nβ
∝ e

α
F

Nβ
(3)

With a fixed distribution of points, we should have α = 1 for small errors. Still
with a fixed configuration, but duplicating all matches, the covariance matrix of
estimated parameters is halved; we should thus have β = 0.5. This is consistent
with equation (1). However, it does not hold when point configuration varies.
Experimentally, α and β can vary significantly depending on images pairs and
match sampling. In our semi-synthetic dataset, β varies between 0.2 and 1.5.
Yet, assuming relation (3), knowing α/β is sufficient to compare errors for a
given image pair:

e
α

F

Nβ
<

e
′ α
F

N ′β ⇔ e
α/β

F

N
<

e
′ α/β
F

N ′ (4)

The situation where all matched points are treated as inliners and contribute
to estimating F amounts to preferring the largest N (smallest 1/N) indepen-
dently of eF , i.e., to α/β = 0. On the contrary, the larger α/β, the more aggres-
sively low-accuracy features should be discarded. As can be seen in Figure 1,
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Fig. 2. Amplification of 3D reconstruction error when σ2D grows

α/β ≥ 2 almost consistently. (5)

Figure 2 compares the accuracy of reconstructing 3D points from noisy image
points with ground-truth Rgt, tgt vs estimated RM , tM (average on image pairs).
The bigger σ2D, the more calibration errors amplify reconstruction errors.

3 Match Selection to Improve Accuracy

To improve accuracy, we estimate SfM using a selected subset of good matches.

Cleaning up Input Matches. Although we use IRLS for estimating F , the
level of accuracy we target may be sensitive to outliers remaining after RANSAC.
We thus try to eliminate outliers from the set of input matches. We have to do
it without introducing the bias of an early approximate calibration estimation,
which would be the case if we were to first filter the matches using RANSAC. For
this reason, we first clean up the matches using the K-VLD method [15]. Based
on semi-local geometric and photometric consistency, it eliminates many outliers
without any calibration assumption. Running ORSA afterwards on the resulting
set of matches M typically only removes on the order of 10% of matches with a
found threshold of less than 2-pixel error for estimating F .

Comparing Subsets of Matches. The SfM errors we want to reduce are
eR(M), et(M), e3D(M). But what can be easily measured given a pair of images
and a set of matches M is just eF (M). However, as indicated by Eq. (3) and (4),
eR(M), et(M), e3D(M) vary monotonically with eF (M)α/β/|M |. The basic idea
of match selection is to use only a subset of matches Msub ⊂ M as soon as:

eF (Msub)
α/β

|Msub| <
eF (M)α/β

|M | (6)

However, α/β is a priori unknown for an arbitrary image pair. Moreover, we want
to improve SfM without taking the risk to degrade it. What we need is a sufficient
condition that reducing the number of matches will probably improve accuracy
but most certainly will not reduce it. For this, we look for a possible value γ ≥ 1
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such that, for any image pair, any set of matches M with corresponding α, β
parameters, and any subset of matches Msub ⊂ M ,

eF (Msub)
γ

|Msub| <
eF (M)γ

|M | ⇒ eF (Msub)
α/β

|Msub| <
eF (M)α/β

|M | (7)

We can then choose this optimal subset of matches M∗
sub for estimating F :

M∗
sub = argmin

Msub⊂M

eF (Msub)
γ

|Msub| (8)

The fundamental FM∗
sub

minimizes reprojection errors w.r.t. ground truth Fgt.
Noting that (eF (Msub)/eF (M))γ < |Msub|/|M | < 1 and hypothesizing (5), we

can choose γ = 2 because then (eF (Msub)/eF (M))α/β < eF (Msub)/eF (M))γ , en-
suring condition (7). Parameter γ is chosen as a safe empirical lower bound,
not an average value, which is more robust. Still, a general method to treat a
specific class of images would be to run experiments as in Section 2.2 and pick
a value γ ≤ α/β. Without loss of generally, we assume γ = 2 in the following.

Exploring Subsets of Matches. The difficulty to find M∗
sub is to explore

Msub⊂M , as there are too many such subsets (2|M|). We propose to evaluate
just a fraction of them, that has the most chances to lead to smaller ratios
eF (Msub)

2/|Msub|. For this, we rank the matches in M and use this ordering to
explore only subsets of top-rank matches. More precisely, we look for a ranking
function φ :M → R to order the matches into a sequence (mi)1≤i≤|M| such that
i < j ⇒ φ(mi) < φ(mj), and consider Msub(N) = {mi | 1≤ i≤N}. If the
ranking function φ is highly correlated to the reprojection errors e2D(M,m),
and hence to the epipolar errors eF (M,m), then

min
Msub⊂M

eF (Msub)
2

|Msub| = min
N≤|M|

1

N
min

Msub⊂M
|Msub|=N

eF (Msub)
2

≈ min
N≤|M|

1

N
eF (Msub(N))2 (9)

We may thus resort to:

N∗ = argmin
N≤|M|

eF (Msub(N))2

N
(10)

M∗ = Msub(N
∗) (11)

The number of subsets to explore is then reduced from 2|M| to |M |, which is
still a lot given that M generally contains a few thousands of matches. Note that
eF (Msub(N))2/N is not necessarily convex. However, it is in practice “smooth”
enough for a reduced exploration of 8 ≤ N ≤ |M | to make sense. In our various
experiments, we found it robust and accurate enough to ensure a minimum of
40% of matches in Msub(N) and to explore fractions of M with a 5% step, i.e.,
to consider N = r|M | with ratio r = 0.4 + 0.05k and k = 0, . . . , 12.
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Fig. 3. A global view of our algorithm

Ranking Matches. The choice of a ranking function φ varies with the kind
of feature. For SIFT, it seems natural to consider the distance between fea-
ture descriptors d(desc(x), desc(x′)) as an indicator of feature accuracy. Besides,
Tang [25] showed that SIFT subsampling amplifies location error by the feature
scale factor scale(x). This leads us to define the following ranking function:

φ(x,x′) = max(scale(x), scale(x′)) d(desc(x), desc(x′)) (12)

Large features thus tend to be ordered last, unless their descriptors match well.
Still, although they have a poor accuracy, they are often useful for robustness,
which could be a issue if too many of them are discarded. But our use of K-
VLD [15] provides enough (if not better) robustness improvement to compensate.

On semi-synthetic data, made with first images from Mikolajczyk et al.’s
dataset [18] and after applying an known homography, we found a correlation
coefficient of 0.42 between φ and σ2D, which proves the relevance of φ for or-
dering M . It outperforms other indicators, such as feature saliency that has a
correlation score of 0.02. The Lowe score (ratio of descriptor distance to next
best match) has an individual correlation of 0.2, but it does not improve the
global correlation when combined with φ.

Note that the definition of φ relies only on detection scale and on the SIFT
descriptor, not on the detector. It can thus be used, e.g., for all detectors of
Mikolajczyk et al. [18], including SURF, Harris-Affine and MSER. Transposition
to other descriptors is direct, but the correlation coefficient should be checked.

Algorithm. Our match selection algorithm is summarized on Figure 3. After
feature detection and matching, matches M are cleaned up using K-VLD and
ordered using the ranking function φ. Subsets Msub of sorted matches are ex-
plored to minimize eF (Msub)

γ/|Msub| and the subset with the lowest value if
used to construct the estimated model.

Comparison to Related Methods. The PROSAC variant of RANSAC also
constructs a series of match subsets and iterates first on better ones [7]. However,
the target is not accuracy but fast convergence; robustness and precision are
similar to RANSAC. Note that our method is not an alternative to RANSAC nor
a fundamental matrix estimator, but a complement: a RANSAC variant as well
as a fundamental matrix estimator are still needed to compute the calibration
and the corresponding epipolar error eF for the differentMsub subsets considered.
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As a matter of fact, Section 5 shows that our method, combined with different
variants of RANSAC, consistently provides much better results.

4 Least Square Focused Matching

We now present an extension of least squares matching (LSM) [10,22] to bet-
ter adjust the location of matching features. LSM is based on the hypothesis
that, locally, the region around the feature center is mostly planar, so that two
matching regions are approximately related by homography, which in turn can
be approximated by an affinity if the change of viewpoint is moderate. Besides,
image intensity is also considered to possibly vary with an affine transformation.

Finding the affine parameters (both geometric and radiometric) that best map
the two regions provides a good estimate of point displacement. This is a non-
linear adjustment problem. It can be addressed by an iterative scheme based on
a first-order Taylor expansion expressing optical flow constraints: differentiating
the affine relation between the two regions, a small change in the affine parame-
ters can be related to a small change in the dissimilarity measure of the regions,
to be minimized. Yet, contrary to ordinary optical flow [3], LSM is not restricted
to small light changes, small rotation angles and small baselines.

With LSFM, we propose two improvements. First, instead of using a regular
sampling grid around the features, we use an irregular grid focused on the center
of the region to match. Second, we combine it with an image scale traversal to
make it more robust to local minima. (We also tried estimating a homography
rather than just an affinity, but it did not produce substantial improvements.)

Note that feature detection covariance [4,12,24,29] is irrelevant here. What
we do is, given a position p in I for which we know a roughly corresponding
position p′ in I ′, adjust p′ so that the regions around p in I and p′ in I ′ corre-
late better, under some geometric and photometric affinity to estimate. Feature
points that match just happen to provide good initial correspondences for the
refinement process. This is also widely different from refining the location of
features detected as salient [16,18]. Moreover, refining given matches leads to a
better accuracy than refining detections before matching.

Initialization. Given two matching features, we measure the dissimilarity η
between the region with the lowest scale s and the region with the highest
scale s′ after enlarging by a factor of s′/s the sampling grid. We also rotate
the grid according to the difference of orientation between the features. This
initializes the affinity parameters in the iteration process.

Focused Grid. The image dissimilarity measure η in LSM is traditionally based
on a regular sampling grid centered on interest points. This assumes a uniform
transformation of the whole patches, which is true locally and slowly breaks down
when moving away from the center. For this reason, we propose to use a grid
focused on the patch center, i.e., denser in the center than in the border, which is
additionally weighted by a Gaussian kernel to further concentrate on the center.
Concretely, we use a grid whose lines are defined by a geometric progression:
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its coordinates are (u, v) = (sign(i)ρ
|i|−1
ρ−1 , sign(j)ρ

|j|−1
ρ−1 ) for i, j ∈ {−n, . . . , n}.

A standard Gaussian weight of 1
2πσ2 exp(−u2+v2

2σ2 ) is used on grid nodes (u, v).
Figure 4 illustrates the shape of our grid, with color representing the Gaussian
weight. In experiments, we use a spline interpretation of order 5 to get subpixel
intensity in a focused grid with n = 7, σ = 0.9n and ρ = 1.1: samples at the
grid border are then almost twice as dense (in one direction) as at the center.

Scale Exploration. Additionally, rather than directly adjusting the feature
positions at their original scale, we perform a coarse-to-fine refinement. We start
adjusting point location at a higher scale and progressively refine the location
by reducing the scale until we reach the original scale. (An optimal scale is not
search as in [14]: the original scale is best for accuracy.) It improves robustness,
preventing some refinements to be caught in local minima. For this, we create a
pyramid of images similar to the one used in SIFT detection. After convergence
of the geometric and photometric parameters at a given scale, we restart with
the corresponding location and parameters at the scale below. As a high blur
may also cause deviation from the optimal solution, we make sure there is an
actual improvement: if the measure of dissimilarity computed with the estimated
parameters at the current scale is less than the dissimilarity on the lower scale
using just feature scale and orientation, the latter is kept as initial parameters
for the refinement at the lower scale. In our experiments, we explore 5 octaves
of scale, dividing each octave in 2, i.e., with a geometric progression of ratio

√
2.

Impact of the Feature Detector. SSD-based refinement is more accurate
for regions with high gradients. SIFT does not necessarily detect points in such
regions, but its robustness compensates. Besides it tends to find points within
objects, where relative intensity is more stable, compared to corners that have
strong but less stable gradients because they often correspond to occlusion edges.

Match Selection with Match Refinement. Match selection and match re-
finement are independent improvements that can be combined, match refinement
coming first (see Fig. 3). However, match refinement changes the correlation be-
tween the match errors and the indicators of feature accuracy. When combined,
the match ranking to create subset candidates (cf. Section 3) has to be changed.
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Based on experiments with the same semi-synthetic data as in Section 3,
we found that, after match refinement, the dissimilarity measure η using the
focused grid has correlates with the actual feature localization error, with score
of 0.27. Besides, intuitively, the scaling and shearing of the image, as defined by
the affinity estimate A, also has an impact on the quality of matching. Given

orthogonal vectors (u, v) in I, we consider the value maxu,v
|uTATAv|
|Au||Av| , which is

the cosine of the maximum crushing after transformation. It can be shown to be

simply expressed as χ = |λ1−λ2|
λ1+λ2

, where λ1, λ2 > 0 are the eigenvalues of ATA. It
has a correlation score of 0.12 with the localization error. By a linear regression
over the same semi-synthetic data, we empirically define φ(m) = 0.3 η + 42.6χ,
which has a correlation of 0.34 with the location error. Note that feature scales
no longer correlate with the location error (correlation is only 0.01) and are thus
discarded from the ranking function.

5 Experiments

To evaluate our method, we consider some RANSAC variants among those that
are considered the most suited for accuracy (as opposed, e.g., to robustness or
speed) [6,27]: RANSAC with iterative re-weighted least squares (IRLS) for fi-
nal model estimation [27, method S1], RANSAC with M-estimator (MSAC),
LO-RANSAC [8], MLESAC [26], and ORSA with IRLS [19]. IRLS tries to min-
imize the sum of squares of geometric error between points in the right image
and the epipolar line of corresponding points in left image. For each of these
variants, we compare 4 settings: RANSAC alone, RANSAC preceded by match
selection (MS), RANSAC preceded by match refinement (MR) using LSFM, and
RANSAC preceded both by match refinement and match selection (MR+MS). A
uniform threshold of 3 pixels (distance to epipolar line) is used in the RANSAC
variants for outlier rejection, apart from ORSA that chooses the threshold au-
tomatically. All the results we provide are averaged over 20 runs.

Only datasets with highly accurate ground-truth calibration can be used for
validation. We experimented with the full dataset of Strecha et al. [23], a de facto
standard in camera calibration: 6 groups of 8 to 30 images totaling 95 pairs of
successive images. For each pair, SIFT feature points are detected and matched
with the usual setting [16] (no tweaking as in Sect. 2.2), i.e., a descriptor distance
ratio to next best match at most 0.8. We ran the same experiment with the DTU
robot dataset [1]. However, as it is huge (about 0.5To), we only considered 9
of the 60 groups of images, covering various themes (scenes 1, 2, 4, 9, 10, 12,
21, 28, 52), in the reduced format (fewer images, yielding 12 images pairs: 1-12,
12-24, 24-25, 25-26, 26-37, 37-49, 50-57, 57-64, 57-65, 57-94, 64-95, 64-119), with
identical illumination condition (number 08 for all tests), but full-size images.

Match Selection and Refinement. Figure 5 shows the average rotation
and translation errors eR, et for each scene of each dataset. Table 1 shows the
average results, illustrating both the separate and combined benefits of MS and
MR. Gain factors attain 2.0 for rotation and 3.8 for translation. Note that most
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Table 1. Average rotation and translation errors: RANSAC alone (raw), +match
selection (MS), +match refinement (MR), +both (MR+MS), and gain raw/(MR+MS)

Dataset Strecha et al. [23] DTU robot [1]

eR (deg ×10−2) raw MS MR MR+MS gain raw MS MR MR+MS gain

RANSAC 16.4 9.52 10.3 8.87 1.9 26.5 22.3 21.5 21.3 1.2

MSAC 14.1 9.53 8.86 8.43 1.7 21.3 21.7 20.4 20.1 1.1

LO-RANSAC 16.4 9.54 10.3 8.97 1.8 26.8 22.2 21.5 21.3 1.3

MLESAC 15.8 7.81 9.50 7.76 2.0 21.8 22.6 20.8 20.2 1.1

ORSA 12.2 7.24 6.48 6.60 1.9 21.9 21.7 20.8 20.3 1.1

et (deg) raw MS MR MR+MS gain raw MS MR MR+MS gain

RANSAC 1.85 1.09 1.23 1.04 1.8 3.83 2.12 1.81 1.02 3.7

MSAC 1.59 1.08 1.03 0.96 1.6 1.27 1.03 0.93 0.70 1.8

LO-RANSAC 1.83 1.10 1.21 1.05 1.7 3.89 2.14 1.76 1.02 3.8

MLESAC 2.16 0.95 1.09 0.87 2.5 2.02 1.34 1.23 0.77 2.6

ORSA 1.38 0.81 0.68 0.74 1.9 1.22 0.88 0.66 0.66 1.8

parameters are learned on other, widely different images [18]; only the lower
bound γ = 2 is defined from feature distribution in [23] and nothing else. Our
excellent results on [1,23] suggests that these parameters make sense for a wide
range of images.

Focused Matching. We compare our focused matching (LSFM, Section 4)
with standard least square matching (LSM). Rather than considering planar
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Fig. 5. Average results on the datasets. Left: rotation error eR. Right: translation
error et. Color red: raw RANSAC; blue: with match selection (MS); green: with match
refinement using LSFM (MR); black: with both match selection and match refinement
(MR+MS). Line symbol -�-: RANSAC with IRLS; -*-: MSAC; -x-: LO-RANSAC; -o-:
MLESAC; -�-: ORSA. Scenes are reordered by increasing rotation error of RANSAC
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Table 2. Match refinement evaluation using LSM, LSM with focused grid, LSM with
focused grid and scale exploration (LSFM), gain as improvement of LSFM over LSM

eR (deg ×10−2) LSM LSM+foc. grid LSFM gain

Strecha et al. [23] 7.55 6.73 6.48 1.17

DTU robot [1] 20.97 21.22 20.79 1.01

et (deg) LSM LSM+foc. grid LSFM gain

Strecha et al. [23] 0.84 0.72 0.68 1.25

DTU robot [1] 0.77 0.71 0.66 1.16

scenes and measuring reprojection errors, we directly measure eR and et using
the datasets and settings as above. Matches are then refined by the following
methods: LSM, LSM with focused grid, and LSM with focused grid and scale
exploration (LSFM). We estimate errors after calibrating with ORSA+IRLS,
which has the best performance in the above tests (see Table 1). Table 2 shows
that, apart from a poor reduction of rotation error in the DTU robot dataset,
the LSFM factor gain is 1.16 to 1.25.

6 Conclusion

In this paper we have studied, in the two-view case, the “quality vs. quantity”
balance of point matches for structure from motion — a poorly addressed issue
in the literature. We have found a correlation between SfM errors and a function
of the number of matches and their epipolar errors. Using this relation, we have
presented a new method for selecting relevant subsets of points to improve SfM
accuracy. We have also proposed an improvement of an existing method to refine
match locations. Using extensive experiments involving real data with ground-
truth calibration, we have shown that match selection and match refinement
independently lead to a major reduction of SfM errors over the best methods
targeted at accuracy. Combining both methods, the error is reduced by factors up
to 2.0 for rotations and 3.8 for translations, which is an enormous improvement.

Our work is valuable for stereovision. Extending it to the multi-view case is
not trivial because of track consistency. First, removing one match does not nec-
essarily remove the associated points from the track and leads to a substantially
different bundle adjustment problem. Second, the location of points in a track
would need to be optimized simultaneously in all associated images. We actu-
ally want track selection (or reduction) as well as track refinement. Besides, a
good term to minimize to assess the benefit of match reduction is likely to be
linked to the total reprojection error with respect to all 3D points after bundle
adjustment. A study similar to that of Section 2 thus has to be carried out.

Still, a lower bound of the possible improvement can be obtained by applying
match selection (MS) on each image pair in an SfM pipeline, before actual pro-
cessing by the system. A preliminary experiment on Strecha et al.’s dataset us-
ing OpenMVG [21], a competitor to Bundler, shows improvements up to 15% on
the average camera location error, in particular on scenes with wider viewpoint
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changes and less images (HerzJesu-P8 vs -P25, Castle-P19 vs -P30). Conversely,
it may be the case that bundle adjustment is doing a good job at averaging on
long tracks, compensating for the inaccuracy of point location. Track selection
and track refinement are thus likely to be more profitable on difficult scenes.

Finally, most of our results are constructed on empirical studies. We however
believe the “quality vs. quantity” issue deserves a better theoretical treatment,
including a study of the influence of the configuration of points in images.
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