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Abstract. Inspired by the Linear Programming based algorithms for
discrete MRFs, we show how a corresponding infinite-dimensional dual
for continuous-state MRFs can be approximated by a hierarchy of
tractable relaxations. This hierarchy of dual programs includes as a spe-
cial case the methods of Peng et al. [17] and Zach & Kohli [33]. We give
approximation bounds for the tightness of our construction, study their
relationship to discrete MRFs and give a generic optimization algorithm
based on Nesterov’s dual-smoothing method [16].

1 Introduction

Consider an optimization problem of the form

min
x

∑

α

fα(xα). (1)

Here, x is n-dimensional parameter vector. The index α varies over subsets of
the variables of x = {x1, . . . , xn}, xα denotes the the corresponding sub-vector
of x, and fα(xα) is a function that only depends on xα. For problems of interest
to us |α| � n, i.e., the number of parameters that fα depends on is much smaller
than the total number of parameters.

Problems of this form abound in computer vision and machine learning, in-
cluding image denoising [3], bundle adjustment [26], and stereo matching [25],
among many others. One particularly important case is the inference problem
in Markov Random Fields(MRFs) [8]. MRFs are probability distributions that
can be written in the form

p(x) ∝
∏

α

e−fα(xα). (2)

Where, α are cliques in the underlying graph and fα are the associated clique
potentials. It is straightforward to see that the MAP inference problem for p(x)
is equivalent to solving (1).

In the case where the domain of the fα (commonly known as the state-space
of x) is a finite discrete set, (2) is known as a discrete MRF and finding the
optimal solution to (1) is NP-Hard [22]. Despite this, a variety of algorithms
have been developed to efficiently compute an approximately optimal solution.
These include graph cuts [4], belief propagation [30], and (most relevant to this
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work) dual and primal-dual methods [12,31,21]. Most of these methods have
been developed for the case of pairwise discrete MRFs, i.e., |α| ≤ 2.

There is however considerable interest in problems where the states are contin-
uous and/or the cliques have size greater than 2, including pose tracking [23,24],
structure from motion [27,6], stereo estimation [9,32], and protein folding [17].
Given the success of the methods used for solving discrete pairwise MRFs, it is
natural that a number of attempts have been made to extend them to contin-
uous domains and larger clique sizes [10,17,33]. But it is fair to say that their
success is limited and the development of these methods is still in its infancy.
Current methods for optimizing continuous MRFs include [17], [33] (which we
will discuss at greater length below) as well as [1], which can only handle convex
hinge-loss functions, but does allow constraints between the variables.

One of the most powerful tools for developing and analyzing discrete opti-
mization algorithms (exact and approximate) is linear programming [14,28]. So
it is no surprise that linear programming is at the heart of some of the most
successful methods for solving MRFs including [12,31,21] (see [29] for a review).
It is straightforward to construct a linear program relaxation of (1), as well as
its dual, but both of these end up being abstract infinite dimensional problems
that are not amenable to computation.

In this paper we offer a systematic procedure for approximating the infinite
dimensional dual using a hierarchy of piecewise polynomial functions. Doing so
allows us to handle both the issue of continuous domain as well as larger clique
size in a principled manner. It also allows us to unify and generalize the works
of Peng et al. [17] and Zach & Kohli [33]. As one would expect, the degree
of the polynomial and the granularity of the piecewise construction affect the
fidelity of the approximation.We analyze this and provide explicit approximation
bounds. We also study the cases where the elements of the hierarchy coincide
with a suitably constructed discrete optimization problem thereby enabling the
use of existing optimization algorithms. Last but not the least, we propose a dual
optimization algorithm applicable to a slice of our hierarchy based on Nesterov’s
dual-smoothing methods [16], which has recently been used successfully to solve
discrete MRFs [11,21].

The rest of the paper is organized as follows. In section 2 we construct the
linear programming relaxation to (1), its dual, and make some elementary obser-
vations about their structure. In section 3 we present a hierarchy of polynomial
approximations to the dual, and in section 4 we generalize to piecewise polyno-
mial approximations to the dual. Section 5 considers the special case of piecewise
constant and linear fα. Section 6 presents optimization methods for solving the
dual hierarchy. We conclude with a discussion in Section 7.

1.1 Preliminaries

Without loss, we assume that unary terms exist for each i ∈ {1, . . . n} 1. Fur-
thermore the vector x lives in some Ω = Ω1× · · ·×Ωn. We will assume that the

1 This is a notational convenience. If an fi is not part of the input, set fi = 0, which
does not change the optimization problem.
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domains Ωi are 1-dimensional, i.e., Ωi ⊆ R and compact. Compactness ensures
that the minimum value is attained. This allows us to re-write (1) as

min
x∈Ω

∑

i

fi(xi) +
∑

α

fα(xα). (F)

Where, |α| ≥ 2. Let M =
∑

α |α| which is one convenient measure for the size
of the input.

We will distinguish between two cases for the domain. If Ω is finite, we will
refer to (F) as a discrete problem. If eachΩi is an interval [a, b] we will refer to (F)
as a continuous problem. fi and fα will be assumed to be lower semi-continuous
(l.s.c.) as functions Ω → R. Note that if Ω is discrete then all functions Ω → R

are continuous.
For any Ω, P [Ω] is the space of all regular2 probability distributions on Ω.

〈f, μ〉 is the expectation of f with respect to the probability distribution μ. C[Ω]
denotes the space of continuous functions Ω → R, and LipL[Ω] ⊆ C[Ω] are the
L-Lipschitz continuous functions, i.e., functions f with |f(x)−f(y)| ≤ L‖x−y‖1
for all x, y ∈ Ω.

The Fenchel Conjugate of a function g is g∗(y) = supx y
�x−g(x); it is always

convex. The double Fenchel Conjugate g∗∗ is the convex envelope of g.
For an optimization problem A, OPT(A) will denote the optimal objective

function value.

2 The Linear Programming Relaxation

If μ ∈ P [Ω], then for every subset α, let μ|α ∈ P [Ωα] be the marginal distribution
of μ over the variables in α. Consider the optimization problem

min
μ∈P[Ω]

μα∈P[Ωα]

∑

α

〈fα, μα〉 , s.t. μα = μ|α. (3)

This is the Full Marginal Polytope LP. It has the same optimum as (1). It
is however intractable. Even in the discrete case it involves exponentially many
variables (it requires specifying a probability for each value of x ∈ Ω). To get
around this, a standard relaxation is 3:

min
μi∈P[Ωi]
μα∈P[Ωα]

∑

i

〈fi, μi〉+
∑

α

〈fα, μα〉 , s.t. μα|i = μi. (P-F)

2 A measure μ is regular if for each A ⊆ Ω we have μ(A) = inf{μ(O) | O ⊇
A,O open} = sup{μ(K) | K ⊆ A,K compact}. Many nice distributions, in par-
ticular, delta distributions, are regular.

3 Sometimes, if more is known about the structure of fα, then more specialized relax-
ations can be constructed. e.g. if fα is a polynomial, then problem (3) is the same
starting point as that of the Lasserre Heirarchy [13]. The Lasserre hierarchy exploits
the fact that expectations of polynomials are linear in the moment variables of a
distribution yd =

〈
xd, μ

〉
. Then, the inverse Moment Problem allows relaxing the

original problem to a hierarchy of Semi-Definite Programs.
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This is the Local Marginal Polytope LP. The constraints μα|i = μi (indexed
by α, i for all α and i ∈ α.) are equivalent to saying that the signed measures4

μα|i − μi are identically 0. By dualizing these constraints, we get the following
unconstrained optimization problem [17]:

max
λ

∑

i

min
xi∈Ωi

[
fi(xi)−

∑

α�i

λα,i(xi)

]
+
∑

α

min
xα∈Ωα

[
fα(xα) +

∑

i∈α

λα,i(xi)

]
(D-F)

From [19], we know that the dual variables λα,i are arbitrary continuous uni-
variate functions defined on Ωi, i.e., λα,i ∈ C[Ωi]. Furthermore, we have strong-
duality: OPT(P-F) = OPT(D-F). Here, we have not assumed anything about
fα. In fact, if the fα satisfy certain smoothness properties, then the optimal
dual variables do as well. The proof of the following lemma can be found in
Appendix A.

Lemma 1. If all fα ∈ LipL[Ωα], then there is a dual-optimal λ where each
λα,i ∈ LipL[Ωi].

Before we go further, let us define some notation. We will use q(λ) to denote
the value of the objective in (D-F) and qi(λ) and qα(λ) to denote the individual
terms of the summation. For convenience, we define λi(xi) =

∑
α�i λα,i(xi) and

λα(xα) =
∑

i∈α λα,i(xi). Given this notation we can write

qi(λ) = min
xi

fi(xi)− λi(xi) (4)

qα(λ) = min
xα

fα(xα) + λα(xα) (5)

q(λ) =
∑

i

qi(λ) +
∑

α

qα(λ). (6)

Since the dual variables λ are allowed to be arbitrary continuous functions,
the dual problem (D-F) is infinite dimensional and hence not computationally
tractable. We will instead consider subspaces Λ ⊂ C[Ω] that lead to computa-
tionally tractable duals:

max
λ∈Λ

∑

i

qi(λ) +
∑

α

qα(λ). (D-Λ)

Lemma 2. Let Λ ⊂ Λ′ ⊆ C[Ω], and let λ∗ and λ′∗ be the solution of the
corresponding optimization problems (D-Λ) and (D-Λ′). Then

q(λ∗) ≤ q(λ′∗) ≤ q(λ∗) + 2Mε (7)

where, M =
∑

α |α| and ε = maxα,i supxi
|λ∗

α,i(xi)− λ′∗
α,i(xi)|.

4 μα|i − μi are signed measures on Ωi, since we may have μα|i > μi for some events,
and μα|i < μi elsewhere.
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Proof. The left inequality holds because (D-Λ′) optimizes over a larger set than
(D-Λ). For the right inequality, let Δi = |{α  i}| and Δα = |{i ∈ α}|. Then

min
xi

fi(xi)−
∑

α

λ∗
α,i(xi) ≥ min

xi

fi(xi)−
∑

α

λ′∗
α,i(xi)−Δiε (8)

min
xα

fα(xα) +
∑

i

λ∗
α,i(xi) ≥ min

xα

fα(xα) +
∑

i

λ′∗
α,i(xi)−Δαε (9)

hence q(λ∗) ≥ ∑
i qi(λ

′∗) +
∑

α qα(λ
′∗)− (

∑
iΔi +

∑
α Δα)ε = q(λ′∗)− 2Mε.

3 Polynomial Dual Variables

We begin by considering polynomial dual variables. The subspace Λ(d) ⊂ C[Ω]
will denote dual variables that are polynomials of degree d i.e.,

λα,i(xi) = λ
(0)
α,i + λ

(1)
α,ixi + · · ·+ λ

(d)
α,ix

d
i . (10)

Since Λ(d−1) ⊂ Λ(d), this forms a hierarchy. Let us look at some special cases.

3.1 Constant Dual Variables

The simplest subspace of dual variables is Λ(0), the space of constant functions,

i.e., λα,i(xi) = λ
(0)
α,i. Then we have

Lemma 3. Let λ(0) ∈ Λ(0), then for all λ ∈ C[Ω], q(λ + λ(0)) = q(λ).

Proof. Observe that qi(λ+λ(0)) = qi(λ)−λ
(0)
i and qα(λ+ λ(0)) = qα(λ) + λ

(0)
α

and
∑

i λ
(0)
i =

∑
α,i λ

(0)
α,i =

∑
α λ

(0)
α . Therefore,

q(λ+ λ(0)) =
∑

i

qi(λ) +
∑

α

qα(λ)−
∑

i

λ
(0)
i +

∑

α

λ(0)
α = q(λ) (11)

In other words, we can ignore constants added to λα,i. In addition, this allows
us to simplify the optimization problem (D-Λ(0)).

Corollary 1. OPT(D-Λ(0)) = q(0) =
∑

i minxi fi(xi) +
∑

α minxα fα(xα)

Proof. OPT(D-Λ(0)) = q(0) is a straightforward consequence of Lemma 3. Then

q(0) =
∑

i

qi(0) +
∑

α

qα(0) (12)

=
∑

i

min
xi

fi(xi) +
∑

α

min
xα

fα(xα) (13)

Thus OPT(D-Λ(0)) is the obvious lower bound of f obtained by simply mini-
mizing each term separately.
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3.2 Affine Dual Variables

Next, we consider the space Λ(1) of affine dual variables λα,i(xi) = λ
(0)
α,i+λ

(1)
α,ixi.

From Lemma 3 we know that constant offsets cancel out, so we can assume that

λ
(0)
α,i = 0, i.e., optimizing over affine dual variables is the same as optimizing over

linear dual variables. With λ ∈ Λ(1) we have:

qi(λ) = min
xi

fi(xi)− λ
(1)
i xi = −f∗

i (λ
(1)
i ) (14)

qα(λ) = min
xα

fα(xα) + λ(1)
α

Txα = −f∗
α(−λ(1)

α ) (15)

Here λ(j)
α is the vector (λ

(j)
α,i)i∈α and λ

(j)
i is the sum

∑
α λ

(j)
α,i. Recall that f

∗ is

the Fenchel conjugate of f . Combining these, D-Λ(1) can be simplified to

max
λ

∑

i

−f∗
i

(
λ
(1)
i

)
+
∑

α

−f∗
α(−λ(1)

α ) (D-Λ(1))

The Fenchel Conjugate can be explicitly computed for certain analytically
defined functions (such as truncated quadratics). In cases where an analytical
solution is not possible, there are numerical algorithms that can compute the
Fenchel conjugate of a sampled function in linear time (e.g., [15]).

More interestingly, we have

Theorem 1. Let
min
x

∑

i

f∗∗
i (xi) +

∑

α

f∗∗
α (xα) (P-SC)

be the convex optimization problem obtained by separately convexifying each term
of (F), then OPT(P-SC) = OPT(D-Λ(1)).

Proof. Introduce copies of the variables yα for each clique α in (P-SC) to get
the equivalent optimization problem

min
x,{yα}

∑

i

f∗∗
i (xi) +

∑

α

f∗∗
α (yα), s. t. yα,i = xi (16)

Dualizing the equality constraints with dual-multipliers λ
(1)
α,i we get (D-SC)

max
λ(1)

min
x,{yα}

∑

i

[
f∗∗
i (xi)− λ

(1)
i xi

]
+
∑

α

[
f∗∗
α (yα) + λ(1)

α
�yα

]
(D-SC)

=max
λ(1)

∑

i

min
xi

[
f∗∗
i (xi)− λ

(1)
i xi

]
+
∑

α

min
yα

[
f∗∗
α (yα) + λ(1)

α
�yα

]
(17)

=max
λ(1)

∑

i

−f∗∗∗
i (λ

(1)
i ) +

∑

α

−f∗∗∗
α (−λ(1)

α ) (18)

For any f it is the case that f∗∗∗ = f∗, i.e., the convex envelope of a convex
function is the function itself. Therefore (18) is the same optimization problem
as OPT(D-Λ(1)), and then by strong duality, OPT(P-SC) = OPT(D-Λ(1)).
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3.3 Degree d Polynomial Dual Variables

Let us now consider the subspaces Λ(d) when d > 1. Recall that λα,i(xi) =

λ
(1)
α,ixi + · · ·+ λ

(d)
α,ix

d
i . This gives subproblems of the form

qi(λ) = min
xi

fi(xi)− λ
(1)
i xi − · · · − λ

(d)
i xd

i (19)

qα(λ) = min
xα

fα(xα) +
∑

i∈α

(λ
(1)
α,ixi + · · ·+ λ

(d)
α,ix

d
i ) (20)

These subproblems look almost like a Fenchel conjugate, with the linear form

λ
(1)
α,ixi replaced with a polynomial. In fact, optimization problems of this form

have been studied, under the name of Φ-conjugates [7].
For a function Φ : R

n × R
m → R, the Φ-conjugate transforms functions

f : Rn → R to their conjugate fΦ : Rm → R, defined by

fΦ(y) = sup
x

Φ(x,y) − f(x) (21)

If Φ(x,y) = xTy, then the Φ-conjugate is just the Fenchel Conjugate. In the case
of polynomial dual variables, we can define Φ to be the polynomial evaulation

map: Φi,d(xi, y
(1), . . . , y(d)) = y(1)xi+ · · ·+ y(d)xd

i and Φα,d(xα,y
(1)
α , . . . ,y

(d)
α ) =∑

i∈α Φi,d(xi, y
(1)
i , . . . , y

(d)
i ). Then, the dual for degree d polynomials becomes

max
λ

∑

i

[
− f

Φi,d

i

(
λ
(1)
i , . . . , λ

(d)
i

)]
+
∑

α

[
− f

Φα,d
α (−λ(1)

α , . . . ,−λ(d)
α )

]
(22)

In this case, the Φ-conjugate can be computed in terms of the Fenchel conjugate
(this is a straightforward generalization of the full quadratic transform, Example
11.65 of [18]).

4 Piecewise Defined Dual Variables

A separate hierarchy, orthogonal to the polynomial hierarchy above, is obtained
by considering dual-variables defined piecewise on their domain. That is, each
dual variable has some fixed number of pieces and each piece belongs to Λ(d) for
some fixed degree d, e.g., piecewise constant or piecewise linear functions.

To simplify notation, we assume the domain of xi is Ωi = [0,K] for some
integer K and consider dual variables λα,i which are piecewise defined on the
subintervals Ik = [k − 1, k) for k = 1, . . . ,K. We will use superscript notation
to denote the pieces of λ, so that λα,i(xi) = λk

α,i(xi) for xi ∈ Ik. We’ll define

λk
α,i = 0 outside Ik so that λα,i =

∑
k λ

k
α,i.

It will be convenient to correspondingly subdivide the domains of fi, fα, so
let fk

i (xi) = fi(xi) for xi ∈ Ik and 0 otherwise. For the higher-order functions,
we subdivide the cube [0,K]|α| into grid-cells, indexed by kα = (ki)i∈α. Then,
the grid cells are Ikα =

∏
i∈α Iki , and the pieces of fα are fkα

α , where fkα
α (xα) =
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Fig. 1. (left) Piecewise constant dual variables find the minimum value in each “piece”.
(right) Piecewise linear dual variables convexify each piece separately. Note that the
overall function is non-convex.

fα(xα) for xα ∈ Ikα and 0 otherwise. Finally let us define subproblems for each
piece:

qki (λ) = min
xi∈Ik

fk
i (xi)− λk

i (xi) (23)

qkα
α (λ) = min

xα∈Ikα

fkα
α (xα) + λkα

α (xi) (24)

where we have extended our summation-shorthand with λk
i =

∑
α�i λ

k
α,i and

λkα
α =

∑
i∈α λki

α,i.

Lemma 4. For piecewise defined dual-variables, the dual problem is given by

q(λ) =
∑

i

min
k

qki (λ) +
∑

α

min
kα

qkα
α (λ). (25)

Proof. For piecewise dual variables, we know that λα,i =
∑

k λ
k
α,i, and that λk

α,i

and fk
i (resp. fkα

α ) are 0 for xi /∈ Ik (resp. for xα /∈ Ikα). Therefore, we have

qi(λ) = min
xi

∑

k

[fk
i (xi)− λk

i (xi)] (26)

= min
k

min
xi∈Ik

[fk
i (xi)− λk

i (xi)] = min
k

qki (λ) (27)

qα(λ) = min
xα

∑

kα

[fkα
α (xα) + λkα

α (xα)] (28)

= min
kα

min
xα∈Ikα

[fkα
α (xα) + λkα

α (xα)] = min
kα

qkα
α (λ) (29)

So, if we know the dual subproblems qi and qα for a given class of functions,
then adding piecewise defined functions just requires a finite minimum over the
K |α| subproblems for each piece.

We can combine this approach with the polynomial hierarchy of Sections 3.2
and 3.3 by letting (D-Λ(d),K) be the dual program with piecewise polynomial
dual variables — each piece is a degree d polynomial, and the pieces are K
equally-sized intervals of the domain Ωi. We can bound how close each ap-
proximation is to the true dual solution: as we increase the number of pieces of
the domain, or the degree of polynomials allowed as dual variables, these bounds
converge to 0, as characterized by the following theorem (proof in the Appendix).
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Theorem 2. If each variable has domain Ωi = [0, 1], and all fα are L-Lipschitz,
then OPT (D-Λ(d),K) ≥ OPT (D)−O(ML

dK ).

We highlight the duals programs for piecewise constant (Λ(0),K) and piecewise
linear dual variables (Λ(1),K).

4.1 Piecewise Constant Dual Variables

Substituting the appropriate subproblems qki , q
kα
α into Lemma 4, we get

max
λ

[
∑

i

min
k

[
min
xi

(fk
i (xi)) + λ

(0),k
i

]
+ (D-Λ(0),K)

∑

α

min
kα

[
min
xα

(fkα
α (xα)) + λ(0),kα

α

]]

Recall that the pieces of Ωi and Ωα are indexed by ki,kα. Define the following
discrete functions

f i(ki) = min
xi∈Ik

fi(xi) (30)

fα(kα) = min
xα∈Ikα

fα(xα) (31)

and the discrete optimization problem

min
k

∑

i

f i(ki) +
∑

α

f(kα). (F)

Note that f =
∑

i f i +
∑

α fα is obtained by taking the minimum value in
each piece of the domain (see Figure 1 (left) for illustration). The primal LP
relaxation of this problem using the Local Marginal Polytope is

min
μi∈P(K)
μα∈Pα(K)

∑

i

〈
f i, μi

〉
+
∑

α

〈
fα, μα

〉
, s.t. μα|i = μi. (P-F)

Where, P(K) is the space of discrete probability distributions on the integers
{1, . . . ,K} and Pα(K) is the space of discrete probability distributions on cor-
responding |α|-dimensional integer grid. Then we have,

Theorem 3. OPT(D-Λ(0),K) = OPT(P-F).

Proof. Substituting (30) and (31) into (D-Λ(0),K), we get

max
λ

∑

i

min
ki

[
f i(ki)− λ

(0),k
i

]
+
∑

α

min
kα

[
fα(kα) + λ(0),kα

α

]
(32)

This is exactly the dual of (P-F), and by strong duality our claim holds.

Note that this means we can solve D-Λ(0),K by using f as input to any Discrete
MRF solver which optimizes the dual, such as [31,21].
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4.2 Piecewise Linear Dual Variables

Again, substituting the appropriate subproblems qki , q
kα
α into Lemma 4, we get

max
λ

[
∑

i

min
k

[
−(fk

i )
∗(λ(1),k

i ) + λ
(0),k
i

]
+

∑

α

min
kα

[
−(fkα

α )∗(−λ(1),kα
α ) + λ(0),kα

α

]]
(D-Λ(1),K)

This problem turns out to be closely related to the method proposed by Zach
and Kohli [33]. Their method first subdivides the functions fi, fα on a grid, and
separately convexifies each piece (see Figure 1 (right) for illustration). The result-
ing problem is solved using a convex program with marginalization constraints.
More specifically, their method solves the following convex program5:

min
x,y

∑

i,k

yki (f
k
i )

∗∗
(
xk
i

yki

)
+

∑

α,kα

ykα
α (fkα

α )∗∗
(
xkα
α

ykα
α

)
(P-ZK)

∑

kα:ki=k

ykα
α = yki (33)

∑

kα:ki=k

xkα

α,i = xi,k (34)

〈yi, 1〉 = 〈yα, 1〉 = 1 (35)

0 ≤ xk
i ≤ yki 0 ≤ xkα

α,i ≤ ykα
α (36)

Theorem 4. OPT(D-Λ(1),K) = OPT(P-ZK).

Proof. We can dualize the constraints (33) and (34) with dual variables λ
(1),k
α,i

and λ
(0),k
α,i respectively. This gives the program:

max
λ

min
x,y

∑

i,k

yki

[
(fk

i )
∗∗

(
xk
i

yki

)
− λ

(1),k
i

xk
i

yki
− λ

(0),k
i

]
(37a)

+
∑

α,kα

ykα
α

[
(fkα

α )∗∗
(
xkα
α

ykα
α

)
+ (λ(1),kα

α )T
xkα
α

ykα
α

+ λ(0),kα
α

]
(37b)

〈yi, 1〉 = 〈yα, 1〉 = 1 (37c)

0 ≤ xk
i ≤ yki 0 ≤ xkα

α,i ≤ ykα
α (37d)

Then, minimizing over x and then y (and using the fact that f∗∗∗ = f∗), this
simplifies to (D-Λ(1),K). Therefore, (D-Λ(1),K) is dual to (P-ZK).

5 (P-ZK) generalizes equation (8) from [33] to higher-order cliques (they consider only
pairwise terms), with slight changes in notation to match our own. Additionally,
throughout this section we’ll define 0/0 = 0, to make the divisions above always be
well-defined.
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5 Piecewise Defined fi and fα

In the last two sections we studied versions of (D-F) where the dual variables
are restricted to subspaces of C[Ωi] without any restrictions on fi and fα. Let us
now consider the case where the functions fi and fα are also defined piecewise.

Theorem 5. If fi, fα are piecewise constant on Ik, Ikα respectively, and if F is
the optimization problem obtained by discretizing F (via (30) and (31)), then

OPT(P-F) = OPT(P-F) = OPT(D-Λ(0),K)

Proof. Since fi, fα are all piecewise constant on the grid cells Ik, Ikα , then the
construction (30) and (31) reduces to

f i(ki) = min
xi∈Ik

fi(xi) = fi(Ik) (38)

fα(kα) = min
xα∈Ikα

fα(xα) = f(Ikα) (39)

Observe that the optimal dual variables λ∗ for (D) will also be piecewise con-
stant, here is why. Since fi, fα are constant on Ik, Ikα , setting λα,i(xi) to its
average value on the interval, λα,i(xi) =

1
|Ik|

∫
Ik
λα,i(xi)dx for xi ∈ Ik, does not

decrease the objective q. Therefore, we have OPT(D) = OPT(D-Λ(0),K), which
combined with OPT(D) = OPT(P-F) and Lemma 3 gives our result.

For piecewise-linear functions, we have a similar result (proof in Appendix).

Theorem 6. Let the functions fi, fα be continuous piecewise-linear on a reg-
ular grid6 and let f̃i be fi restricted to {0, . . . ,K}, and f̃α be fα restricted to
{0, . . . ,K}α. Then consider the discrete optimization problem:

min
μi∈P(K)
μα∈Pα(K)

∑

i

〈
f̃i, μi

〉
+
∑

α

〈
f̃α, μα

〉
, s.t. μα|i = μi (P-F̃)

OPT(P-F) = OPT(P-F̃).

According to these theorems, for piecewise-constant and piecewise-linear ob-
jective functions, the infinite dimensional primal and dual problems have the
same value as the finite dimensional problems for the discrete MRF f̃ . This
means that the classic discrete MRF optimization methods can be used to solve
this class of problems effectively.

6 Solving D-Λ(d),K

The problem D-Λ(d),K is a finite dimensional, unconstrained convex non-smooth
optimization problem. For non-smooth problems, the best general-purpose opti-
mization algorithms are subgradient methods [2]. However, because subgradient

6 fi is linear on each interval Ik, and that there’s a triangulation T of the grid Ωα

such that fα is linear on each triangle (or simplex) τ ∈ T .
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algorithms have slow convergence, requiring O( 1
ε2 ) function evaluations to obtain

an ε-optimal solution [2]) it is worth considering more specialized methods.
As we noted earlier, as consequence of Theorem 3, (D-Λ(0),K) can be solved

efficiently using discrete MRF solvers that operate on the dual.
Sometimes it is preferable to slightly modify the problem and instead optimize

a smooth approximation to the dual and this can lead to a convergence rate of
O(1/ε) [16]. For discrete problems, this approach has been used in the Adaptive
Diminishing Smoothing method of [21] to obtain state of the art optimization
results for discrete MRFs. This can also be applied to (D-Λ(1),K). There are two
sources of discontinuity in dual: the finite minimization from the piecewise part,

where qi(λ) = mink q
k
i (λ); and the Fenchel conjugate qki (λ) = −(fk

i )
∗(λ(1),k

i ),
which may also be non-differentiable. To get a smooth approximation for the
finite minimization, we replace min with soft-min7 as in the work of [21]. For
the Fenchel conjugate, we have

Lemma 5. For f : [0, 1]n → R and t > 0, let ft(x) = f∗∗ + t‖x‖2. Then f∗
t is

differentiable, and f∗(y) ≥ f∗
t (y) ≥ f∗(y) − tn.

Proof. We note that (by Lemma 26.3 of [20]) f∗ is differentiable if and only if
f is strictly-convex, and f∗∗ is convex and t > 0 so ft is strictly convex. Then,
ft ≥ f for all x, so f∗

t ≤ f∗ (the Fenchel conjugate is order reversing). Finally,

f∗
t (y) = sup

x
yTx− f∗∗(x)− t‖x‖2 (40)

≥ sup
x

yTx− f∗∗(x)− tn = f∗(y) − tn. (41)

Combining these two smoothing techniques gives us a differentiable approxi-
mation to (D-Λ(1),K) which can then be efficiently optimized, either using con-
ventional quasi-Newton methods such as L-BFGS, or the special-purpose optimal
method of Nesterov [16].

For d > 1, the story is less nice. Recall that if there are multiple minimizers
for f(x) = mini∈I gi(x), then f is non-differentiable. In particular, for quadratic
dual variables, the Φ-conjugate fΦ(a1, a2) = supx a1x + a2x

2 − f(x) may have
multiple minimizers. Ensuring strict convexity does not help this situation: if
f(x) = x2, then fΦ(0, 1) = supx 0 · x + 1 · x2 − x2 = supx 0, which is minimized
by every x. So for d > 1, the smoothing method of Lemma 5 doesn’t work. We do
not know a practical way to smooth these subproblems, so we can only propose
to use subgradient methods for optimization in this case.

7 Discussion

We have given a sequence of dual programs (D-Λ(d),K), which get increasingly
close to the infinite-dimensional dual (D) as d,K increase. To see the tradeoffs in

7 Defined by soft-mini∈Igi(x) = −t log
∑

i e
−gi(x)/t.
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choosing d,K, the bounds from Theorem 2 are O( 1
dK ). If we consider either dou-

bling the number of pieces K, or the degree d, then we get the same improvement

in error bound, but both choices use twice as many coefficients λ
(j),k
α,i .

However, the computation of the soft-min for the gradient of fα scales as
K |α|, whereas if our fα are analytically defined, our Fenchel conjugate compu-
tation may be much cheaper to compute (potentially in constant time). There-
fore, depending on the specifics of the problem, increasing the degree d is likely
to be a better tradeoff in terms of computational efficiency. Unfortunately,
(D-Λ(d),K) cannot use smooth optimization methods for d > 1, which suggests
that (D-Λ(1),K) is the best choice.

A further attractive feature of the dual construction is that it unifies both
higher order cliques α, and continuous domains in a single framework. The main
complexity of the dual (D) is due to the continuous variables, causing it to be
infinite dimensional. The higher-order cliques do cause the number of pieces Ikα

in the piecewise dual variable case to grow exponentially with the clique size,
but the same is true for discrete MRFs as well.

Going forward we plan on exploring the practical performance and special-
ized algorithms for computing the dual for specific fα of interest in applications.
In particular, we will consider the truncated L1 and L2 priors, because their
Fenchel conjugates can be analytically derived and computed in constant time.
We will also investigate the Fast Fenchel Conjugate [15] for handling more gen-
eral fα. Using these duals as building blocks, we then plan on building a practical
implementation of smoothing based optimization algorithm for (D-Λ(1),K).

A Proofs

Lemma 1. If all fα ∈ LipL[Ωα], then there is a dual-optimal λ where each
λα,i ∈ LipL[Ωi].

Proof. Let λ be dual-optimal. We will iterate through α, i updating each λα,i

to become L-Lipschitz, without reducing the objective q(λ). So, let λ′
α,i(xi) =

minx′
i
λα,i(x

′
i)+L|xi−x′

i|. First, note that λ′
α,i ≤ λα,i. We also have that λ′

α,i is L-
Lipschitz: for any x there is some z with λ′

α,i(x) = λα,i(z)+L|x−z| and for all y,
λ′
α,i(y) ≤ λ′

α,i(z)+L|y−z| hence λ′
α,i(y)−λ′

α,i(x) ≤ L|y−z|−L|x−z| ≤ L|y−x|.
By symmetry, |λ′

α,i(y)− λ′
α,i(x)| ≤ L|y − x|.

Let λ′ be λ where we’ve updated one λα,i to λ′
α,i. Since λ′

α,i ≤ λα,i we know

qi(λ
′) ≥ qi(λ). To show qα(λ

′) ≥ qα(λ), pick any xα. There is some x′
i such that

λ′
α,i(xi) = λα,i(x

′
i) + L|x′

i − xi|. Let x′
α be xα with x′

i replacing xi. Then:

fα(xα) +
∑

i

λ′
α,i(xi) = fα(xα) +

∑

j

λα,j(x
′
j) + L|xi − x′

i| (42)

≥ fα(x
′
α) +

∑

i

λα,i(x
′
i) ≥ qα(λ) (43)

Therefore, qα(λ
′) = minxα fα(xα) + λ′

α(xα) ≥ qα(λ), so q(λ′) ≥ q(λ).
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Theorem 2. If each variable has domain Ωi = [0, 1], and all fα are L-Lipschitz,
then OPT (D-Λ(d),K) ≥ OPT (D)−O

(
ML
dK

)
.

Proof. We use Jackson’s theorem (Corollary 7.5 of [5]): there is a constantC such
that if f ∈ LipL[0, 1] then there is a polynomial pn of degree n with ‖f−pn‖∞ ≤
O
(
L
n

)
. This bound may not be tight for small n; however for constant and

linear functions, we have p0(x) = f(12 ) and p1(x) = f(14 ) + (f(34 )− f(14 ))x with

‖f − p0‖ ≤ L
2 and ‖f − p1‖ ≤ L

4 (the functions f0(x) = Lx and f1(x) = L|x− 1
2 |

show that these bounds are tight).
Since the fα are L-Lipschitz, by lemma 1 there is a dual-optimal λ where each

λα,i is L-Lipschitz. Then, apply the Jackson-inequality to each piece [ i
K , i+1

K ] of

the domain [0, 1] to get a K-piecewise d-degree λ with ‖λα,i−λ∗
α,i‖∞ ≤ O

(
L
dK

)
.

Consequently, by lemma 2, OPT(D-Λ(d),K) ≥ q(λ) ≥ OPT∗ −O
(
ML
dK

)
.

Theorem 6. If fi, fα are continuous piecewise-linear functions on a regular
grid, then OPT(P-F) = OPT(P-F̃).

Proof. Since f̃ is just a sampled version of f , the discrete LP (P-F̃ ) is identical
to (P-F ) with the restriction that μ̃α ∈ Pα(K). Since Pα(K) ⊆ P [Ωα] it’s clear
that the continuous LP is a lower bound on the discrete LP.

For the other direction, take a feasible primal μα ∈ P [Ωα]: we’ll construct a
feasible μ̃α ∈ Pα(K) with the same objective.

Let Tα be the standard triangulation of the grid {0, . . . ,K}α. Each simplex
τ ∈ Tα has vertices in {0, . . . ,K}α and the projection of τ onto the i-th compo-
nent is an interval [j, j+1]. For each x̃ ∈ {0, . . . ,K}α, there is a set of simplices
with x̃ as a vertex, we will denote this set as τ ∼ x̃. Each simplex comes with
barycentric coordinates: every point x ∈ τ is a convex combination of the ver-
tices. We’ll write these as ξτ,x̃(x) which satisfy

∑
x̃∼τ ξτ,x̃(x)x̃ = x.

We construct μ̃α by taking all the mass from μα on a simplex τ , and gath-
ering it to each vertex x̃, weighted by the barycentric coordinates ξτ,x̃. More
specifically, define μ̃α(x̃) :=

∑
τ∼x̃

∫
τ
ξτ,x̃(x)dμα.

The fact that the barycentric coordinates sum to 1 ensures that μ̃α is a
probability distribution on Ω̃α, and since the projections of τ onto the i-th
component are intervals [j, j + 1] we get that {μ̃α} satisfy the marginalization
constraints. Finally, since our objective is linear on each τ , we have fα(xα) =∑

x̃∼τ ξτ,x̃(xα)f(x̃). Therefore, we have

〈fα, μ̃α〉 =
∑

x̃

fα(x̃)(
∑

τ∼x̃

∫

τ

ξτ,x̃(xα)dμα) =
∑

τ

∫

τ

∑

x̃∼τ

f(x̃)ξτ,x̃(xα)dμα (44)

=
∑

τ

∫

τ

f(xα)dμα = 〈fα, μα〉 . (45)
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