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Abstract. In this article, the authors address a problem of the estima-
tion of high velocity optical flow. When images are captured by conven-
tional image sensors, the problem of the optical flow estimation is ill-
posed if only the temporal constancy of the image brightness is the valid
assumption. When given images are captured by the correlation image
sensors, though, you can make the problem of the optical flow estimation
well-posed under some condition and can locally estimate the unique op-
tical flow at each pixel in each single frame. The condition though would
not be satisfied when the flow velocity is high. In this article, we pro-
pose a method that can estimate the normal component of high velocity
optical flow using only the local image values in each single frame. The
equation used for estimating the normal velocity is theoretically derived
and the condition the equation holds is also revealed.

Keywords: optical flow, high velocity flow, real time estimation, time
correlation image sensor.

1 Introduction

Ill-posedness is a fundamental problem for estimating optical flow. Most tech-
niques of the optical flow estimation use one basic model that represents the
temporal constancy of image brightness, I(x, y): the image brightness of a par-
ticular point in the moving pattern is assumed temporally constant. Horn and
Schunk derived one linear equation from this assumption[1]:

(u∂x + v∂y + ∂t)I(x, y, t) = 0, (1)

where ∂∗ denotes the partial derivative with respect to the subscript variable, and
a two-vector, v = [u, v]T , denotes the flow vector at (x, y). The problem of the
flow estimation is ill-posed[2] because one single constraint (1) cannot determine
the values of the two unknowns u and v, uniquely. Even if the corresponding
edge is curved, as long as you use only the model (1), you cannot make the
problem well-posed: Multiple pixels bring more unknowns than constraints. You
can estimate only the component of the flow parallel to the spatial gradient of
I(x, y) if only the linear constraint equation (1) is available[2].

For determining the 2D flow uniquely, you need another model that con-
strains the flow based on a different aspect of the optical flow. Many models have
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been proposed for that purpose[3] and they can be classified into two categories
– local models and global ones. The former represents local coherence of the
flow[4][5]: e.g., the unknown optical flow vector is assumed constant within some
neighborhood[5]. The latter represents some global characteristics of the flow
distribution, e.g. partly smooth distribution, and is employed by the variational
methods[6][7][8] and by the discrete optimization ones[9][10]. You can find large
varieties of the models for representing the characteristics of optical flow field and
of the optimization algorithms, and the temporal constancy of the image bright-
ness is still a basic assumption for all of these methods[3]. Those local/global
models represent the prior knowledge of flow fields and are distinct from the
temporal constancy model, which represents an aspect of measurement. In this
article, the temporal constancy model is focused on.

Recently, a correlation image sensor has been developed by Wei et al. [11]. It
has been demonstrated that, under certain conditions, you can estimate optical
flows based only on the temporal constancy model when the input images are
captured by the correlation image sensor[11]. Conventional image sensors capture
images by integrating light intensity over the period the shutter is open, and
this time integration eliminates the information of the temporal change of the
light intensity. On the other hand, a correlation image sensor has three channels
and measures not only the brightness but also the cross-correlation between the
temporal change of the incident light intensity and reference signals supplied by
you. The value of the cross-correlation measured at each pixel contains some
information of the temporal change of the light intensity during the shutter is
open, and is independent of the brightness. You can hence make the problem
of the optical flow estimation well-posed and can uniquely estimate the optical
flow by using the measurements obtained in a local small aperture based only
on the temporal constancy model, under some conditions. The details will be
described later.

Unfortunately, you can not always make the problem of the optical flow esti-
mation well-posed even if the images are captured by correlation image sensors.
The estimation would be ill-posed when the flow velocity is high and when the
brightness pattern is heavily blurred by the high velocity motion. When the ve-
locity is high, the linear constraint equation (1) does not hold well and the heavy
motion blur smooths out the local structures of the pattern that are required
for the optical flow estimation. This is why the proposed method is required for
estimating high velocity flows. Figure 1 shows the outlines of the methods of
optical flow estimation. The conventional methods estimate flows by using two
images consecutively captured by a conventional image sensor (Fig.1(A)). The
Wei’s method[11] estimates flows by using three images simultaneously captured
by a time correlation image sensor (Fig.1(B)), and the proposed method com-
putes the normal components of the flows from the spatial gradient of the phase
computed from two of the three images (Fig.1(C)).

In this article, we propose a method that estimates the normal components of
high velocity flows based only on the measurements obtained in a small spatial
window, e.g., a 3×3 pixels, in each single frame, even when the image brightness
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Fig. 1. Comparison between conventional methods(A), Wei’s method(B)[11], and our
proposed method(C). Conventional methods use two consecutive images captured at
different times. The Wei’s method[11] computes optical flows by using three images
simultaneously captured by a time correlation image sensor. Our method computes
normal components of high velocity flows by using two of the images captured by the
time correlation image sensor.

pattern is heavily blurred by the motion. Analogous to the Wei’s method, our
proposed method uses the time correlation image sensor for measuring both
the brightness and the complex Fourier coefficient corresponding to a specific
frequency determined by the reference signals at each pixel. Then, the proposed
method computes the spatial gradients of the phases of the complex Fourier
coefficient, and estimates the normal component of the high velocity flow at
each pixel by using the computed spatial gradient of the phase. The details
of the correlation image sensors and of the algorithm of the Wei’s method[11]
are explained in the remainder of this section. Our proposed method is then
described in the next section.

1.1 Correlation Image Sensor

A correlation image sensor has an array of pixel circuits, each of which measures
the temporal cross-correlations between the light intensity and three reference
signals. Let f(x, y, t) denote the light intensity, where (x, y) denotes the location
of the pixel circuit on the sensor and t denotes the time during the shutter of the
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camera is open. Let wi(t) (i = 1, 2, 3) denote the i-th reference signal supplied to
every pixel circuit and let T denote the shutter speed, which is the time interval
the image sensor is exposed to light. Each pixel has three channels and the pixel
value of each channel is determined as follows[11]:

Ri(x, y) =

∫ T/2

−T/2

f(x, y, t)wi(t) +
1

3
f(x, y, t)dt. (2)

Conventional image sensors, on the other hand, measure just the temporal inte-
gration of f(x, y, t) at each pixel and obtains the pixel values, I0(x, y), as follows:

I0(x, y) =

∫ T/2

−T/2

f(x, y, t)dt. (3)

The temporal integration in (3) eliminates the information of the temporal
change of f(x, y, t) during the shutter is open, and causes the motion blur.

Using a correlation image sensor, one can obtain not only I0(x, y) in (3) but
also a complex Fourier coefficient of f(x, y, t) corresponding to a specific fre-
quency, ω, if one inputs the three sinusoidal waves shown in (4) as the reference
signals:

wi(t) = cos

(
ωt+ (i− 1)

2π

3

)
. (4)

In this paper, we assume that the Fourier coefficients of the temporal signal,
f(x, y, t), are well defined. Let fω denote the temporal Fourier coefficient: fω =
Aωe

jφω , where Aω denotes the amplitude and φω denotes the phase. One can
estimate Aω and φω as shown in (5) and (6) when wi(t) in (4) are the reference
signals[11]:

φω = tan−1

( √
3(R2 −R3)

2R1 −R2 −R3

)
, (5)

Aω =
2
√
2

3

√
(R1 −R2)2 + (R2 −R3)2 + (R3 −R1)2.

(6)

In addition to the values of φω and Aω, one can estimate the value of I0 shown
in (3) as follows:

I0(x, y) = R1 +R2 +R3. (7)

R1, R2, and R3 are measured by a correlation sensor, and the values of I0, Aω ,
and φω are calculated by a computer for each pixel in every frame. Using these
values, you can represent the temporal signal f(x, y, t) as follows:

f(x, y, t) =
I0
T

+Aω cos(ωt+ φω) + ξ(t), (−T/2 < t < T/2) (8)

where ξ(t) denotes any time-varying components except for the frequency, ω.
Aω and φω carry some information of the temporal change of f(x, y, t). Here, it
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should be reminded that a target signal is (implicitly) assumed to be periodic
when you compute its Fourier coefficients: A signal, frecon(x, y, t), reconstructed
from the Fourier coefficients is periodic and satisfies frecon(x, y, t + mT ) =
f(x, y, t) (−T/2 < t < T/2) where m is an integer.

1.2 Making Optical Flow Problem Well-Posed

The optical flow estimation is an ill-posed problem if a conventional image sensor
is used and if only the temporal constancy is the valid assumption. Under the
constancy assumption, the following equation is satisfied for any t ∈ [−T/2, T/2]:

df

dt
(x(t), y(t), t) = 0. (9)

For small displacement, a first order Taylor expansion yields the optical flow
constraint of the incident light intensity:

(u∂x + v∂y + ∂t)f(x, y, t) = 0. (10)

You cannot use directly the equation (10) for the flow estimation because no
image sensor can measure the instantaneous light intensity, f(x, y, t). The flow,
(u, v), should be constrained by the pixel values, I0(x, y), if images are captured
by conventional image sensors. Integrating the equation (10) over the period the
shutter is open, one obtains the optical flow constraint equation proposed by
Horn and Schunk[1] that represents the relationship between the flow, (u, v),
and the partial differential coefficients of I0(x, y):

∫ T/2

−T/2

(u∂x + v∂y + ∂t)f(x, y, t)dt = (u∂x + v∂y + ∂t)I0(x, y) = 0. (11)

This single linear equation is well satisfied in many cases[3], but is evidently
insufficient for estimating unique values of the two variables, u and v, for each
pixel: The estimation of (u, v) is ill-posed here, and you need other information
of (u, v) for restricting the solutions. For example, some local methods assume
that the flow is spatially constant in each local area[5] and some global methods
assume optical flow fields are partly smooth[6]. In our proposed method, the
information comes from the Fourier coefficient measured by a correlation image
sensor.

The optical flow estimation can be a well-posed problem under some con-
ditions even when only the temporal constancy is the valid assumption, if the
images are captured by correlation image sensors[11]. You can derive a system
of independent linear equations of (u, v) from the constancy assumption (10).
Integrating the equation (10) with a modulating function, w(t) = e−jωt, over
the exposure time interval, one obtains the following equation, which describes
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the relationship between the Fourier coefficient and the flow:

∫ T/2

−T/2

{(u∂x + v∂y + ∂t)f(x, y, t)} e−jωtdt =

(u∂x + v∂y + jω)Iω(x, y) + [f(x, y, t)e−jωt]
T/2
−T/2 = 0,

(12)

where Iω(x, y, t) is the complex Fourier coefficient, which can be obtained by a
correlation sensor as

Iω(x, y) =

∫ T/2

−T/2

f(x, y, t)e−jωtdt = Aω(cosφω − j sinφω). (13)

It should be noted that the temporal partial differentiation is eliminated in
(12) by using the integration by parts. As described in [11], setting the angular
frequency of the reference signals as

ω =
2nπ

T
, (14)

you can derive from (12) a system of two linear equations such that

Bv = d, (15)

where v = [u, v]T , d = [ωIm[Iω],−ωRe[Iω]]T , and

B =

[
∂x{Re[Iω ]− (−1)nI0} ∂y{Re[Iω ]− (−1)nI0}

∂xIm[Iω ] ∂yIm[Iω ]

]
. (16)

You can estimate the flow, v, by solving (16) as v = B−1d. The equation shown
in (15) is employed for the estimation in the remainder of this article.

The information used for the estimation of the flow is very local. When you
use a Δ × Δ difference operator (e.g. Δ = 3 pixels) for computing each of the
spatial differentiations in (16), you can estimate the flow vector for each pixel
based only on the measurements, I0 and Iω, obtained at the neighboring Δ×Δ
pixels in each single frame. Temporal difference operations are not required for
the flow estimation because the temporal differentiation is eliminated in (12).
The estimation of the optical flow is now well-posed if detB �= 0. This condition
is well satisfied, e.g., around the boundaries of moving objects and in moving
textured regions.

2 Local Estimation of Optical Flow

In this section, our proposed method for locally estimating high velocity optical
flow is described. Before describing the method, we discuss the spatio-temporal
characteristics of f(x, y, t) and the aperture problem.
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Fig. 2. A spatial trajectory of a point moving at the velocity, ū. The right graph shows
the temporal change of f(x∗, y∗, t).

2.1 Spatio-Temporal Structures of Light Intensity

A spatial trajectory of a point during the time the shutter is open is firstly
considered. As shown in (3) and in (13), the pixel values, I0(x

∗, y∗) and Iω(x
∗, y∗)

measured at a point (x∗, y∗) are determined by the temporal change of the
instantaneous light intensity, f(x∗, y∗, t) (t ∈ (−T/2, T/2)). In this subsection,
we assume that v(x∗, y∗) = [ū, 0]T (ū �= 0) without loss of generality and that
the velocity is spatially and temporally coherent in a local aperture around
(x∗, y∗, 0). The unit of the velocity is pixel per second and the time needed for
moving to a neighbor pixel is 1/ū seconds. Then, the location of a point that
passes through (x∗, y∗) at t = 0 is described as follows:

[x(t), y(t)]T = [ūt+ x∗, y∗]T . (17)

The spatial trajectory of the point between [−T/2, T/2] is a line segment between
two points, PA = (x∗ − ūT/2, y∗) and PB = (x∗ + ūT/2, y∗) as shown in Fig.2.
Using x∗ = x(t)− ūt, you can transform the temporal integrations shown in (3)
and in (13) into spatial ones:

I0(x
∗, y∗) =

1

ū

∫ ūT/2

−ūT/2

f(x∗ − s, y∗, 0)ds, (18)

Iω(x
∗, y∗) =

1

ū

∫ ūT/2

−ūT/2

f(x∗ − s, y∗, 0)e−jωs/ūds, (19)

where s = ūt. I0(x, y) is a spatial convolution between f(x, y, 0) and a box filter,
bu(x), where

bu(x) =

{
1/ū, −ūT/2 < x < ūT/2,
0, otherwise.

(20)

This convolution represents the motion blur, of which scale is proportional to ū
and T 1. Iω(x, y) is a spatial convolution between f(x, y, 0) and a complex partial
sinusoidal wave, gu(x), where

gu(x) =

{
ū−1e−jωx/ū, −ūT/2 ≤ x ≤ ūT/2,
0, otherwise.

(21)

This convolution extracts the component of a specific spatial frequency, ω/ū,
from the profile of f(x, y, 0) along the line segment PAPB.

1
∫
bu(x)dx = T means the images become brighter when the exposure time is longer.
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2.2 Temporal Phase and High Velocity Flow

The solution of (15) is exact if the first order Taylor expansion (10) of the
constancy assumption exactly holds. When v = [ū, 0]T , the Taylor expansion
of the constancy assumption yields (ū∂x + ∂t)f(x, y

∗, t) = 0. The term of ∂y
disappears from the constraint equation (10) because dy(t)/dt = 0. Let us as-
sume that f(x, y∗, 0) is linear with respect to x and that the first order Taylor
expansion exactly holds: i.e., f(x, y∗, 0) = ax + b (a �= 0). Then, setting n = 1
in (14) for simplicity, you obtain I0(x, y

∗) = (ax+ b)⊗ bu(x) = (ax+ b)T/ū and
Iω(x, y

∗) = (ax + b) ⊗ gu(x) = −aT/jω, and have the system of the equations
in (15) as follows:

Bv =

[
aT/ū ε
0 δ

] [
u
v

]
=

[
aT
0

]
. (22)

where ε and δ are not determined by the constraint equation. You can obtain a
unique and exact solution, û = [ū, 0]T , if ε �= 0 or δ �= 0. In other words, you
do not have the aperture problem when ∂yRe[Iω] �= (−1)n∂yI0 or ∂yIm[Iω] �= 0.
These conditions would be satisfied when I0 or Iω spatially changes along the
direction perpendicular to the flow vector.

When the flow velocity is high, though, the solution of (15) might be inac-
curate even if the light intensity of each moving point is temporally constant
as assumed in (9). Higher velocity flow smooths out the spatial structures of
f(x, y, 0) heavily and generates more blurred images, I0(x, y). This results in
that ∂xI0(x, y) � 0 when v = [ū, 0]T and that the calculated values of ∂xI0(x, y)
in (16) are unreliable because of noises and of quantization. In other words, the
constraint equation of I0 shown in (11) constrains little about the optical flow.
This is one of the main reasons why you need some information other than the
optical flow constraint for obtaining large displacement flow(e.g. [12]). When the
equation (11) constrains u and v little, the estimation of the optical flow is again
ill-posed even if the images are captured by correlation sensors. Now, the aper-
ture problem returns and only the complex image, Iω(x, y), contains information
useful for locally estimating the optical flow.

Let an isophase curve that passes through (x∗, y∗) be denoted by C, where
C = {(x, y)|φω(x, y) = φω(x

∗, y∗)}. Assuming some coherency on the spatial pat-
tern of f(x, y, 0) and on the spatial distribution of optical flow, you can assume
C is continuous and smooth, and the temporal signals, f(x, y, t), measured on
C are similar. The normal component estimated by the proposed method is a
component of the optical flow perpendicular to the isophase curve, C. Let an
orthogonal curve of the isophase curves that passes through (x∗, y∗) be denoted
by T (see Fig.3). This curve, T , is a pseudo trajectory of a moving point that
passes through (x∗, y∗), and let assume, without loss of generality, T is a line
parallel to the x-axis around (x∗, y∗). The coordinates of a point in T is repre-
sented by (x∗ + ρ, y∗) and the positive direction of ρ is identical with that of the
flow. The temporal signal, f(x∗, y∗, t) (t ∈ (−T/2, T/2)), is determined by the
spatial profile of the light intensity along T , f∗

T (ρ) = f(x∗ + ρ, y∗, 0).
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Fig. 3. The time delay observed at a neighboring pixel. The red curve in the right
graph is measured at (x∗ + ρ, y∗) when the black one is measured at (x∗, y∗).

At the neighboring point, youmeasure a temporal signal identical to f(x∗, y∗, t)
with a time delay, ρ/ū:

f(x∗ + ρ, y∗, t) = f(x∗, y∗, t− ρ/ū) = f(x∗, y∗, t)⊗ δ(t− ρ/ū), (23)

where the convolution with the delta function is estimated with respect to the
time t. Let again

Iω(x
∗, y∗) = Aωe

−jφω =

∫ T/2

−T/2

f(x∗, y∗, t)e−jωtdt, (24)

where Aω is the amplitude and φω is the phase at (x∗, y∗). Substituting (24) for
(23), you obtain the following equation, in which the phase of Iω(x

∗ + ρ, y∗) is
proportional to the spatial distance, ρ:

Iω(x
∗ + ρ, y∗) = Aωe

−jφω(ρ) = Aωe
−j(φω−ρω/ū). (25)

In case the equation (25) holds, you can estimate the normal speed, ū = ‖vnorm‖,
by using the value of the spatial derivative of the phase,

∂φω(ρ)

∂ρ
= −ω

ū
. (26)

Unfortunately, though equation (23) always holds, equation (25) does not always
hold because of the fixed and bounded integration interval. At least the condition,
f(x∗, y∗,−T/2) = f(x∗, y∗, T/2), should be satisfied in order for equation (25)
to hold. This is because, if f(x∗, y∗,−T/2) �= f(x∗, y∗, T/2), the reconstructed
signal, frecon(t), is discontinuous at t = −T/2 + mT and these discontinuous
points are fixed and independent from the time-delay. For example, when a
flying bright particle passes in front of the sensor with a high speed, ū, then the
temporal change of the light intensity can be well represented by a delta function:
f(x∗ + ρ, y∗, t) = Aδ(t − ρ/ū), and you obtain Iω(x

∗ + ρ, y∗) = Ae−jωρ/ū from
(24). In this example, equation (25) holds and you can estimate the speed as
ū = ω/(∂ρφω). On the other hand, for example, when the temporal change of the
light intensity is represented by a step function: f(x∗+ρ, y∗, t) = B×h(t−ρ/ū),
where

h(t) =

{
1, if t ≥ 0,
0, otherwise,

(27)
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then you obtain Iω(x
∗ + ρ, y∗) = I

(h)
ω (ρ), where

I(h)ω (ρ) =

∫ T/2

−T/2

h(t− ρ/ū)e−jωtdt =

{
−(e−jωρ/ū − j)/ω, if ρ > 0,
−(e−jωρ/ū + j)/ω, otherwise.

(28)

In this case, f(x∗, y∗,−T/2) �= f(x∗, y∗, T/2) and the imaginary part of Iω has
a non-zero constant term. As a result, the equation (25) does not hold and you
cannot estimate the velocity accurately by using the phase delay because ū �=
ω/(∂ρφω). From an application’s point of view, a step function well represents
the temporal changes of the light intensities measured near the boundaries of
rapidly moving objects, and we need a method that can accurately estimate ū
even if the temporal change of the light intensity has a form like a step function.

Let the function of the temporal change of the light intensity be decomposed
as follows:

f(x∗, y∗, t) = A× b(t) +B × h(t) + η(t), (29)

where h(t) is a step function described above, and b(t) is any bounded function
that has non-zero values only in a limited region as follows:

b(t) =

{
bin(t), if − ε < t < ε
0, otherwise.

(30)

Here, 0 < ε < T/2 and bin(t) can have non-zero values. b(t) represents the
temporal change of the light intensity that would be measured when a small or
thin object rapidly passes in front of the sensor, and h(t) would be measured
at around the boundaries of rapidly moving large objects. The last term of the
right hand side of (29), η(t), denotes a component of f(x∗, y∗, t) other than b(t)
and h(t).

In the proposed method, we assume that the values, Iω(x, y), measured by
a correlation sensor are mainly determined by b(t) and h(t): The component
of η(t) corresponding to the frequency of ω has a power smaller than those of
b(t) and of h(t), and is ignorable. This assumption does not hold in general
but is satisfied by variety of signals including impulse signals, Gaussian pulses,
and blurred step functions, which cover main signals measured when high speed

objects are observed. Let I
(b)
ω (ρ) denote the Fourier coefficient of b(t − ρ/ū).

Computing the coefficient, you obtain

I(b)ω (ρ) = Abe
−j(φ(b0)

ω +ρ/ū), (31)

where ∫ T/2

−T/2

b(t)e−jωtdt = Abe
−jφ(b0)

ω , (32)

and Ab is a real coefficient. Under the condition that η(t) is ignorable, you obtain

Iω(x
∗ + ρ, y∗) = αe−jωρ/ū + β (33)

by inserting (28) and (31) to (29), where α = A · Ab · e−jφ(b0)
ω − B/ω and

β = −jB/ω. Here, it should be noted that the phase of Iω(x
∗ + ρ, y∗) is
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not proportional to ρ because of β. For eliminating β, we compute the spatial
differentiation of Iω(x

∗ + ρ, y∗):

∂Iω(x
∗ + ρ, y∗)

∂ρ
= − jω

ū
αe−jωρ/ū. (34)

Now, the phase of ∂ρIω is proportional to ρ as shown in (34). Let the phase of
∂ρIω be denoted by ψω, where ψω = Im[∂ρIω]/Re[∂ρIω ]. Then, you can compute
the speed, ū by using the following equation:

∂ρψω = −ω/ū. (35)

As described above, the normal speed, ū, can be obtained by computing the
directional derivative of Iω and of ψω with respect to ρ, and the direction of
ρ is parallel to the spatial gradient of the phase of Iω(x, y). Let the phase of
Iω(x, y) be denoted by φω(x, y) = tan−1(Im[Iω ]/Re[Iω ]) and the angle between
the direction of the spatial gradient ∇φω and the x-axis be denoted by θ. Then,
the direction of ρ is parallel to [cos θ, sin θ]T . The proposed method computes
vnorm as followings:

1. Compute the direction of ∇φω = [∂xφω, ∂yφω ]
T as follows:

cos θ =
∂xφω√

(∂xφω)2 + (∂yφω)2
, and sin θ =

∂yφω√
(∂xφω)2 + (∂yφω)2

(36)

2. Compute the directional derivative of Iω(x, y) with respect to ρ as

∂ρIω = (∂xIω) cos θ + (∂yIω) sin θ, (37)

where cos θ and sin θ are given in (36). Let ψω = tan−1 Im[∂ρIω ]/Re[∂ρIω].
3. Compute

∂ρψω = (∂xψω) cos θ + (∂yψω) sin θ. (38)

The resultant two-vector, vnorm is obtained as follows:

vnorm = − ω

∂ρψω

[
cos θ
sin θ

]
. (39)

3 Experiments

The performance of the proposed method was evaluated by using artificial images
and by using real ones captured by a correlation sensor.

3.1 Simulation Experiments

The accuracy of the proposed estimation method was experimentally evaluated
using artificial images. Setting the shutter speed T = 1/30 seconds and n = 1
in (14), we simulated image capturing of the correlation sensor. this paper, we
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Fig. 4. Artificial images generated in the simulation experiments
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Fig. 5. Distributions of the estimates obtained by the Wei’s method(A) and by the
proposed method(B). In each graph, the horizontal axis shows the true normal velocity
and the vertical one shows the estimated values. Mean values and one-sigma error bars
are indicated in the graphs. The Wei’s method cannot accurately estimate the flow
when ūT is larger than σ = 10.

report the results obtained when we set the light intensity, f(x, y, 0), as a blurred
step function contaminated by a Gaussian noise as follows:

f(x, y, 0) = (B · h(t)) ∗G(σ2) + ξ, (40)

where G(σ2) is a Gaussian blurring filter of which scale is σ2 and ξ is a Gaus-
sian noise of which variance is s2f . Examples of the simulated images, f(x, y, 0),
I0(x, y), Re[Iω](x, y), Im[Iω](x, y), and φω(x, y), which were obtained when
vnorm = [ū, 0]T = [50, 0]T pixel/sec and when σ = 10 pixel, are shown in Fig.4.

For a comparison purpose, two flow estimation methods were applied to the
identical set of simulated images: One was the proposed method and the other
was the Wei’s method[11] that solves the system of the linear-equations (15).
The graphs shown in Fig.5(A) and (B) show the distributions of the estimated
velocities. In the graphs, the horizontal-axis indicates the true velocity, ū, the
vertical-axis indicates the estimated values, and the blue line shows the ideal
estimates. The red colored results were obtained when the noise level, sf , was
5% of the step size of B in (40) and the green ones were obtained when the
noise level was 10% of B. In case the f(x, y, 0) is given as shown in (40), the
Wei’s method works well only when the moving distance of f(x, y, 0), ūT , and
the spatial blurring scale, σ, is comparable: If ū is so large that ūT � σ, then
the spatial gradients of I0 supply little information about the target motion and
the solution of the system of the linear equations (15) is unreliable. As shown in



Estimation of High Velocity Optical Flow with Correlation Image Sensor 247

Fig. 6. A camera with the correlation image sensor (left) and the experimental setting
(right)

I0(x, y) Re[Iω](x, y) Im[Iω(x, y)] φω(x, y)

Fig. 7. Examples of images captured by the correlation image sensor

the graph (A), the Wei’s method[11] estimates the flows accurately only when
the true velocity is equal or less than σ = 10. On the other hand, the proposed
method estimates the flows accurately when ū is enough large, as shown in the
graph (B).

3.2 Experiments Using a Real Correlation Image Sensor

Capturing real image sequences of a metronome by the correlation image sensor
(Fig.6), we evaluated the performance of our proposed method. Figure 7 shows
examples of the images captured by the sensor. Using these images, the flows
were computed by our proposed method and by the Wei’s method[11], and the
results were compared with gold standards manually made from I0(x, y). An
example of the flow estimated by each of the methods is shown in Fig.8. The
color shows the direction of the flow. The flow obtained by the Wei’s method
is contaminated by the textures behind the swinging pendulum. On the other
hand, the proposed method accurately estimated the flow. It should be noted
that these flows are computed in real time for each single frame. The results of
the quantitative evaluation are shown in Fig.9. As shown in the graph (A), the
Wei’s method underestimated the flows of the pendulum when it moved fast,
but the proposed one accurately estimated the high-speed flows, as shown in the
graph (B).
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Fig. 8. Examples of estimated optical flow. Left: I0(x, y). Middle: Wei’s method[11].
Right: Proposed method.
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Fig. 9. Distributions of the velocities estimated by the Wei’s method (A) and by the
proposed method (B)

4 Conclusion

In this article, we proposed a method that can estimate the normal component
of high velocity optical flow using the local measurements obtained by the cor-
relation image sensor. When given images are captured by the correlation image
sensor, you can make the optical flow estimation well-posed if the correspond-
ing system of the linear equations is not degenerated. In our proposed method,
the normal component of the flow is estimated by using the spatial gradient of
the phase, ψω(x, y) when the system of the equations is degenerated. The equa-
tion used for estimating the normal velocity was theoretically derived in this
paper. Our future works include to develop a vision system that can compute a
wide rage of optical flows in real time by combining the Wei’s method and our
proposed one.
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