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Abstract. Image warps -or just warps- capture the geometric deforma-
tion existing between two images of a deforming surface. The current
approach to enforce a warp’s smoothness is to penalize its second order
partial derivatives. Because this favors locally affine warps, this fails to
capture the local projective component of the image deformation. This
may have a negative impact on applications such as image registration
and deformable 3D reconstruction. We propose a novel penalty designed
to smooth the warp while capturing the deformation’s local projective
structure. Our penalty is based on equivalents to the Schwarzian deriva-
tives, which are projective differential invariants exactly preserved by
homographies. We propose a methodology to derive a set of Partial Dif-
ferential Equations with homographies as solutions. We call this system
the Schwarzian equations and we explicitly derive them for 2D functions
using differential properties of homographies. We name as Schwarp a
warp which is estimated by penalizing the residual of Schwarzian equa-
tions. Experimental evaluation shows that Schwarps outperform existing
warps in modeling and extrapolation power, and lead to far better re-
sults in Shape-from-Template and camera calibration from a deformable
surface.

Keywords: Schwarzian Penalizer, Bending Energy, Projective Differen-
tial Invariants, Image Warps.

1 Introduction

Projective geometry studies the geometric properties of projective transforma-
tions. During the last 30 years, projective geometry has successfully modeled
important problems in computer vision, such as image stitching [28], image reg-
istration [29] and Structure-from-Motion (SfM) [10,9]. These problems assume
the scene is rigid. However, if the scene geometry deforms over time, the cur-
rent tools from projective geometry cannot model it. They are thus insufficient
for problems like Non-Rigid Structure-from-Motion (NRSfM) [30], Shape-from-
Template1 (SfT) [25] and non-rigid image registration [3]. In a deformable en-
vironment, a fundamental problem is the modeling of the image warp -or just
warp-, the function which maps points between images of a deforming surface. A

1 In SfT, the 3D shape of a deformable surface is computed from the warp between a
template and an input image. The shape of the template is known a priori.
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warp is generally represented by a linear basis expansion such as the Thin-Plate
Spline (TPS) [6], the tensor-product B-Spline (BS) [24], finite elements [23] and
finite differences (as in optical flow) [11]. A warp is also generally assumed to
be smooth or piecewise smooth. This is modeled by existing approaches as a
penalty on the warp’s derivatives. For instance, penalizing second order deriva-
tives leads to the popular bending energy, which forces the warp to be locally
affine. A direct consequence is that the local projective information cannot be
captured by the warp. Interestingly, it was attempted to solve that problem by
modeling the warp with rational basis expansion. This led to the Generalized
TPS [5] and the NURBS warp [7]. Theoretically, rational warps can be smooth
and capture the local projective structure. However, their main problem is that
they are non-convex and may be unstable due to their rational structure. We
propose a novel penalty which is able to smooth a warp while allowing it to
capture the local projective structure. This penalty may be used to estimate
any type of warp model. Therefore, it may be applied to linear basis expansions,
and does not require the use of a rational warp. Our penalty is based on the
theory of Projective Differential Geometry (PDG), which we argue is a funda-
mental tool in warp modeling. PDG is a branch of mathematics that studies the
properties of projective transformations at an infinitesimal scale. So far, PDG
has been used to a much smaller extent than projective geometry in computer
vision [13,26]. An important result of PDG is the Schwarzian derivative [22]. It
originated from the study of projective differential invariants, but also appears
in many other fields of mathematics such as the dynamical system theory and
differential equation solving. The Schwarzian derivative models cross-ratio at a
differential level [22]. The cross-ratio of points is well-known in computer vi-
sion [17,14] as it represents a projective invariant between two images related
by a homography. In RP1, cross-ratio is defined for 4 colinear points. In the
differential cross-ratio the distances among these points are infinitesimal. The
Schwarzian derivative is a differential operator that vanishes for functions that
preserve the differential cross-ratio. The Schwarzian derivative is well defined
in the 1D case [22,27]. However, we are interested in images and thus in the
2D case. Several extensions of the Schwarzian derivative to higher dimensions
were proposed [15,19,21]. Computing Schwarzian derivatives of an image warp
requires one to find a system of PDEs that, as in the case of the 1D Schwarzian
derivative, has homographies as solutions. Unfortunately, it is far from straight-
forward to arrive from the existing multidimensional Schwarzians to the sought
system of PDEs (see section 2.3 for details).

We bring two core contributions. The first one is a new derivation framework
for the 1D Schwarzian derivative which extends to higher dimensions. In par-
ticular, we use our framework to explicitly derive a system of PDEs that we
call the 2D Schwarzian equations. Our second core contribution is the Schwarp,
which is defined as an image warp which was estimated while penalizing our 2D
Schwarzian equations, preserving local projective properties. The intuition un-
derlying this penalizer is that a warp with small residuals for our 2D Schwarzian
equations behaves locally like a homography. A Schwarp may be constructed
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Fig. 1. Shape-from-Template (SfT) results for different warp models. The first col-
umn shows the input feature correspondences and the ground truth shape obtained by
Structure-from-Motion for multiple images. In these examples, the BS-warp is used as
the linear basis warp and the NURBS-warp as the rational basis warp. It is clear that
the warp that uses Schwarzian equations as a penalizer improves accuracy over the
other warps. SfT depends on the first derivative of the warp which is captured with
our penalizer to a better extent.

with any warp representation and improves over classical approaches based on
using the bending energy as a penalizer, favoring a locally affine behavior (see
figure 1).

We report an extensive set of experimental results. Schwarps do better in
two ways: (i) the warp’s extrapolation power increases, especially in perspective
imaging conditions, (ii) the accuracy of the warp’s derivatives is improved by a
large margin. We validated the impact of Schwarps on two applications: SfT [2]
and camera calibration from a deformable surface [4].

2 Background on Projective Differential Invariants

Projective differential invariants have been studied in computer vision in a few
previous papers [13,1]. In [13], the authors focus on qualitative local projective
differential invariants whereas [1] focuses on non-algebraic planar curves. We
now present one of the most fundamental projective differential invariants, the
Schwarzian derivative which has rarely been studied in computer vision. We start
our discussion with the cross-ratio of 4 points in the projective line and 5 points
in the projective plane. We then give the differential version of the cross-ratio in
the projective line, leading to the 1D Schwarzian derivative.
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2.1 The Cross-Ratio

We consider 4 points t1, t2, t3, t4 in the projective line RP1. The cross-ratio on

RP1 is defined by the following scalar Φ(t1, t2, t3, t4) = (t1−t3)(t2−t4)
(t2−t3)(t1−t4)

. Homo-

graphic transformations γ : RP1 → RP1 preserve the cross-ratio:

Φ(t1, t2, t3, t4) = Φ(γ(t1), γ(t2), γ(t3), γ(t4)). (1)

This directly extends to 4 colinear points in the projective plane RP2. For 5
non-colinear points in RP2, one may select one point as a reference and compute
4 direction vectors with the remaining 4 points. Replacing distances by inter-
direction angles one obtains 2 different cross-ratios, representing 2 fundamental
invariants of 5 points in the projective plane.

2.2 The 1D Schwarzian Derivative

The most popular projective differential invariant is the Schwarzian deriva-
tive [22]. We give its derivation as can be found in the literature. We consider
a diffeomorphism γ which acts on 4 points t1, t2, t3, t4 ∈ RP1. We assume that
the 4 points are spread so that t2, t3, t4 can be defined by their distances to t1
as a function of ε ∈ R: t2 = t1 + ε, t3 = t1 +2ε and t4 = t1 +3ε. So, the 4 points
become t1, t1 + ε, t1 + 2ε, t1 + 3ε and they are related by the variable ε. The
Schwarzian derivative measures the effect of γ on the cross-ratio as ε tends to
zero. In other words, the Schwarzian derivative measures the cross-ratio of the
points when they are infinitesimally close. To obtain the Schwarzian derivative
one forms the Taylor expansion of Φ when ε goes to zero and keeps the first
non-zero term of the expansion:

Φ(γ(t1), γ(t2), γ(t3), γ(t4)) = Φ(t1, t2, t3, t4)− ε2S[γ](t1) +O(ε3) (2)

In the above equation S[γ] is the Schwarzian derivative for RP1, defined by:

S[γ] =
γ′′′

γ′ − 3

2

(
γ′′

γ′

)2

(3)

The Schwarzian derivative S[γ] has some remarkable properties. From equa-
tion (2) it is easy to see that if γ is a homography, S[γ] = 0 as the cross ratio
is zero. Conversely, it can be proved that S[γ] = 0 implies that γ is a homog-
raphy [21]. Therefore, homographies are the only solutions of the differential
equation S[γ] = 0. With the Schwarzian derivative one can thus measure how
close γ is to a homography. Unfortunately, this derivation of the Schwarzian
derivative in RP1 does not readily extend to RP2.

2.3 Multidimensional Schwarzian Derivatives (MSDs)

The original Schwarzian derivative was only defined in 1D [12,8]. However, over
the last few decades, mathematicians have extended it to higher dimensions.
Ovsienko et al. [22] summarize a general two-step recipe to obtain MSDs for any
group of diffeomorphisms:
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1. Choose a group of diffeomorphisms and a subgroup G that has a ‘nice’
geometrical meaning (for instance, the projective group).

2. Find a G-invariant 1-cocycle on the group of diffeomorphisms.

Examples of MSDs can be found for different groups of diffeomorphisms.
Oda [18] first defined an MSD for locally biholomorphic mappings. [19] pro-
posed the conformal MSD whereas [20] proposed the ‘Lagrangian Schwarzian’
modeled on the group of symmetric matrices. The case of MSD for differen-
tial projective structures, which is the extension to higher dimensions of the
1D Schwarzian, has also been studied by several authors [15,16,21]. They pro-
vide as a general result for MSDs the 1-cocycle, that is a non-linear differential
operator that vanishes for homographies. The 1-cocycle includes second order
partial derivatives and rational terms. The 1-cocycle cannot be used to define
the Schwarp as it also can vanish for other functions rather than homographies.

3 Schwarzian Equations in Two Dimensions

We propose to derive the Schwarzian equations, that is, a system of PDEs with
homographies as solutions. Unlike MSDs that are described by the 1-cocycle,
we define the multidimensional Schwarzian equations as a set of PDEs where
each member of the set vanishes for homographies. Interestingly, our Schwarzian
equations in 2D are quadratic second order PDEs. This allows us to optimize
the Schwarp without using rational terms. We first show how to find the 1D
Schwarzian derivative (3). We then use the same methodology to find the 2D
Schwarzian equations.

3.1 The 1D Schwarzian Derivative

We define γ as a general projective function, formed by the ratio of two linear
functions:

γ =
δ

ζ
, where δ′′ = 0, ζ′′ = 0 and ζ �= 0. (4)

By multiplying equation (4) with ζ and taking its third order derivatives we
obtain the following PDE:

γ′′′ζ + 3γ′′ζ′ = 0. (5)

Differentiating equation (4) and multiplying by ζ2 on both sides we obtain:

γ′ζ2 = δ′ζ − δζ′. (6)

By differentiating equation (6) we obtain:

γ′′ζ2 + 2γ′ζζ′ = 0

ζ′ = −1

2

γ′′

γ′ ζ. (7)
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We substitute equation (7) in equation (5), and cancel ζ and ζ′

γ′′′ − 3

2

(γ′′)2

γ′ = 0. (8)

Dividing equation (8) by γ′ gives the 1D Schwarzian derivative as can be verified
by directly comparing it to equation (3). Multiplying equation (8) by γ′, we arrive
at the following third order quadratic PDE:

γ′γ′′′ − 3

2
(γ′′)2 = 0. (9)

The main difference between equation (9) and the Schwarzian derivative is that
equation (9) does not have the rational term. Despite that, both of them, have
only homographies as solution.

3.2 2D Schwarzian Equations

We propose a system of PDEs that represent the 2D Schwarzian equations. This
system has by construction homographies as solutions

We define function η : (u, v)� → (x, y)� as an homography:

η =
(
ηx ηy

)�
with ηx =

δx

ζ
ηy =

δy

ζ
ζ �= 0, (10)

and where δx, δy and ζ are linear scalar functions whose second order partial
derivatives vanish:

δxuu = ζuu = δyuu = 0 δxvv = ζvv = δyvv = 0 δxuv = ζuv = δyuv = 0. (11)

We first multiply ηx and ηy by ζ and differentiate them with respect to u:

ηxuζ + ηxζu = γu ηyuζ + ηyζu = δu. (12)

We differentiate them again with respect to u using equations (11) to remove
second order derivatives of δx, δy and ζ:

ηxuuζ + 2ηxuζu = 0 ηyuuζ + 2ηyuζu = 0. (13)

By solving for ζu in equation (13), we find the first 2D Schwarzian equation:

ηxuuζ

2ηxu
=

ηyuuζ

2ηyu
(14)

ηxuuη
y
u − ηyuuη

x
u = 0. (15)

We now multiply ηx and ηy by ζ and we differentiate twice with respect to v:

ηxvvζ + 2ηxvζv = 0 ηyvvζ + 2ηyvζv = 0. (16)
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Solving for ζv in equation (16) gives the second 2D Schwarzian equation:

ηxvvη
y
v − ηyvvη

x
v = 0. (17)

We then take the partial derivatives of equations (12) with respect to v:

ηxuvζ + ηxuζv + ηxv ζu = 0 ηyuvζ + ηyuζv + ηyvζu = 0. (18)

Solving for ζv in equation (18) yields:

(ηxuvη
y
u − ηyuvη

x
u)ζ + (ηxvη

y
u − ηyvη

x
u)ζu = 0. (19)

Multiplying the two equations in equation (13) by ηyv and ηxv respectively and
subtracting them we obtain the following equation:

(ηxuuη
y
v − ηyuuη

x
v )ζ − 2(ηxvη

y
u − ηyvη

x
u)ζu = 0, (20)

which we combine with equation (19) to remove ζu, giving the third 2D
Schwarzian equation:

(ηxuuη
y
v − ηyuuη

x
v ) + 2(ηxuvη

y
u − ηyuvη

x
u) = 0. (21)

In a similar way we can obtain the fourth and last 2D Schwarzian equations by
solving for ζv in equation (18) and combining the result with equation (16). The
complete system of 4 2D Schwarzian equations is finally given by:

2D-Schwarzian
equations

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

S1[η] = ηxuuη
y
u − ηyuuη

x
u = 0

S2[η] = ηxvvη
y
v − ηyvvη

x
v = 0

S3[η] = (ηxuuη
y
v − ηyuuη

x
v ) + 2(ηxuvη

y
u − ηyuvη

x
u) = 0

S4[η] = (ηxvvη
y
u − ηyvvη

x
u) + 2(ηxuvη

y
v − ηyuvη

x
v ) = 0.

(22)

In contrast with the third order 1D Schwarzian derivative, the 2D Schwarzian
equations form a second order quadratic system of PDEs.

4 Modeling the Projection of Deforming Surfaces

The warp between two images of a plane is a homography. In that case, the
2D Schwarzian derivatives vanish, by definition. With a non-planar and possibly
deforming surface, the image warp does not anymore satisfy the Schwarzian
equations exactly. For a smooth surface deformation however, each small patch
on the surface can be approximated by its tangent plane (see figure 2). The warp
η can then be locally approximated by a homography between the projections
of the tangent planes. The Schwarzian derivatives form differential invariants
and we thus expect the system in equation (22) to have small residuals for the
projection of infinitesimal planes.
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Fig. 2. The 2D Schwarzian derivatives have small residuals for the warp η between the
images of a smooth deforming surface

4.1 The Schwarp

For an image warp η : Ω1 → Ω2, the 2D Schwarzian derivatives measure how
near is η from a homography infinitesimally at each point. We define the Schwarp
as a warp whose 2D Schwarzian derivatives were penalized for its estimation.
As a result the Schwarp can be smooth while preserving differential projective
properties.

The Schwarp is defined as the solution of the following variational problem:

min
η

εd[η] + εs[η], (23)

where εd[η] is a data term measuring registration error (for instance, transport
error between point correspondences) and εs[η] is the Schwarzian penalizer:

εs = λ

∫
Ω

(
S1[η]

2 + S2[η]
2 + S3[η]

2 + S4[η]
2
)
dΩ , (24)

where λ is a hyperparameter which weighs the influence of the Schwarzian deriva-
tives over the data term. In practice we replace the integral in equation (24) with

a sum over a discretization Ω̃ of the domain Ω:

εs ≈ λ
∑
pi∈ ˜Ω

4∑
k=1

Sk[η](pi)
2. (25)
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The Schwarzian penalty is quartic and non-convex. Solving the optimiza-
tion problem (23) thus requires iterative optimization. We use the Levenberg-
Marquardt algorithm.

5 Experimental Results

We compare Schwarp to state of the art warps, namely the BS-warp [24], TPS-
warp [6], DP-warp [5] and NURBS-warp [7]. In table 1 we summarize the details
of warps used in our experiments.

Table 1. Summary of warps used in our Experiments

Name Warp Model Penalizer

BS-warp BS Bending Energy

Schwarp BS Schwarzian Equations

TPS-warp TPS Bending Energy

DP-warp DP 3D Bending Energy

NURBS-warp NURBS 3D Bending Energy

5.1 Implementation Details

For the experiments with synthetic data, we generate a set of 100 images for
each case while varying imaging conditions (pose and focal length) and present
the average values for each of the criteria over the 100 images. We keep the
resolution of the images at 640×480 pixels. We vary the focal length between 100
and 500 pixels. We fix the number of feature correspondences, control centers
and a gaussian noise distribution (we vary the amount of noise for the same
distribution). For all the other warps we use code publicly available from their
authors.

5.2 Synthetic Data

We simulate images of rigid and deformable surfaces. In the rigid case, we use
a plane and in the deformable case we wrap a surface around a longitudinal
cut of a barrel. For both types of data, we examine the performance of all the
warps against an increasing amount of noise, perspective and their sensitivity
to the weight of the penalty. For the experiments with deformable surfaces, we
add an additional experiment to compare them against an increasing amount
of deformation. For all cases, we compare the warps based on three criteria:
generalization error (ε1), 1st derivative error (ε2) and second derivative error
(ε3) compared to the ground truth. The generalization error is the transfer error
measured in terms of RMSR (Root Mean Square Residual) between the warp
and ground truth. This is computed over some points which were not used to
estimate the warps. We give a relative error for the 1st and 2nd derivatives
compared to ground truth.
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Fig. 3. Comparison of Schwarp with other warps against noise on synthetically gen-
erated images. The first and second rows are for the planar and deformable surfaces
respectively.

Effect of Noise and Hyperparameter. We compute the warps with an in-
creasing amount of noise and optimize the hyperparameter controlling smoooth-
ness in each case. Figure 3 presents the performance of all the warps against
noise. In these experiments, Schwarp outperforms all the other warps in all crite-
ria examined. This is true for both planar and deformable surfaces. As expected,
the most significant improvement of Schwarp is in the case of 2nd derivatives.
Schwarp does not penalize the bending energy and thus preserves the 2nd deriva-
tives much better than any other warp that penalizes the bending energy.

To measure the sensitivities of the warps against the hyperparameter, we re-
compute all the warps as in the previous experiment. However, this time we do
not optimize the hyperparameter in each case. Instead, we use the mean of the
optimal hyperparameter of an image for all different noise level. This gives us 5
curves as in figure 3 but with larger errors since the hyperparameter is subop-
timal for each case. For a given warp, the area between this new curve and the
corresponding one in Figure 3 gives an estimate on a warp’s sensitivity to the its
hyperparameter. If this area is large, the warp is very sensitive to the hyperpa-
rameter. In table 2, we present the area between the two curves (with optimal
and average hyperparameter) for all warps for planar and deformable case. It is
clear from these results that Schwarp is the most stable against hyperparameter.
In all cases, it undergoes the smallest deviation from the optimal curve.

Effect of Perspective. We compare the warps with a set of images with in-
creasing perspective. To control the amount of perspective, we follow a single
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Table 2. Sensitivities of the warps to their hyperparameter. The larger the number
the more sensitive the warp to its hyperparameter.

Algorithms
Planar Case Deformable Case

ε1 ε2 ε3 ε1 ε2 ε3
BS-warp 2.3948 0.0566 0.4630 10.2054 0.1172 0.4537

Schwarp 0.0275 0.0006 0.0025 3.6637 0.0329 0.1098

TPS-warp 2.0912 0.0470 0.1830 9.5280 0.0791 0.1895

DP-warp 10.1772 0.3194 1.2826 47.7706 0.1858 0.3079

NURBS-warp 0.4227 0.0216 0.3859 5.7904 0.1151 0.7170
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Fig. 4. Performance of the different warps against increasing amount of perspective.
The first and second rows are for planar and deformable surfaces respectively.

parameter projection model that allows us to select the amount of perspective
required. With this model, a point P = [Px, Py , Pz]

� is projected as:

Πt(P ) =

(
(t+ 1)f

Px

Pz + tf
(t+ 1)f

Py

Pz + tf

)�
. (26)

Equation (26) becomes orthographic projection when t → ∞. Figure 4 shows
that Schwarp outperforms all the other warps with a significant margin. The
errors increase linearly first, and then quadratically, with increasing perspective.
It is interesting to note that Schwarp models perspective better than the rational
warps (DP-warp and NURBS-warp).
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Fig. 5. Performance of different warps against increasing amount of deformation

(a) Shape 1 (b) Shape 2 (c) Shape 3 (d) Shape 4 (e) Shape 5 (f) Shape 6 (g) Shape 7

Fig. 6. Dataset used in the real experiments

Effect of Deformation. We examine the behavior of the warps with an in-
creasing amount of deformation (figure 5). Deformation is controlled by changing
different parameters of a curved surface. We can see a similar trend in this case:
Schwarp performs better than all the other warps. The generalization error and
the 1st and 2nd derivatives error degrade linearly with increasing deformation.

Rate of Convergence. In all experiments, we kept track of the number of
iterations required for the non-linear refinement part of Schwarp, DP-warp and
NURBS-warp to converge to a solution. Indeed these 3 warps use Levenberg-
Marquardt for estimation. We have found that on an average Schwarp takes
only 10-15 iterations to converge, whereas DP-warp and NURBS-warp require
hundreds of iterations. This indicates that Schwarp is more stable numerically.
This is due to the rational modeling of DP-warp and NURBS-warp.

5.3 Real Data

We compare the performance of the warps in different applications on real im-
ages. In Figure 6, we present the dataset used in the experiments. As a surface,
we use a textured paper of size 210mm × 297mm. We deform the paper on
several occasions and capture images of those deformations. The resolutions of
these images are 3264×4928 pixels. The focal length used is 2534 pixels. For each
deformation, we obtain the ground truth shape Ψ using Structure-from-Motion.

SfT. Here, we show the experimental results for SfT. In SfT, the shape of an
image is inferred from the warp computed between a template and the image
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Table 3. Reconstruction error (in mm) for SfT on the 7 images of Figure 6

Shape 1 Shape 2 Shape 3 Shape 4 Shape 5 Shape 6 Shape 7

BS-warp 7.02 33.78 13.67 8.14 5.88 10.42 8.52

Schwarp 3.24 30.02 10.49 8.08 2.06 11.72 7.99

TPS-warp 21.08 46.20 18.81 10.41 17.19 15.46 11.88

DP-warp 16.95 43.74 14.05 10.26 6.82 13.62 11.28

NURBS-warp 8.38 45.69 15.56 10.10 6.70 15.78 12.46

Table 4. Relative calibration recovery error on the 7 images of Figure 6

Shape 1 Shape 2 Shape 3 Shape 4 Shape 5 Shape 6 Shape 7

BS-warp 0.0247 0.0826 0.0475 0.0267 0.0137 0.0463 0.0063

Schwarp 0.0071 0.0038 0.0284 0.0275 0.0137 0.0165 0.0055

TPS-warp 0.0945 0.1793 0.0565 0.1287 0.2038 0.0712 0.0300

DP-warp 0.0577 0.1455 0.0165 0.1014 0.0512 0.0724 0.0263

NURBS-warp 0.0239 0.0985 0.0186 0.0798 0.0210 0.0561 0.0275

itself. In our implementation, we use a feature based approach to SfT. We use
feature matching to find correspondences between the template and the target
image and use those matches to compute the warp. Table 3 shows the reconstruc-
tion errors of SfT for each warp. The reconstruction error is computed between
the reconstructed shape Ψ ′ and Ψ , using

∑
i,j∈ ˜Ω |Ψ ′

i,j − Ψi,j)|, where Ω̃ is the
discretization of the domain. The errors are given in millimeters. In most cases,
Schwarp outperforms the other warps. However, in one case, it gives the second
best score after BS-warp.

Calibration in SfT. Calibration in SfT allows one to compute the focal length
of the camera from the warp. We implemented the method proposed in [4]. We

use all the computed warps for all the real images to recover the focal length(f̂).

We compute the relative error from the true focal length f , using |f̂−f |
f . The

results are presented in Table 4. Here, our warp performs better than the other
warps in 5 out of 7 cases.

6 Conclusion

In this paper, we have studied differential projective invariants and their ap-
plication for modeling the projection of deforming surfaces. We have presented
the 2D Schwarzian derivatives and we introduced a new type of penalty based
on penalizing Schwarzian derivatives of the warp. Schwarzian derivatives model
projective functions differentially. We have conducted experiments on real and
simulated data. We have shown that Schwarps (Schwarzian penalized warps)
notably improve accuracy in deformable surface reconstruction and camera cal-
ibration in SfT.
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