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Abstract. We address the capture of sharp images of fast-moving ob-
jects, and build on the Motion Invariant photographic technique. The
key advantage of motion invariance is that, unlike other computational
photographic techniques, it does not require pre-exposure velocity esti-
mation in order to ensure numerically stable deblurring. Its disadvantage
is that the invariance is only approximate - objects moving with non-
zero velocity will exhibit artifacts in the deblurred image related to tail
clipping in the motion Point Spread Function (PSF). We model these
artifacts as a convolution of the desired latent image with an error PSF,
and demonstrate that the spatial scale of these artifacts corresponds to
the object velocity. Surprisingly, despite the use of parabolic motion to
capture an image in which blur is invariant to motion, we demonstrate
that the motion invariant image can be used to estimate object motion
post-capture. With real camera images, we demonstrate significant reduc-
tions in the artifacts by using the estimated motion for deblurring. We
also quantify a 96% reduction in reconstruction error, relative to a floor
established by exact PSF deconvolution, via simulation with a large test
set of photographic images.

1 Introduction

Motion deblurring is one of the longest standing problems in computational pho-
tography, and has been addressed in a number of ways. Classic blind deblurring -
estimating blur and then applying deconvolution - has long been used on images
captured with traditional cameras. However, it is well-known that deconvolving
very common motions - such as vehicles moving at a constant velocity - is ill-
conditioned under traditional capture methods. In order to address this, various
computational cameras have been proposed to capture invertible motion blur.
The flutter shutter [18] does this by capturing a multiple exposure image, but
pre-exposure velocity estimation is required to ensure invertibility [13].

In order to avoid pre-exposure motion estimation, Levin et al. [12] proposed
motion invariant photography, whereby the camera captures an image in which
the blur PSF is both invertible and approximately invariant to subject velocity.
This approximate invariance holds over a range of velocities, so a reasonably good
image can be produced without the need for pre-exposure velocity estimation.
However, the approximate nature of the invariance results in certain artifacts
(see Fig. 1) which are aesthetically unpleasant.
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Fig. 1. (Top left) A motion invariant image, deblurred as in previous work. The in-
variance approximation results in artifacts, most notable in the wheel area. (Top right)
Using our motion estimation algorithm, we avoid these artifacts and improve the qual-
ity of the reconstruction. (Bottom row) zoomed views of annotated regions, plus a
traditional image of the moving object to convey the extent of motion.

We model motion invariant capture and deconvolution in order to demon-
strate, for the first time, that these artifacts are indicators of the underlying
velocity. Whereas the image captured by the camera is approximately motion
invariant, we show that the artifacts in a processed version of that image are
distinctive enough to estimate the object velocity. We propose a motion invari-
ant motion estimation algorithm which determines velocity by matching edges
to artifacts arising therefrom. This estimate is then be used to re-process the
image, reducing artifacts and improving the final image quality. We demonstrate
the qualitative improvements - as in Fig. 1 - using a real camera whose stabiliz-
ing lens is moved to implement motion invariance. By synthetically blurring and
then processing images from a public dataset, we quantify an 96% reduction in
reconstruction errors, relative to a floor established by exact PSF deconvolution,
as a result of our blur estimation.

2 Previous Work

Our work builds on Levin et al. [12], who introduced motion invariance and later
extend it to cases where the motion direction is not known [4], by capturing two
images with orthogonal motion. A key step to 2D motion invariance is blur
estimation from a pair of images; we estimate motion from a single parabolic
exposure, and note that many of our results (e.g. Fig. 1) involve objects moving
too fast to capture in multiple frames. Webster and Dorrel [21] argue for the
inclusion of a variable opacity optical element in motion invariant cameras to
reduce artifacts arising from PSF variance, but do not support their simulations
with real images and do not model the effect of light loss through the additional
optical element. More recently, other implementations of motion invariance have
been described in the literature. In previous work, we [15] describe an implemen-
tation of motion invariance using the image stabilization hardware in a Canon
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DSLR lens. The actual motion that the lens undergoes during exposure, com-
bined with prior information about camera and/or subject motion, is shown to
improve the quality of the deblurred image in [16]. Sonoda et al. [19] describe an
implementation of motion invariance using a Liquid Crystal on Silicon (LCoS)
element, though that implementation involves about three stops (90%) of light
loss due to the combined effects of polarization, fill factor, reflectivity, and the
reduction of the reflective region. All of the previous work in motion invariance
deconvolves the PSF of a stationary object and, as we show, will introduce cer-
tain artifacts when objects are in motion. We introduce a post-capture motion
estimation algorithm which greatly reduces these artifacts.

Besides motion invariance, several computational photographic techniques
have been developed to address motion blur. Notably, coded exposure [18] ad-
dresses the lack of motion blur invertibility in traditional imaging, but its lack of
invariance requires pre- and/or post-capture motion estimation. Coded exposure
blur estimation has been developed using either edge priors [2] or natural im-
age statistics [14]. Coded exposure and motion invariance have been compared
with respect to noise performance and other criteria [1], though that analysis
includes the artifacts which we reduce by motion estimation. Both coded expo-
sure and motion invariance have analogous approaches for handling optical blur,
as well. Coded aperture photography [11,20] selectively occludes light paths to
the sensor, and has been used for extended depth of field imaging. Similar to
motion invariance, flexible depth of field photography [17] captures a coded im-
age using lens motion, as the lens moves along the optical axis to make defocus
blur invariant over an depth range. More recently, Bando et al. [3] analyze these
computational cameras in the framework of a time-varying light field, and come
to the surprising conclusion that focal sweep is optimal for both defocus and
motion blur. However, their motions are smaller than the ones considered here,
and the analysis depends on the ‘infinite exposure’ assumption, and thus doesn’t
account for motion invariant artifacts.

Despite the associated invertibility problems, there is a large amount of re-
search addressing both blur estimation and deblurring of images from traditional
cameras. Recently, work in this area has addressed spatially variant blur arising
from camera rotations [22,5]. Interestingly, experiments by Köhler et al. with a
dataset of hand-held camera motions [8] have shown that these methods don’t
necessarily out-perform those based on a shift-invariant model of motion blur.
In fact, the work of Xu and Jia [23] performed best despite assuming uniform
blur. However, [8]’s evaluation results on blind deconvolution do not necessarily
reflect performance on motion invariant deblurring, where the invariant PSF is
known ahead of time. In our experiments, we use the method of Krishnan and
Fergus [9] for the non-blind deconvolution of motion invariant images, and note
that it performs well in the blind deconvolution evaluation.

3 Motion Invariant Capture

The objective of motion invariant image capture is to obviate PSF estimation,
thus avoiding blind deconvolution, by capturing an image with a motion blur PSF
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Fig. 2. Motion invariant
capture: parabolic motion in
position versus time (black
curve/axis) capturing an im-
age where velocities in a range
are stabilized for the same pe-
riod of time due to the linear-
ity of velocity as a function of
time (blue line/axis)

that does not depend on the velocity of a moving object. For an object with any
particular velocity, of course, motion blur can be prevented by translating the
lens/camera in the same direction and with the same speed as the object in order
to stop motion, i.e. to ensure that its projection on the sensor does not move. The
intuitive explanation of motion invariant capture is that, by translating the lens
with constant acceleration along the object motion direction, all objects with
velocities in a certain range will have the motion of their projections stopped
momentarily, and these objects will have approximately the same PSF.

Motion invariance can be implemented by translating any of the camera body,
sensor, or lens with constant acceleration. We use optical stabilization hardware
to implement motion invariance by lens motion, as suggested by Levin et al. in
[12,4]. In the 1D case, the lens moves along a line in the direction of expected
motion; without loss of generality, we will discuss horizontal lens motion with
initial rightward velocity. At the beginning of the image’s exposure, the lens
translates right with a given velocity, and constant (negative) acceleration a is
applied. During an exposure duration of 2T milliseconds, with the time variable
t ∈ [−T, T ] for mathematical convenience, the acceleration causes the lens to
come to a stop at t = 0 and, at the end of the exposure period (t = T ), the lens
has returned to its initial position with the same velocity magnitude (but in the
opposite direction) as in the beginning. Though the motion of the lens is linear,
this pattern is referred to as parabolic motion because the horizontal position x
is a parabolic function of time t,

x(t) = at2. (1)

Figure 2 shows parabolic motion and lens velocity (the derivative of x), illus-
trating the range of object velocities which are stabilized during exposure.

As in other work, blur in a motion invariant image is modeled as the convo-
lution of a latent image I with a PSF B, giving the blurred image

Ib = I ∗B + η, (2)

where η represents noise. While deconvolution methods based on this model can
perform quite well in practice, the model is mostly limited to subject motion.
Because motion arising from unsteady hands holding the camera generally in-
volves some rotation [8], this model is best suited to stationary camera scenarios.
The 1D motion invariance considered here is also limited to constant velocity
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Fig. 3. (Left) Trajectories of points with different velocities as observed on the sensor
of a lens undergoing parabolic motion. (Right) Using the PSF model of eq. 4, non-zero
velocities result in clipped tails of the PSFs.

motion, which has been shown to hold approximately when the short exposure
duration allows for good approximations of slight acceleration/deceleration [12].

As discussed in [12], there are tradeoffs in adopting motion invariant pho-
tography over traditional imaging. First, stationary objects in the scene will be
blurred in the image due to the motion of the lens and, while deconvolving B
is numerically stable, deblurring amplifies noise η everywhere. The second issue
is that the convolution model of eq. 2 does not hold at occluding contours, so
artifacts arise when both foreground and background are textured. Our exper-
iments show that motion estimation reduces these artifacts. Finally, and most
importantly for our purposes, the invariance of B to velocity is approximate,
and fails entirely when the object’s projection on the sensor moves too fast to be
stabilized. For different object velocities which are stabilized, their PSFs have
some variation which leads to artifacts when the wrong PSF is deblurred.

3.1 Motion Invariance Artifacts

In this section, we elaborate on the variation in the PSF induced by changing
object velocity, and model the artifacts that arise therefrom. Consider the effect
of subject motion of a point P on its PSF B, when that motion is linear with
constant velocity s. During exposure, the motion of P on the sensor combines
P ’s real-world motion and parabolic motion of the lens (eq. 1), as

x(t) = at2 + st. (3)

Fig. 3 shows these trajectories for three different values of s. Because the value
of the PSF Bs at a particular sensor point is proportional to the amount of time
P ’s reflected/emitted light lands there, we can derive the continuous PSF as in
[12] (with slightly modified notation)

Bs(x) =

⎧
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⎪⎪⎪⎩
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Fig. 4. Example of motion invariant artifacts. (Top left) Reference image of a cardboard
box. (Bottom left) When the motion invariant image of the moving box is deblurred
with B0, printed regions ‘echo’ in the image. (Right) Plots of the average intensity over
100 rows of pixels covering the right-most printed edge and its echo, when the motion
invariant image is deblurred with B0 (red line) and the actual PSF Bs (blue line).

Note that, when s �= 0, the change from the first to the second clauses results in
a halving of the PSF, which is described as ‘tail clipping’. This arises because,
while the lens returns to its original position by the end of the exposure period,
the light from P will be displaced by a distance of 2sT . Fig. 3 illustrates this
tail clipping effect on the PSFs corresponding to the three parabolas shown.

While eq. 4 indicates that B depends on velocity, motion invariant images in
all previous work have been deblurred using the PSF B0 of stationary objects.
The differences between a moving object’s actual PSF and the one used in de-
blurring will introduce certain artifacts, as illustrated in Fig. 4. In this example,
the printed lines on the box appear reasonably sharp, but regions which should
appear uniform brown instead have intensity changes which appear as ‘echos’ of
the printed lines. First, there is a vertical band of brighter pixels immediately
to the right of the printed edges. Next there is a darker band of pixels about
100 pixels to the right of the printed edges. Finally, there are adjacent dark and
bright bands beginning about 200 pixels to the right of the printed edges. The
plot shows the average intensity over 100 rows of pixels spanning the right-most
printed edge and its echo, to give a better sense of the artifact’s magnitude. We
can avoid these artifacts by deconvolving the actual PSF Bs from the motion
invariant image, as shown by the blue line in the plot.

What we will show in the remainder of this section is that - despite the
objective of capturing an image which is invariant to object motion - the artifacts
arising from deconvolving B0 are, themselves, a cue to subject motion. This
surprising result is due to the fact that the effect of deconvolving B0 is the
same as convolving the true latent image with an error PSF which has peaks at
locations uniquely determined by the object velocity s. To show this, we express
the convolution blur model of eq. 2 in the Fourier domain as

Îb = Î · B̂s + η̂, (5)
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where symbols under theˆare the Fourier representations of the image/PSF/noise
and · represents multiplication. We use F to represent the Fourier transform, so
Î = F(I). By deconvolving B0 from Ib, we compute a latent image estimate

J0 = F−1

(
Îb

B̂0

)

= I ∗ F−1

(
B̂s

B̂0

)

+ F−1

(
η̂

B̂0

)

. (6)

So the latent image estimated by deconvolving B0 is itself a convolution of the
true latent image with an error PSF

Es = F−1

(
B̂s

B̂0

)

, (7)

plus the image noise amplified by deconvolution. Recall that B0 satisfies the
invertibility conditions discussed in [18], so the deconvolution is numerically
stable (i.e., there is no division by 0). Obviously, for stationary objects Bs = B0,
the error PSF is the δ function, and the latent image estimate matches the
true latent image (modulo amplified noise). When the object is moving (s �= 0),
B̂s �= B̂0, and the error PSF introduces the artifacts illustrated above.

Example error PSFs are shown in Fig. 5, using the same colors/speeds as
in Fig. 3. This figure illustrates how the error PSF - and thus the artifacts in
the initial latent image estimate - relate to the ground truth PSF. The negative
peaks in the error PSF occur in two places: first, at the location where the PSF
Bs’s tail clips

x+
s2

4a
= a

(
T − s

2a

)2
, (8)

and, second, at the location where Bs goes to zero

x+
s2

4a
= a

(
T +

s

2a

)2
. (9)

The error PSF also has a positive peak at x = aT 2, where the B0 goes to zero.
The key to understanding our motion invariance motion estimation algorithm is
that the distance between the two negative peaks in the error PSF Es is exactly
2sT . At a high level, then, our algorithm for motion estimation computes the
initial latent image estimate J0, localizes artifacts in this image, and uses the
peak-to-peak distance to estimate s. We then deblur the original motion invariant
image image again - this time with the exact PSF - to get an artifact-free latent
image. The next section describes our method in greater detail.

4 Artifact-Based Motion Estimation

Having shown that deblurred motion invariant images contain artifacts which
reflect the underlying object speed, it remains to be shown that these artifacts
can be reliably detected. The box image shown in Fig 4 is a simple case, in that
the background is a uniform intensity brown; a general solution must address
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Fig. 5. (Top) Three motion invariant PSFs for velocities s = 0, aT
10

, and − aT
5

in red,
magenta, and blue, respectively. (Middle) The corresponding error PSFs Es: the red
curve is the delta function, whereas the blue and magenta curves have positive/negative
peaks (and their positive peaks overlap). Comparing the top two plots, we see that the
first negative peak in the error PSF coincides with the start of tail clipping, the second
with the last non-zero entry, and the positive peak in between occurs at the length
of the PSF B0. (Bottom) The derivative of the error PSF introduces distinctive sign
changes in the image’s gradient magnitude at these same locations.

detection in regions of natural image texture. To handle this, we employ the well-
known sparse gradient distribution used in [11] and elsewhere. One consequence
of this prior is that, if we average the horizontal image gradient over a set of
pixel locations in a well-focused natural image, the value will tend to 0 with an
equal probability of negative and positive values. What happens when, instead
of doing this to a well-focused natural image, we average horizontal gradient
values in the initial latent image estimate J0? Per eq. 6,

dJ0
dx

=
d
(
I ∗ F−1

(
B̂s

B̂0

))

dx
+

d
(
F−1

(
η̂

B̂0

))

dx
. (10)

The noise term, even after deconvolving B0, is still zero mean and does not bias
the gradient to positive or negative values. However, the first term is equivalent to
convolving the sharp latent image (with no bias for positive or negative gradients)
with the horizontal derivative of the error PSF. As shown in Fig. 5, this kernel
induces a sign change in the derivative image at the same three locations as the
error PSF has peaks.

As with other work in PSF estimation [7], and following the intuition of Fig 4,
we use edge points in the image to infer the scale of the PSF. Specifically, we look
for pronounced sign changes in the average gradient magnitude of pixels over a
range of horizontal distances from edges in the image. If the object attached to
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Fig. 6. An overview of our motion estimation method. The motion invariant image is
deblurred using B0. Edges are detected in the resulting image, and artifacts arising
from them are used to estimate s. Finally, we deconvolve the exact PSF Bs from the
original motion invariant image.

the edge was moving (s �= 0), there will be a zero-crossing of the gradient at a
distance of aT 2 from the edge, and additional zero-crossings separated by 2sT .

The steps of our algorithm are as follows, and are illustrated in Fig. 6.

1. Compute the initial latent image estimate J0 by deconvolving B0.
2. Find vertical edges in J0 using the Sobel detector. Discard edge points below

the 80th percentile strength.
3. Compute H = dJ0

dx .
4. Compute the average gradient sign vector A, weighted by the strength of

edge points x, as

A(i) =

∑
x |H(x)|sign(H(x+ i))

∑
x |H(x)| ∀i ∈ [0, 4aT 2]. (11)

5. If
∑aT 2+1

x=aT 2−1 A(x)
2 < τ , s̃ = 0 and return; else

s̃ = argmaxs∈S

∑
A · dEs

dx
. (12)

The threshold τ = 5∗10−10 is used to determine whether there is a zero-crossing
at aT 2. The space of potential velocities is quantized to the set S such that
consecutive values shift the peaks in the error PSF E by 1 pixel and s ≤ 2aT ,
which is the maximum velocity that the lens stabilized.

5 Experiments

In order to validate our motion estimation algorithm, and to demonstrate the
improvement in image quality, we describe two experiments. First, we apply
uniform blur PSFs representing a range of velocities to images from the IM2GPS
[6] dataset in order to quantify motion estimation performance and image quality
improvement in the presence of a wide range of image texture. In the second, we
capture motion invariant images using a Canon 60D camera with a 100mm image
stabilizing lens which has been modified to execute parabolic motion during
exposure. Note that, with the exception of data presented in Sec. 5.1, all images
shown in this paper are real images from our Canon camera.
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Table 1. RMSE of images deblurred using B0 (showing the performance of existing MI
deblurring), Bs̃ (i.e., our estimate), and Bs (i.e., the ground truth PSF and lower bound
of RMSE). Rows separate noise conditions, and we show separate RMSE performance
for those cases where our motion estimate is inaccurate.

noise test cases B0 Bs̃ Bs

σ = 1 all 14.52 10.77 10.66
σ = 1 s̃ �= s 14.75 15.40 10.48

σ = 2.5 all 18.96 16.24 16.11
σ = 2.5 s̃ �= s 18.99 19.53 16.01

5.1 Synthetic Data

In order to avoid the small sample size issues associated with presenting only
real camera results, we first present results on the 163 landscape-oriented images
from the IM2GPS [6] test set. We synthetically blur the entire image using the
PSF Bs (eq. 4), with T = 50ms (i.e., a 100ms exposure time), a = 0.041, and
s uniformly sampled in [0, 2aT ]. We test 21 different values of s for each image.
Blur is simulated using eq. 2, and we test two levels of Gaussian white noise η
with σ = 1 and 2.5 relative to 8 bit intensity values.

Under the σ = 1 case, we estimate s to within the resolution of our quantiza-
tion of S in 3,346 of 3,423 cases (98%). Under the σ = 2.5 condition, we do so
in 3,299 of 3,423 cases (96%). Most of the errors come from two images, where
the algorithm always estimates s̃ = 0. In one, the ‘latent image’ contains motion
blur - a clear violation of the natural image prior. The second has no strong
edges from which to estimate motion.

Table 1 shows the computed Root Mean Squared Error (RMSE) between the
reference latent image and motion invariant images deblurred using B0 (showing
the performance of existing MI deblurring), Bs̃ (i.e., our estimate), and Bs (i.e.,
the ground truth PSF and lower bound of RMSE). When averaged over all
image/velocity combinations, the use of our estimate in deblurring eliminates
96% of the RMSE relative to the use of the ground truth s. In the very few cases
where our velocity estimate is off by one or more quantization level (s̃ �= s), the
resulting RMSE is only slightly worse than the state of the art.

5.2 Real Camera Images

Our motion invariant camera is made of a stock Canon 60D DSLR body with a
modified Canon EF 100mm f/2.8L Macro IS lens. As described in [15], the stan-
dard mode of operation for image stabilization is a closed control loop where
motion detected by sensors within the lens induces a compensating motion of
the stabilizing element. Lens motion is achieved by modulating electromagnets,

1 These values produce a PSF B0 with 100 non-zero entries. We choose this so the
ratio of PSF length to image width is consistent with our camera; they are about
twice as wide as IM2GPS images, and our camera produces a PSF B0 that’s 200
pixels in length.



Improved Motion Invariant Deblurring through Motion Estimation 85

Fig. 7. Our prototype Motion Invariance
camera, based on an unmodified Canon 60D
with a modified 100mm Macro IS lens. The
hot shoe triggers our Texas Instruments
MSP430F2618 microprocessor (located in-
side the metal box) to start parabolic lens
motion.

and its position is recorded using two embedded position sensors. In order to
drive the lens to parabolic motion, we break the control loop and decouple the
stabilizing element from the motion sensor. We then add an independent Texas
Instruments MSP430F2618 microprocessor which controls motion through pulse
width modulation, and monitors its progress by reading the position sensors
through 12-bit ADCs. Control loops running on our added microcontroller ex-
ecute the desired parabolic motion, which is synchronized with the camera’s
shutter via the hot shoe trigger. An image of the camera is shown in Figure 7,
and additional detail about the hardware implementation is given in [16].

While the stabilizing lens accurately traces the desired parabolic trajectory,
our real image PSFs differ from the analytic form due to a delay in the start of
motion. The issue is that our motion starts based on the camera body’s hot shoe,
which is designed for flash triggering. In order to avoid flash synchronization
issues - particularly a flash firing when the shutter is not completely open - the
hot shoe’s first signal occurs when the first curtain is completely open. On our
60D body, the transit of the shutter blade from bottom to top takes about 4ms, so
the lens will be stationary for as much as the first 4ms of exposure. The example
in Fig. 1 was a 100ms exposure, so the amount of time the lens is stationary is
comparable to the amount of time that it stabilizes any moving object. When
estimating blur using images from this camera, we add an additional delay term
in B to model the correct error PSFs.

In addition to Fig. 1, the deblurred results in Fig. 8 show the improved image
quality that we enable with our motion estimation algorithm. Images in the left
column, which are generated by deconvolving B0, have significant echo artifacts
due to the use of the incorrect PSF. Our results, in the right column, have
significantly reduced echo artifacts, based on deconvolution of the correct PSF
as determined by our motion estimation algorithm.

6 Limitations

Like previous work in Motion Invariance, our method assumes that objects move
in a linear direction which is known a priori. The linear motion assumption holds
up well in practice as long as the camera is stationary, since moving objects have
inertia which precludes rapid direction changes. A priori knowledge of the motion
direction is available in many cases: vehicles drive within lanes on roads, people
walk down hallways and along sidewalks, etc. The rear hubcap in the bottom
row of Fig. 8, which is rotating rather than translating, violates this assumption
and results in slight artifacts. As well, the limited dynamic range of the sensor
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Fig. 8. Experimental results with our real camera. Left column shows the result
of deconvolving B0, as in previous motion invariant work. Right column shows the result
of deconvolving Bs̃, after applying our motion estimation algorithm. Echo artifacts are
noticeably reduced when deconvolving Bs̃. Best viewed electronically.

causes some artifacts in deblurred images; in our case, this is evident in the
top row of Fig. 8, where the eye at the front of the bus has some artifact due
to saturated pixels in the motion invariant image. In both cases, though, the
severity of artifacts is reduced by our method relative to the existing approach.

As discussed above, motion invariance amplifies noise on stationary parts of
the scene. By deconvolving a PSF Bs with s �= 0, we may further exacerbate
this issue (see the blue car in the top row of Fig. 8).

7 Multiple Moving Objects

While our algorithm is designed to estimate the velocity of a single, dominant
object in the scene, we also note that the method performs well in cases where
multiple objects have different velocities. This is partially due to the fact that
the PSF depends only on the magnitude of object velocity, so B−s = Bs. In the
general case when there are two objects with velocities s1 and s2, our algorithm
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Fig. 9. Multiple moving objects. Here, the green train moves faster than the red,
and its image velocity is even higher due to motion parallax. Our motion estimation
algorithm finds the velocity of the green train, and our result (right image) significantly
reduces echos of the wheels compared to the existing method (left image). Though the
red train is deblurred with the PSF of the green train, this is still a better approximation
than B0, so artifacts are also reduced on the red train (e.g., reduced echo of the numeral
5 at the left edge of the coal car and reduction of artificial highlight to the right of the
5). Best viewed electronically.

will estimate the velocity of the larger object (i.e., the one with the most edge
points), say s1, due to the use of argmax in eq. 12. Because the point where the
PSF’s tail clips moves continuously with velocity, our method will also improve
(in the sense of RMSE) the estimate of the smaller object in cases where ‖s2‖ >
‖ s1

2 ‖. An example of this is shown in Fig. 9, where two moving objects have
different velocities and our method produces better latent image estimates for
both, as compared to the existing method. In future work, we hope to extend the
method to incorporate explicit motion segmentation, perhaps along the lines of
Levin [10], though we note that this is more challenging from motion invariant
images due to the blurring of stationary scene elements.

8 Conclusion

Surprisingly, despite the use of parabolic motion to capture an image in which
blur is decoupled from an object’s velocity, we have successfully demonstrated
a motion estimation algorithm using motion invariant images. We further show
that using our algorithm to determine which PSF should be deconvolved sig-
nificantly reduces both quantitative RMSE and the severity of motion invariant
artifacts, using both a large-scale synthetic experiment and validation with real
camera images. Using this method, we get the benefit of deconvolving the exact
PSF (in the 96+% of cases where we accurately estimate motion) without the
need for pre-exposure velocity estimation, as in coded exposure. The key to en-
abling this is our modeling of the artifacts introduced by the traditional motion
invariant approach, and quantifying the relationship between velocity and the
spacing of these artifacts.
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Relative to other work attempting to improve motion invariant image quality,
notably [21], we achieve better image quality without the need for additional
hardware elements or the associated light loss. Our prototype camera does not
introduce additional elements in the optical path, and therefore maintains high
light throughput.

Knowing that parabolic motion does not capture an image with strict motion
invariance, and having shown that this can lead to significant artifacts, one may
ask whether this approach is still worthwhile. We believe that it is, because the
parabolic motion produces a PSF with a sharp peak which makes deconvolution
well-posed without the need for pre-exposure motion estimation. When combined
with our post-capture motion estimation, we can produce high-quality images
that would not be possible with traditional camera hardware.

References

1. Agrawal, A., Raskar, R.: Optimal single image capture for motion deblurring. In:
Computer Vision and Pattern Recognition, pp. 2560–2567 (2009)

2. Agrawal, A., Xu, Y.: Coded exposure deblurring: Optimized codes for PSF esti-
mation and invertibility. In: Computer Vision and Pattern Recognition (2009)

3. Bando, Y., Holtzman, H., Raskar, R.: Near-invariant blur for depth and 2d motion
via time-varying light field analysis. ACM Transactions on Graphics (Proceedings
of SIGGRAPH), 13:1–13:15 (2013)

4. Cho, T.S., Levin, A., Durand, F., Freeman, W.T.: Motion blur removal with orthog-
onal parabolic exposures. In: Int’l Conf. on Computational Photography (2010)

5. Gupta, A., Joshi, N., Lawrence Zitnick, C., Cohen, M., Curless, B.: Single image
deblurring using motion density functions. In: Daniilidis, K., Maragos, P., Paragios,
N. (eds.) ECCV 2010, Part I. LNCS, vol. 6311, pp. 171–184. Springer, Heidelberg
(2010)

6. Hays, J., Efros, A.A.: Im2gps: estimating geographic information from a single
image. In: Computer Vision and Pattern Recognition (2008)

7. Joshi, N., Szeliski, R., Kriegman, D.: Psf estimation using sharp edge prediction.
In: Computer Vision and Pattern Recognition (2008)
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