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Abstract. Objects in human environments support various functional-
ities which govern how people interact with their environments in order
to perform tasks. In this work, we discuss how to represent and learn
a functional understanding of an environment in terms of object affor-
dances. Such an understanding is useful for many applications such as
activity detection and assistive robotics. Starting with a semantic notion
of affordances, we present a generative model that takes a given envi-
ronment and human intention into account, and grounds the affordances
in the form of spatial locations on the object and temporal trajectories
in the 3D environment. The probabilistic model also allows uncertain-
ties and variations in the grounded affordances. We apply our approach
on RGB-D videos from Cornell Activity Dataset, where we first show
that we can successfully ground the affordances, and we then show that
learning such affordances improves performance in the labeling tasks.

Keywords: Object Affordances, 3D Object Models, Functional Repre-
sentation of Environment, Generative Graphical Model, Trajectory Mod-
eling, Human Activity Detection, RGBD Videos.

1 Introduction

Functional understanding of an environment through object affordances is im-
portant for many applications in computer vision. For example, reasoning about
the interactions with objects helps in activity detection [28,43,18], understanding
the spatial and structural relationships between objects improves object detec-
tion [16] and retrieval [8], and understanding what actions are supported by the
objects in an environment is essential for many robotic applications [17,30]. Our
goal is to learn a rich functional representation of the environment in terms of ob-
ject affordances from RGB-D videos of people interacting with their surrounding
environment.

The definition of ‘affordance’ had been hotly debated first in philosophy
[9,33,32], and then in psychology (e.g., [4]). While the intuitions behind all these
debates were similar, the interpretations vary from purely symbolic and abstract
[9] to more physically-grounded meanings [32]. Recent works in computer vision
have revisited these aspects. For example, the symbolic notion of affordances can
be interpreted as an object attribute labeling problem [25,36,7,3,42], and more
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Fig. 1. Grounded affordance for an object cup. Given an intention I of a human
H in an environment E, our approach outputs the sequence of physically-grounded
affordances ξk for the objects in the scene. In this figure, we show the affordance of a
cup for the intention of drinking water. The grounded affordances comprise semantic
affordances Lk, 3D spatial affordances Sk and 3D temporal trajectories Γk. Due to noise
and uncertainty in the agent’s behavior, several groundings are valid, and therefore
our approach outputs a belief over the possible groundings. In this figure, the belief is
represented by heatmaps for the spatial and temporal affordances.

recently, physical aspects have been explored in [10,12,16], where they model the
functionality-based spatial interactions of humans with their environments. For
example, Grabner et al. [10] uses the interactions between a sitting human pose
and the environment to identify sittable regions, Delaitre et al. [5] observed peo-
ple to extract semantic and geometric affordances for large furniture-like objects,
and Jiang, Koppula and Saxena [16] uses the spatial affordances of objects with
respect to possible human poses for the task of labeling objects. These works
only consider the spatial aspect of static affordances.

In contrast, affordances are often dynamic, have a temporal motion aspect,
and they vary depending on the environment and the intention of the human.
Consider the cup in Fig. 1, where in order to drink water the affordance is
pour-to for it to receive water, and then it is drinkable for transferring water
into the human’s mouth. The actual 3D coordinates of the interactions with the
object and the object’s 3D trajectory would vary depending on the geometry of
the environment. Furthermore, if the intent of the human was to hurt someone,
the cup could also be used as a projectile to throw at someone! Capturing these
dynamic and temporal aspects of affordances is necessary in many applications.
For example, assistive robots need to reason about ‘what can be done with
objects?’ as well as ‘how?’ for planning their actions [23,22].

In this work, we take a unified view where we focus on grounding the affor-
dances into a given environment for a human intention. As illustrated in Fig. 1,
by grounding we mean outputting the semantic affordances, the 3D location of
interaction on the object (‘spatial affordances’), as well as object’s motion tra-
jectory (‘temporal affordances’). Multiple groundings are valid because of noise
and uncertainty in the agent’s behavior. We therefore model this uncertainty
using a generative probabilistic model for the semantic, spatial and temporal
groundings of the affordances. Our generative model is based on a conditional
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mixture of density functions, where the density functions are discrete (for seman-
tic affordances), product of Gaussians and von Mises (for spatial affordances),
and parameterized Gaussian Processes (for the temporal affordances). We train
the parameters of our model from the training data comprising RGB-D videos,
and test on hold-out test data.

We present extensive evaluation of our proposed affordance learning frame-
work on RGB-D videos form the Cornell Activity Dataset – where we introduce
a new affordance dataset consisting of semantic activities along with spatio-
temporal motions for several objects. We show that our generative model can
reconstruct these trajectories well. We also show that our approach can improve
the affordance and activity detection performance on the CAD-120 dataset [23].
The contributions of this paper are as follows:

– We present a representation for affordances that consist of semantic, 3D
spatial and temporal trajectory components. Our work thus extends previous
works that considered only semantic or spatial affordances.

– Our grounding of affordances into spatial and temporal belief maps is context-
dependent on the environment and the intention of the agent.

– Our generative probabilistic approach models the uncertainty and variations
in the grounded affordances.

– We contribute a new affordance dataset, on which we show that we can
predict grounded affordances well. We also show improvement in the labeling
performance on an existing RGB-D activity dataset.

2 Related Work

J.J. Gibson [9] described the concept of affordance as the “Action possibilities
in the environment in relation to the action capabilities of an actor”. The term
affordances was later appropriated by D. Norman [33] as the “perceived action
possibilities”. This makes the concept also depend on the actor’s goals, plans,
values, beliefs, and past experiences. There are other definitions which narrow
down the meaning of affordances, for example, physical affordances [32] which
are perceived only from the physical structure of objects.
Symbolic Affordances. There have been many attempts in the computer
vision and robotics literature to reason about object functionality (e.g., sit-
table, drinkable, etc.) instead of object identities (e.g., chairs, mugs, etc.). Most
works take a recognition based approach where they first estimate physical at-
tributes/parts and then jointly reasoned about them to come up with an object
hypothesis [38]. Some works predict affordance-based or function-based object
attributes. For example, [19] consider newspapers and books as readable and
books and hammers as hammerable. Such interpretation was also used in several
other works [25,36,7]. These works are the first step for a functional understand-
ing of the scene. Our work, in contrast, is focussed on grounding these symbolic
affordances.
Scene Understanding: Geometry, Humans and Objects. Physical aspects
of affordances havebeen recently explored in [10,12,5,16].For example, interactions
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between a sitting human pose and the environment are used to identify sittable
regions [10], semantic and geometric affordances of large objects such as furniture
are extracted by observing people [5,12], and spatial affordances of objects with
respect to possible human poses are used for placing and labeling objects [17,16].
Another notablework is [11], where they looked at howhumansmanipulate objects
for the purpose of recognizing them. These works use particular interpretations
of affordances suited to the specific application. In particular, they consider
the spatial aspect of static affordances only. In contrast, we consider temporal
affordances and infer a belief over the physically grounded affordances. Koppula
and Saxena [22] proposed generation of possible future object trajectories for
anticipating future activities, where they represent object trajectories as Bézier
curves and estimate the parameters from data. However, the Bézier curves can
only model limited types of object trajectories. We build upon these ideas and
propose a generative probabilistic model which provides a generic framework for
modeling various types of affordances and also show that it performs better than
[22] for predicting future object trajectories.
Robotics Planning: Navigation and Manipulation. Most of the work in
robotics community has focused on predicting opportunities for interaction with
an object either by using visual cues [39,14,2] or through observation of the ef-
fects of exploratory behaviors [31,35,13]. For instance, Sun et al. [39] proposed
a probabilistic graphical model that leverages visual object categorization for
learning affordances and Hermans et al. [14] proposed the use of physical and vi-
sual attributes as a mid-level representation for affordance prediction. Aldoma et
al. [2] proposed a method to find affordances which depends solely on the objects
of interest and their position and orientation in the scene. There is some recent
work in interpreting human actions and interaction with objects [26,1,20] in con-
text of learning to perform actions from demonstrations. Lopes et al. [26] use
context from objects in terms of possible grasp affordances to focus the attention
of their recognition system. This work is specific to robotic grasping task. Affor-
dances (i.e., prediction of the object’s reaction to robot’s touch) have also been
used in planning (e.g., [27,41]). Jain et al. [15] used object affordances for plan-
ning user-preferred motion trajectories for mobile manipulators. Misra et al. [29]
learned the relation between language and robotic actions. Pandey et al. [34] pro-
posed mightability maps and taskability graphs that capture affordances such as
reachability and visibility. However, they manually define affordances in terms
of kinematic and dynamic constraints. Recently, Koppula et al. [23,21] show
that human-actor based affordances are essential for robots working in human
spaces in order for them to interact with objects in a human-desirable way. They
applied it to look-ahead reactive planning for robots. These works in robotics
planning are complementary to ours.

3 Affordance Representation and Grounding

Previous formalizations of affordance in literature (e.g., [37]) include defining
relation instances of the form A = 〈effect, (object, behavior)〉, which state that
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there exists a potential to generate a certain effect by applying the behavior on
an object. Here, the object refers to the state of the environment as perceived
by an agent. For example, the lift-ability affordance implies that a lift behavior
applied to an object, say a stone, results in the lifted effect, i.e., the stone will be
perceived as elevated compared to its previous position. Here, one needs to pro-
vide a physical-grounding to each of these elements 〈effect, (object, behavior)〉.
We define one such physical-grounding of these elements for a given agent, in-
tention and the environment.

For physically grounding an affordance we consider the following context: 1)
the agentH , which takes into account the physical capability of agent to perform
a behavior, for example, a sittable object might be too small for the person to
perform the sit behavior, 2) the intention I of the agent, which determines which
affordance of the object is of relevance, for example, the agent wants to sit in
a chair vs move a chair, 3) the environment E, which takes into account the
physical constraints to perform a behavior in a particular situation, for example,
an object might not be liftable if there is another object blocking it from above.
This gives us a generic grounded representation ξ of the affordances A as:

G(A|H,E, I) = ξ

G(〈effect, (object, behavior)〉|H,E, I) = 〈L,S , Γ 〉 (1)

where the symbols denote the following:
L semantic affordance label, e.g., pourable, etc.
S spatial distribution of the affordance
Γ motion trajectory, 6-dof location/orientation over time
For example, when an object has the liftable affordance, the physical ground-

ing of the behavior and its effect are specified by the spatial distribution S on
the object indicating where to hold the object and a vertical motion trajectory
Γ for lifting the object, and for the sittable affordance, the behavior and its
effect are specified by the spatial distribution over the objects indicating where
a person can sit on it and a stationary trajectory for the object.

Note that for more complex intentions such as drinking coffee, an object can
have a sequence of affordances, for example, a cup is first reachable, then mov-
able and drinkable, and finally placeable. We denote the sequence with the cor-
responding symbols in bold A, and denote the kth element in the sequence with
a subscripted symbol Ak.

4 Probabilistic Model for Physically Grounding the
Affordances

Our goal is to infer the grounding ξ = 〈L,S, Γ 〉, given the context (H,E, I).
In order to model the variations in the grounding, we formulate the grounding
inference problem as a probabilistic model P (ξ|H,E, I), where the probability
indicates how likely a particular grounding ξ is. During inference time (e.g., for
use in some application), one can use the full belief or compute the most likely
grounding as: ξ∗ = argmaxξ P (ξ|H,E, I).
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In detail, we assume the following: (i) the environment, not including the
object of interest and the human, is static; and (ii) there is only one active
affordance at a given instant of time for a given object. Each intention can
have multiple sequential sub-goals and hence the object can have multiple active
affordances in the given sequence of frames.

Hk, Ek

Γk

ΘL ΘS

ΘΓ

Lk

I

Sk〈 〉k

Fig. 2. Our graphical model: For a
given intention I , human H and en-
vironment E, our model generates the
grounded affordance 〈L,S , Γ 〉. Θ’s are
the parameters and k = 1, . . . ,K indi-
cates the affordance sequence.

The relationship between the compo-
nents of the grounded affordance ξ can
be viewed as a graphical model shown
in Fig. 2. The kth semantic affordance
Lk depends on human pose H , the en-
vironment E and parameters ΘL, for a
given intention I. The spatial affordance
Sk depends on the human pose Hk, the
environment Ek, the active semantic af-
fordance Lk and parameters ΘS . The pa-
rameters for the affordance motion tra-
jectory Γk are denoted by θΓ and depend
on the semantic affordance Lk as well as
the human pose Hk and the environment
Ek, as shown by the directed edges. Fol-
lowing the independencies in the graph-
ical model, the joint distribution of all
the variables can be written as:

P (〈L,S , Γ 〉, ΘΓ |I,H,E,ΘL, ΘS) =
K∏

k=1

P (Lk|I,Hk, Ek, ΘL)︸ ︷︷ ︸
Semantic Affordance

P (Sk|Lk,Hk, Ek, ΘS)︸ ︷︷ ︸
Spatial Affordance

P (Γk|ΘΓ )P (ΘΓ |Lk,Hk, Ek)︸ ︷︷ ︸
Temporal Affordance

(2)

We discretize the time to align with frames of the video and consider the set
of time-steps (video frames) corresponding to one intention as one instance of
data. Therefore, at each time-step we have the 3D coordinates corresponding to
the human, objects and the environment from the video frames. We now describe
the conditional distributions and their parameters in more detail.
Semantic Affordance. Each semantic affordance variable Lk can take a value
from {1..M}, where M is the total number of class labels. We model the proba-
bility that the object has an active affordance l ∈ {1..M} given the observations,
environment Ek, human poses Hk and the intention I, as a discrete distribution
generated from the training data based on the object’s current position with re-
spect to the human in the scene (e.g., in contact with hand). For example, if the
human is holding the object and intention is to drink water, then the affordances
drinkable and pour-to have equal probability, with all others being 0.
Spatial Affordance. We model the spatial affordance as a potential function
which gives high scores to the contact points for the given semantic affordance
label. The relative location and orientation of these contact points with respect
to the object depends on the activity as well as the human pose. For example,
these contact points are usually on the top of the object, say a box, for opening it
compared to the sides of the box when moving it (see Fig. 3). Also, which sides of
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For the object cereal-box (left), Right-top
shows the spatial affordance for openable
and Right-bottom for movable.

For the object microwave (left), Right-top
shows the spatial affordance for openable
and Right-bottom for movable.

Fig. 3. Learned Spatial Affordance Distributions. For the objects in an environ-
ment, we show the spatial distribution heat map (red indicates high probability).

the box would be held depends on the relative orientation of the box with respect
to the human. Therefore, for the scoring function to capture these properties we
consider the following potentials – distance potentials for modeling the distance
between the contact points and the skeleton joints, normalized distance and
height of contact points with respect to the object, and angular potentials for
modeling the orientation of the contact points with respect to the object and
human. The general form of this distribution for a semantic affordance label
l given the observations is P (Sk| · · · ) =

∏
i ψdisti

∏
j ψorij , where ψdisti is the

ith distance potential and ψorij is the jth relative angular potential. We model
each distance potential with a Gaussian distribution and each relative angular
potential with a von Mises distribution.

We find the parameters of the affordance potential functions from the train-
ing data using maximum likelihood estimation. Since the potential function is a
product of the various components, the parameters of each distribution can be
estimated separately. In detail, the mean and variance of the Gaussian distri-
bution have closed form solutions, and we numerically estimate the mean and
concentration parameter of the von Mises distribution.

Temporal Affordance. We model the object motion trajectory Γk as a Gaus-
sian Process with mean trajectory μ(·) and covariance function Σ(·, ·) as shown
in Eq. (3). The mean trajectory μ(·), defines the general shape of the trajectory,
for example, a circular trajectory for the stirrer affordance. The deviation from
the mean trajectory is modeled by the covariance function Σ(·, ·). The mean and
covariance functions are parametrized by ΘΓ .

P (Γk|ΘΓ ) ∼ GP(
μ(·;ΘΓ ), Σ(·, ·;ΘΓ )

)
(3)

The form of the parametrization and the trajectory generation process is
explained in more detail in Section 4.1. These parameters depend on the semantic
affordance Lk, human posesHk and the environment Ek, i.e., certain trajectories
are more likely for a given semantic affordance, human pose and environment
than others. We model this probability P (ΘΓ |Lk, Hk, Ek) as:

P (ΘΓ |Lk,Hk, Ek) ∝ exp
(
−wTφ(Lk,Hk, Ek)

)
(4)



838 H.S. Koppula and A. Saxena

Fig. 4. Illustration of our Trajectory Representation and Generation. Left:
The blue lines show the bezier curves fitted to the normalized drinking trajectories from
the dataset (the black arrows indicate the direction of motion). Middle: The black lines
represent the set of trajectories obtained by clustering the parameters of the drinking
trajectories. Right: Drinking activity with predicted trajectory shown in gray and the
corresponding probability distribution is shown as the heat map (red corresponds to
high probability). The black line denotes the actual ground-truth trajectory.

where w is the weight vector. The features φ we consider are the human pose
features described in [40] and the relative features of the object w.r.t. the skeleton
joints and other objects in the environment, e.g., distance between the object
centroid and human joints, distance to the closest object and average distance
to all objects in proximity. In the next section, we describe how we represent the
mean trajectory function μ(·), and use it for generating trajectories.

4.1 Trajectory Generation

Objects can follow various types of motion trajectories depending on the active
affordance. In this section, we describe the different types of motion trajectories
we consider and how we parametrize them to obtain the mean and covariance
functions of the Gaussian process. The trajectory types we consider are:
1) Goal-location based trajectories: These trajectories depend on the object’s
goal location. For example, a cup is moved to the mouth for drinking and moved
to a shelf for storing, etc. These trajectories are usually smooth 3D curves.
2) Periodic motion trajectories: These trajectories are characterized by the rep-
etition of certain motions, e.g., a knife is moved up and down multiple times for
chopping and a spoon undergoes a periodic circular motion when used to stir.
3) Random motion trajectories: Random trajectories with zig-zag motion are
often observed in activities where the goal is not directly related to a particular
physical location, for example, cleaning, scrubbing, etc. Even though there might
be some repetition/periodic motion in these trajectories owing to their random
nature, e.g., scrubbing the same spot over and over again, repetition is not a
characteristic property seen in this type of trajectories.

The trajectory types described above cover the majority of the object motions
we come across in our daily life. Our framework is generic and other types of
trajectories can be included similarly. We now describe how we model each of
these trajectory types below.

Goal Based Trajectories. For these trajectories we need to model both the
goal location of the object as well as the path taken by the object to reach the
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Fig. 5. Distribution over trajectory goal locations. The heatmaps show the dis-
tribution over goal locations for placeability (left), pourability (middle) and drinkability
(right). The red signifies the most likely goal location for a given affordance.

goal location. Similar to [22], we model these as parametrized cubic equations,
in particular Bézier curves, which are often used to generate human hand like
motions [6]. Such a cubic Bézier curve (Eq. 5), is parameterized by a set of four
points: the start and end point of the trajectory (L0 and L3 respectively), and
two control points (L1 and L2) which define the shape of the curve.

B(x) = (1− x)3L0 + 3(1− x)2xL1 + 3(1− x)x2L2 + x3L3 , x ∈ [0, 1] (5)

We know the current position L0 of the object, therefore the remaining three
control points (L1, L2 and L3) form the trajectory parameters ΘΓ . Therefore,
for the goal based trajectories, the mean trajectory μ(·) of the Gaussian Process
in Eq. 3 is given by Eq. 5 using the estimated parameters.

During learning phase, we first transform and normalize the trajectories in the
training data so that all of them have the same start and end points. We estimate
the two control points, L1 and L2, for each trajectory in the training data. We
then cluster these trajectories and obtain a representative set of control points Cl

for the affordance class l. Figure 4 shows the trajectories from the training data
and those corresponding to the cluster centroids for the drinking sub-activity.
For a test scenario, we sample the end point L3 from the distribution over the
goal location (as described below) and pair them with the representative set of
control points Cl after applying the appropriate inverse transform.

Distribution over goal locations. In order to obtain the probability distribution
over the possible goal locations of the object, we define a potential function
similar to the one for spatial affordance based on how the object is being in-
teracted with when a particular semantic affordance label is active. We use
distance potentials for modeling the distance of the object to skeleton joints and
to the other objects in environment and use angular potentials for modeling the
orientation with respect to the human pose and other objects in environment,
i.e., P (L3| · · · ) =

∏
i ψdisti

∏
j ψorij ,The parameters are learnt from the training

data by maximizing the log likelihood of the goal location for a given active
affordance. Figure 5 shows the heatmaps generated for the goal location of the
object when its semantic label is placeable, pourable and drinkable.

Periodic Motion Trajectories. For modeling these trajectories, we define
two parameterized periodic motion templates – 1) circular and 2) to-and-fro
motion. The circular one is used for affordances such as stirring or cycling,
and it has four parameters for specifying radius and orientation. The to-and-fro
trajectories model the rest of the repetitive motions such as shaking or cutting.
These trajectories are parameterized by the curvature, the arc length and the
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orientation. Similar to the case of the goal-based trajectories, during learning, we
compute a representative set of parameters from the training data by clustering
and use this basis to represent the trajectories during inference time.

Random Motion Trajectories. These trajectories are the hardest to recon-
struct or predict exactly due to their random nature. However, it is easy to
generate trajectories which have similar semantic and statistical properties us-
ing information from the environment and human poses. For example, for a
cleaning action, the goal is to move the cleaner over the object being cleaned.
We therefore, generate a trajectory by randomly selecting 3D locations from the
target object which are reachable given the human pose and do not result in
collisions in the environment. Note that considering the human pose and envi-
ronment information is important to obtain semantically meaningful activities
as shown later in Section 5.1.

4.2 Inference

We focus on the task of inferring the set of physically grounded affordance ξ
for the given human intention and environment, i.e., computing the most likely
grounding ξ∗ = argmaxξ P (ξ|H,E, I). We take a sampling approach for this,
where we generate many samples from the learnt conditional distributions and
use the sample with the highest likelihood under the joint distribution in Eq. (2)
as the final predicted physical grounding of the affordances.

Given (I,H,E), we first sample the semantic affordance labels Lk from the
discrete distribution. We then sample the contact points from the spatial dis-
tribution P (Sk|Lk, Hk, Ek, ΘS). For grounding the motion trajectory, we first
sample the trajectory parameters ΘΓ depending on the type of the motion tra-
jectory associated with the semantic class Lk as described in Section 4.1. We
then construct the mean and covariance functions with these parameters and
sample the motion trajectory from the Gaussian process in Eq. (3).

5 Experiments

We first evaluate our approach on the task of generating physically-grounded
affordances, and then we apply our approach to the task of labeling activities.

5.1 Generating Physically-Grounded Affordances

We collected a new physically-grounded affordance dataset. It consists of 130
RGBD videos of humans interacting with various objects. There are a total of
4 subjects, 35 object-types and 17 affordance types. The activities include
{moving, stirring, pouring, drinking, cutting, eating, cleaning, reading, answer-
ing phone, wearing, exercising, hammering, measuring} and the corresponding
affordances are {movable, stirrable, pourable, pourto, drinkable, cuttable, edible,
cleanable, cleaner, readable, hearable, wearable, exercisable, hammer, hammer-
able, measurer, measurable}. We use the OpenNI skeleton tracker, to obtain
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the skeleton poses in these RGBD videos. We obtained the ground-truth ob-
ject bounding box labels via labeling and SIFT-based tracking using the code
given in [23]. The dataset is publicly available (along with open-source code):
http://pr.cs.cornell.edu/humanactivities/data.php. We combined our
affordance RGB-D videos with those from the CAD-120 dataset [23] and ob-
tain a total of 815 instances for our experiments.

On this combined dataset, we evaluate the affordance prediction task. Here
we are given the human intention (or the activity) that is being performed,
the initial human pose and environment at the beginning of the activity. We
predict the grounded affordances ξ, i.e., the sequence of semantic labels, spatial
distribution and the object motion trajectories.

Evaluation Metric. We perform four-fold cross-validation by dividing the data
into four folds, with each fold having data belonging to one subject. We train the
parameters of our model on three folds and test it on the fourth fold. Specifically,
we always test on a new subject. We use the following metrics for evaluation:
1) Spatial Likelihood. For evaluating the spatial affordances, we compute the
likelihood of the observed contact regions under the predicted distribution.
2) Trajectory Metric. For evaluating the quality of the predicted temporal af-
fordance, we compute the modified Hausdorff distance (MHD) as a physical
measure of the distance between the predicted object motion trajectories and
the true object trajectory from the test data.1

Baseline Algorithms.We compare our method against the following baselines:
1) Chance: It selects a random training instance for the given human intention
and uses its affordances as the predictions.
2) Nearest Neighbor Exemplar: It first finds an example from the training data
which is the most similar to the test sample and uses the affordances from that
training sample as the predicted affordances. To find the exemplar, we perform a
nearest neighbor search in the feature space for the first frame, using the features
described in Section 3.
3) Koppula et al. [22]: This method models the goal-based trajectories with
Bézier curves (Eq. 5). The L1 and L2 parameters are learnt from the trajectories
in the training data and the object’s target location is modeled using the spatial
distribution over goal locations as described in Section 4.1. This method does
not model the uncertainty in the trajectories.
4) Data-driven uniform sampling: We first compute the set of possible trajec-
tory parameters, ΘΓ , from the data and then uniformly sample parameters for
trajectory generation.
5) Our model - Estimated Goal: Our model where we estimate the goal location
and sample the rest of the trajectory parameters from a uniform distribution.

1 The MHD metric allows for local time warping by finding the best local point corre-
spondence over a small temporal window. When the temporal window is zero, MHD
is same as Euclidean distance between the trajectories. We normalize the distance
by the length of the trajectory in order to compare performance across trajectories
of different lengths.

http://pr.cs.cornell.edu/humanactivities/data.php
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Table 1. Temporal Affordance Evaluation. Over 4-fold cross-validation, testing
on a new subject in each time, we report the error (in centimeters) in predicting the
temporal affordances. In addition to MHD metric (see text), we also report the error
in predicting the end-point for goal-based trajectories.

Model
End Point Dist. for
Goal-based traj.

Error per Trajectory Type (MHD in cm) Average Error
(MHD in cm)Goal-based Periodic Random

Chance 56.4 53.3 67.0 75.4 65.2
Nearest Neighbor (NN) 32.7 32.0 40.3 36.4 36.2
Data-driven uniform sampling 47.7 20.6 34.6 50.8 35.3
Koppula et al. [22] 19.4 11.8 - 29.4 20.6
Our Method - Est. Goal + Str. Line Traj. 19.4 10.8 15.7 19.5 15.3
Our Method - Est. Goal + NN 19.4 9.3 13.5 19.5 14.1
Our Full Method 19.4 8.9 10.3 19.5 12.9

6) Our model - Estimated Goal + Straight Line Trajectory: Our model where
we predict straight line trajectories to the estimated goal location.
7) Our method - Estimated Goal + Near Neighbor Trajectory: Our model where
we estimate the goal location and use the remaining trajectory parameters of
the Nearest Neighbor Exemplar described above.
Results. Table 1 shows the results for predicting the temporal affordance. It
shows that the baseline methods give quite high error. However, using our es-
timation method gives significant improvements. Examples of the observed and
estimated trajectories for the various affordances can be seen in Fig. 6. We dis-
cuss the following aspect of our approach in more detail.
1) Going Beyond Target Locations for Modeling Spatial Affordances.
Our model allows learning affordance-dependent interactions with objects. For
example, Fig. 3 shows the learnt spatial interaction heatmap for the openable and
movable affordances. This goes beyond the target location prediction proposed
by Koppula et al. [22], where they predict the reachable regions on the objects
by predicting the target location of the hand joints. In their work, it only helped
in anticipating the most likely reaching trajectory for a short duration. However,
for the purpose of object manipulation, it is desirable that the reached locations
on the objects support the intention of the reach, for example, if the intention
is to open the object, the reached location should allow for opening the object,
and this is captured by our spatial affordance model as can be seen in Fig. 3.
We evaluate the spatial affordances by computing the likelihood of the observed
contact points under the learnt distributions. We obtain an average likelihood
of 0.6 for the observed contact points compared to a likelihood of 3.1× 10−5 for
randomly chosen contact points on the object.
2) How Important is Modeling the Probability Over Possible Trajec-
tories? . As compared to the baselines which select a trajectory (or the corre-
sponding parameters) from the training data, our method achieves a significant
reduction in trajectory error metric. This shows the importance of modeling
the uncertainties and variations in the temporal affordances that vary with the
human intentions as well as with the surrounding environments.
3) Choice of Mean Trajectory Function. Our model reduces the trajec-
tory error metric significantly compared to the baseline methods, even when we
approximate the trajectories as straight lines (Table 1-row 5). However, by in-
corporating the shape of the trajectories into the mean functions (Bézier curves
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Fig. 6. Learned Temporal Affordance Distributions. The images show the ob-
served trajectories (rows 1 and 3) and the corresponding predicted trajectories (rows
2 and 4) as sampled trajectory points and the distribution as a heatmap. Red signi-
fies higher probability. The affordances in top two rows are (left to right): placeable,
pourable, wearable, readable, cleaner and cleaner, and the bottom two rows are: cutter,
stirrer, hammer, shakable, exercisable and salter. The trajectory points of the cleaner
affordance are not shown for clarity.

as mean functions for goal-based trajectories and the curvature parameter for
periodic trajectories), we can achieve further reduction in the error metric. Also,
as we can see from Fig. 6, goal-based trajectories are easier to estimate as they
are more deterministic in nature, but the rest have a large variation in the way
the objects are moved, for example in the cleaning or shaking activities. Our
approach allows us to cope with these variations in a principled way by using
appropriate mean functions to modeling the different trajectory types.

5.2 Activity and Semantic Affordance Labeling

Previous activity labeling approaches [23,22] heavily rely on human poses for
temporal segmentation and labeling, which sometimes miss boundaries between
sub-activities and result in labeling errors. Koppula et al. [23] show that good
temporal segmentation is very important for the labeling task. We show that
using additional information in the form of grounded affordances can provide an
important cue for temporal segmentations. As can be seen in Fig. 7-right, we
identify better transitions between the activities using our method, resulting in
better labeling. We do this by finding the active affordance for each object in
sampled video frames, and identify where changes in active affordances occur.

The intuition behind this is that a change in the active affordance of an object
usually happens with change in the current activity. Therefore, our grounded
affordances can be used to identify temporal boundaries with high probability.
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When physically-grounded affordances are
not considered, the drinkability affordance
is missed, resulting in erroneous labels.

Using our spatial and temporal grounding
of the drinkability affordance results in de-
tecting the correct labels.

Fig. 7. Physically-grounded affordances for activity and semantic affordance
labeling. The labeling results generated using the labeling algorithm of [24] for the
having meal activity from the CAD-120 dataset is shown on the left. We identify the
active affordances of objects using our approach, and use this additional information
to improve labeling performance. The image sequence on the right marks the frames
where the active affordance of the cup is detected as drinkable.

Note that here, we do not know the human intention as the video is not labeled.
To find the active affordance, we compute the likelihood of the observations
under our learned affordance model and take the one which has the highest value.
This gives us temporal boundaries in the video based on the active affordances.
We evaluated our approach on the CAD-120 dataset [23], which has 4 subjects
performing 120 high-level activities and each high-level activity is a sequence of
sub-activities. We take the labeling output of [24] and modify it by including
the temporal boundaries computed as above. This gives us a new segmentation
hypothesis, which we label using the full energy function described in [24].

Table 2. Activity Detection Results.
4-fold cross validation results on CAD-120
dataset (tested on a new subject).

model
Sub-activity Detection Object Affordance Detection
Accuracy f1-score Accuracy f1-score

chance 10.0 10.0 8.3 8.3
Uniform+Heuristic[23] 68.2 66.3 83.9 69.6
Koppula et al. [24] 70.3 70.2 85.4 71.9
Our Method 70.5 71.2 84.6 72.6

Table 2 compares the labeling met-
rics for the various segmentation
methods which use uniform length
segmentations, heuristic segmenta-
tion hypotheses [23], energy func-
tion based segmentation [24], and our
method of using additional affordance
based segments. Our approach im-
proves the f1-scores for semantic affordance labeling as well as activity detection.
We observe that our grounded affordance model mainly helps in improving pre-
cision and recall values of infrequent classes.

6 Conclusion

Our work extended the affordance-based understanding of objects, where we
considered grounding the affordances into a given environment as: the semantic
affordances, the spatial locations and the temporal trajectories in the 3D space.
We presented a generative probabilistic graphical model for modeling the un-
certainty in the grounded affordances. Our model used Gaussian Processes for
representing the uncertainty in the trajectories. We then evaluated our approach
on predicting the grounded affordances and showed that our approach improves
performance on labeling activities.
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There are several directions for future work: 1) The space of objects and
affordances is significantly richer than what our work have considered—scaling
to a larger and richer object and affordance set would be useful; 2) There are
many possible applications of our grounded object affordances approach. While
we have considered RGB-D activity detection, this approach could be useful in
the area of human-robot interaction, as well as in other applications such as 3D
scene understanding, robot planning, function-based object retrieval, and so on.
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