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Abstract. 3D object modeling and fine-grained classification are often
treated as separate tasks. We propose to optimize 3D model fitting and
fine-grained classification jointly. Detailed 3D object representations en-
code more information (e.g., precise part locations and viewpoint) than
traditional 2D-based approaches, and can therefore improve fine-grained
classification performance. Meanwhile, the predicted class label can also
improve 3D model fitting accuracy, e.g., by providing more detailed class-
specific shape models. We evaluate our method on a new fine-grained
3D car dataset (FG3DCar), demonstrating our method outperforms sev-
eral state-of-the-art approaches. Furthermore, we also conduct a series
of analyses to explore the dependence between fine-grained classification
performance and 3D models.

1 Introduction

Fine-grained recognition methods have been proposed to address different types
of super-ordinate categories (e.g., birds [10,5,6,8], dogs [18] or cars [23,14]), and
many of these methods focus on finding distinctive 2D parts for distinguishing
different classes [6,27,5,2] or seeking better pose-invariant feature representations
[29]. Recently, researchers [8,14] have used 3D models for fine-grained classifi-
cation. While these methods have shown some success in tackling viewpoint
variations within the objects, their non-deformable 3D model representations
limit the ability of these approaches to adjust to different shapes of objects.

At the same time, 3D object modeling has also received renewed attention
recently [20,12,21,16,30]. Many methods have been proposed to fit a 3D model to
a 2D image [16,30,24]. However, their objective functions are usually highly non-
linear and a suboptimal initialization leads to convergence to poor minima. One
common approach is to try multiple starting points [30]; however, this increases
the time to reach convergence and it is also unclear how many starting points
are sufficient for good results.

In this paper, we investigate these two challenging problems together and show
that they can provide benefit to each other if they are solved jointly. We propose
a novel approach that optimizes 3D model fitting and fine-grained classification
in a joint manner. 3D model representations can convey more information than
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Predicted class label

Fig. 1. System overview of the proposed method. Given an input image (a), our method
first extracts rough part locations based on deformable part models (DPM) (b) and
then uses regression models to estimate image landmark locations (c). Next, we fit the
3D model landmarks (yellow circles) of our 3D deformable model to the predicted 2D
landmark locations (magenta circles) (d), extract part-based features relative to the
3D geometry (e) and feed these features into SVM classifiers for fine-grained classifi-
cation (f). After classification, the predicted class labels are then further exploited to
iteratively refine the model fitting results.

traditional 2D-based approaches, e.g., viewpoint and precise part locations, and
can therefore benefit fine-grained classification. Also, the semantic label of each
part is typically defined in modern CAD file formats, which reduces the naming
effort by users [6]. Additionally, the predicted class label provides a better class-
specific shape prior, which improves model fitting by alleviating the local minima
problem for non-linear objective functions. Instead of using a rough 3D ellipsoid
[8] or a massive bank of classifiers [14], we adopt a more general and flexible
3D modeling approach, which is based on a highly detailed and deformable 3D
model constructed by Principal Components Analysis (PCA) on a set of 3D
CAD models.

The system overview is depicted in Fig. 1. Given an input image (a), we first
apply a deformable part model (DPM) [9] to obtain rough part locations (b) and
feed them as features to a pre-trained regression model for estimating landmark
locations (c). The 3D object geometry is recovered by fitting a deformable 3D
model to those estimated 2D landmark locations (d). Then, we represent each
image by the concatenation of feature descriptors (e.g., HOG [4] or Fisher vector
[22]) for each landmark (e). SVM-based classifiers are utilized for fine-grained
classification (f). Predicted classes are then exploited to derive better shape
parameters to refine the 3D model fitting results in an iterative manner.
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The main contributions of this work include:

e We simultaneously optimize 3D model fitting and fine-grained classification
in a joint manner. As shown in our experimental results, they benefit each
other and lead to improved performance on both tasks (see Tables. 1 and 3).

e We propose a general 3D model fitting approach, a landmark-based Jacobian
system, for fine-grained classification; it is shown experimentally to outper-
form several state-of-the-art 2D-based approaches on a new fine-grained 3D
car dataset (FG3DCar).

e We also provide an in-depth analysis of various design decisions to explore
the dependence of 3D models and fine-grained classification.

2 Related Work

Fine-Grained Classification: Various methods have been proposed to find
distinctive 2D parts. In [6] Duan et al. propose a latent conditional random
field model that automatically discovers discriminative attributes. Yao et al. [27]
select important regions by a random forest with discriminative decision trees.
Deng et al. [5] introduce a human-in-the-loop approach to select discriminative
bubbles. Gavves et al. [10] localize distinctive details by roughly aligning objects.
Some researchers also seck better feature representations for pose invariance [29].

However, there is currently little research employing 3D models for fine-
grained classification. Farrell et al. [8] fit an ellipsoid to 2D images of birds
and use it to construct a pose-normalized feature representation. However, a
rough ellipsoid might not be suitable for other categories (e.g., car). The most
related work to ours is [14], which lifts 2D-based features into 3D space to better
associate features across different viewpoints. However, they use a massive bank
of classifiers (i.e., example-based) to match 3D models to 2D images, which is
time consuming and not applicable to different object shapes.

3D Modeling: At the same time, there has been renewed attention in repre-
senting objects in 3D rather 2D [9,19,15]. 3D model representations can convey
more information than traditional 2D-based approaches, such as viewpoint, pre-
cise part locations, model shape and semantic meaning of parts, and can benefit
high-level object reasoning. There are some recent works tailoring 2D part-based
methods (e.g., DPM [9]) toward 3D geometric reasoning [21,20], however these
approaches only provide coarse bounding boxes in either 2D or 3D space. To go
beyond a bounding box representation, Hejrati et al. [12] recover a coarse 3D
model from 2D part locations with non-rigid SfM. Some recent works go even
further by fitting a more detailed 3D model to 2D images [30,16,24]. However,
the objective functions for these methods are usually highly nonlinear and of-
ten get trapped in local minima. One possible solution to this problem is by
sampling [30], that is, having multiple starting points and selecting the best so-
lution. However, this lengthens the time to convergence and it is still not clear
how many starting points are needed for good results.

Inspired by some co-optimization approaches for other tasks [28,15,1], we
combine 3D model fitting and fine-grained classification jointly and show that
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they benefit each other. We propose a more general 3D modeling approach for
fine-grained classification based on the Active Shape Model (ASM) formulation,
which is more flexible and effective than using a large set of classifiers [14] or a
rough ellipsoid [8]. Furthermore, we exploit classification results (i.e., class la-
bels) to derive better shape priors for improving 3D model fitting accuracy. Both
processes collaborate iteratively.

Algorithm 1. Overall algorithm
Input: Given an input image 1
Output: Class label ¢*, shape s* and pose ™.
1: Find part locations and component (z,m) = DPM(I)

2: Estimate image landmark locations | = regression(z,m) Eq. (2)
3: Initialize shape: s(% < u (mean shape) and pose: x(¥ < x;ni; parameters

4: fort =1to T do

5: (s, x®) « FitModeltoImage(s* =1, x*~1)) Eq. (5) & Eq. (6)
6: f(I) « ExtractFeatureVector(s*),x*) Eq. (11)
7 ¢ < Classification(f(I))

8:  Refine shape parameters s*) + &(c)

9: end for

3 3D Deformable Car Model

To cope with large shape variations, we build our 3D representation based on
the Active Shape Model (ASM) formulation [3]. Each instance (3D model) is
represented by a collection of 3D points. These points have the same semantic
meaning (i.e., are located on the same car parts) across different 3D models. Then
we perform PCA to derive mean u and n eigen-vectors 2 = [wi, Wa, ..., Wy,].

1%t Eigen-vector 2" Eigen-vector 31 Eigen-vector 4™ Eigen-vector

Fig. 2. The top four eigen-vectors derived from Active Shape Model (ASM) are visu-
alized with the shape parameters +1.50 (eigen-value), where landmarks are drawn as
yellow circles and (hidden) model segments estimated from 3D geometry are drawn as
(blue dotted) red lines.
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Any 3D model can be represented as a linear combination of n eigen-vectors
with shape parameters s = [s1, ..., 8, :

P'(s)=u+ Z SiW; (1)

In our experiments, we use 11 3D CAD models of cars for training our 3D de-
formable model, including 3 sedans, 2 wagons, 1 pickup truck, 1 crossover, 2
hatchbacks, and 2 SUVs. There are total 256 salient points and 342 triangular
faces; from them we manually select 64 landmarks covering important appear-
ance and shape features for car images (see Fig. 2).

4 Regression Model for Landmark Estimation

To fit our 3D model to images, we locate the corresponding landmarks in the
2D image using a set of regression models based on part locations from DPM.

Our approach differs from the previous approaches that find the correspon-
dences between image edges and model segments based on some low-level fea-
tures (e.g., edge intensity) [16,24], which often fail due to cluttered background
or complex edges on the surface of cars. Also, we avoid training a part detector
for each landmark individually [17,30], which ignores the geometric relations be-
tween parts and may generate a noisy detection map with several local maxima.
Instead, we exploit part locations generated from a state-of-the-art part-based
method (e.g., [9]) to estimate the image landmark positions, which implicitly
encodes both appearance of and geometric relationships between landmarks.

More formally, the input is a set of training images with detected part loca-
tions: z = {B1, Pa, ...B0}, where 3; denotes the pixel coordinates for the bounding
box of each part (see Fig. 1 (b)), component number m from DPM, and manually
annotated landmark positions | = {ly,ly, - ,ly}, where [; specifies a 2D posi-
tion (z,y) for i-th landmark (see Sec. 6.1 for more details of obtaining ground
truth landmark locations). We then train a regression model for each landmark
under each component using the part locations as input features:

li = f(2) (2)

We use linear Support Vector Regressor as our regression model to train each
landmark position x, y separately. At test time, we use the pre-trained regression

models to estimate image landmarks [= {Zl, iz, e ,i ~ } given the part locations
and component number from DPM. Example estimated landmarks are shown in
Fig. 1 (c).

Given the mean car shape and initial pose, the goal of model fitting is to
adjust the pose and shape parameters to minimize the distances between model
and image landmarks. For initial pose, we roughly estimate the translation, rota-
tion and scale from the DPM model [9]. For shape, the mean shape is adopted in
the first iteration and can be further refined by exploiting the predicted class la-
bel. There do exist approaches for solving shape and pose parameters [16,30,24],
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Fig. 3. lllustration of the local minimum problem when using an improper initial shape;
ground truth pose and corresponding landmarks are used in this example. The model
fitting accuracy is measured by average pixel distance (APD) (Eq. 12). Top: initial-
ization by mean shape. Bottom: initialization by type shape (i.e., mean of all pickup
truck shapes). Yellow circles are the landmarks on the model edges and green circles
are the corresponding image landmarks from ground truth. This example illustrates
that model fitting accuracy is strongly affected by the initial shape parameters due to
the non-linearity of the target objective function. This motivates us to leverage the
class label to obtain a better shape prior to improve model fitting accuracy.

however, their objective functions are usually non-linear and their fitting per-
formance is sensitive to initialization. Additionally, the underlying shape distri-
bution of cars is not a single normal distribution represented by a PCA model.
There are several disjoint modes for different car classes and thus a generated car
shape (controlled by shape parameters) might not be physically possible (e.g.,
the bottom example of 1st eigen-vector in Fig. 2).

Fig. 3 gives an example of 3D model fitting results when adopting different
initial shape parameters; here ground-truth pose and landmark correspondences
are used. Some car samples, e.g., pickup truck, are quite different from the mean
shape, and optimizing shape starting from the mean shape is a very challeng-
ing even using ground-truth pose and landmark correspondences. To alleviate
these problems, we use the predicted class label to refine our shape parameters,
where the mapping function @(-) : R* — R™ that maps the class label to the
shape parameters is learned in advance from our training samples (Sec. 6.1). To
instantiate this idea, we modify the edge-based Jacobian system from [16] to
landmark-based (Fig. 4), since edge-based approaches are susceptible to noise
and clutter. Our method is general and could be also applied to other 3D model
fitting approaches (e.g., [30]). For model fitting, the task can be formulated as
minimizing an error function F : R” — RN [16]:

q" = argmin F(q), (3)
Qe

F(q) =e=(e1,ea,...en), (4)
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which takes input parameter q = [s,z]T € R"" and generates N output errors,
where s denotes shape parameters (n dimensions), = are pose parameters (3
rotation and 3 translation), @ is the parameter space. The total number of
input parameters is n’ = n + 6. The error vector e contains all error terms and
each e; denotes the signed distance error (i.e., the red line between w; and wv;
in Fig. 4 (b)) of the i-th model landmark to its corresponding image landmark.
The solution can be obtained by iteratively solving a Jacobian system:

J(ar)Aq = —F(qr) = e, (5)

di+1 = qi +n4q, (6)

where J is the Jacobian matrix, and 7 is the learning rate (n is set to 0.1 in our
experiments). To compute each Jacobian row J; more easily, the error function
can be split into to 3 composite functions and the Jacobian matrices can be
computed by the chain rule:

e = Fi(q) = F} (F}(F{(a))), (7)

where F? generates the corresponding 3D point, X;, of landmark i from the
input parameters q; F? projects X; into 2D image space u;; and, F}! measures
the distance error between the projected landmark u; and its corresponding
image landmark v;. We modify the distance error function and its Jacobian
matrix to:

F} () = nT RO) (v — u,), (9)

I} = —n R(9), (10)

where R is the rotation matrix and 6 is the angle between v; — u; and n] (see
Fig. 4). This modification enables the model to search for the most similar image
landmark derived by our regression models (Sec. 4) without being constrained to
the normal direction used in the original formulation. In other words, our model
possesses the ability to match landmark-to-landmark instead of edge-to-edge;
see [16] for more details.

5 Feature Representation for Classification

The appearance of cars in an image can change dramatically with respect to
viewing angle and self-occlusion becomes an important issue for fine-grained
categorization. We leverage the proprieties from 3D models to better deal with
these problems.

To eliminate the need to model the direction that the car is facing in the image,
we use the estimated pose from 3D model fitting to flip (mirror image) the car
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Fig. 4. Comparison of edge-based [16] (a) and our landmark-based Jacobian system
(b), where image and model edge are depicted in dotted blue and black line, u; and
v; are the i-th model landmark and corresponding image landmark and n} is the
normal direction of the model edge. Our landmark-based Jacobian system finds the
corresponding image landmarks by using regression models (encoding both appear-
ance and geometric features) rather than low-level edge features (searching along the
normal direction) as in the traditional edge-based approach. Therefore, our landmark-
based Jacobian system is more efficient (only landmarks are needed for computing the
Jacobian matrix) and robust to clutter and noise.

(for example, so that all cars point to the left of the image). Not surprisingly,
flipping improves performance noticeably (Table. 2).

After flipping, we extract a feature descriptor ¢; from a window (W x W,
W = 55 in our experiments) centered around each landmark and concatenate
them into a high-dimensional vector as our final feature representation:

fI) = [oi(@)pr, va(@)p2; - v (@) ], (11)

where v;(q) is a binary indicator function for visibility, which can be computed
by normal direction of model faces. In other words, the final feature vector is
modified by zero-filling the features corresponding to occluded landmarks as pre-
dicted by 3D geometry. Since those landmarks are self-occluded, their locations
would be less stable compared to the visible ones and their features are less
predictive of object class. The trimmed feature representation further boosts
classification performance.

We explore two different feature descriptors: HOG [4] and Fisher vector [22],
both of which are commonly used in classification. After feature extraction, we
use a multi-class Linear SVM [7] to determine the class label.

6 Experiments

We present experiments to validate the effectiveness of our approach for fine-
grained classification and 3D model fitting.

6.1 Fine-Grained 3D Car Dataset

Existing fine-grained car datasets (e.g., [13,23]) are not suitable for our purposes,
since they are not annotated with both landmark locations and fine-grained
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class labels. We created a new fine-grained 3D car dataset (FG3DCar) for this
study!, which consists of 300 images with 30 different car models under different
viewing angles, e.g., sedan, SUV, crossover, hatchback, wagon and pickup truck.
See examples in Fig. 7.

For each car image, we manually annotated 64 landmark locations. Instead
of directly performing landmark annotation in the 2D image space, since it is
difficult for humans to identify occluded landmark locations, we leverage the ge-
ometric constraints of 3D models to automatically infer the locations of occluded
landmarks. We manually annotate the correspondences between visible 3D land-
marks of our deformable 3D model and their 2D projections on the image, and
iteratively adjust the shape and pose parameters to minimize the distance errors
between the correspondences based on our modified Jacobian system. Our de-
formable 3D model is constructed from a set of 3D CAD models with manually
aligned 3D points as discussed in Sec. 3. Our annotations provide not only the
location and visibility state of each landmark but also the final shape parameters
for each car instance.

We evenly split the images into a train/test set for evaluating classification
performance. The mapping function @(-) : R! — R™ as mentioned in Sec. 4 is
learnt by averaging the shape parameters within the same class from our training
dataset. Foreground images are used, following standard criteria in fine-grained
classification [23,14], and resized to height = 300 pixels. Note that the reported
numbers in the following experiments (e.g., fitting accuracy) are based on this
image scale.

6.2 Baselines

We compare our approaches with several state-of-the-art 2D-based methods:
LLC [26], PHOW [25] and Fisher vector (FV) [22]. We only report the main
parameter settings of the baseline methods here; for more details please refer
to the original papers. For LLC, we train a codebook with 2048 entries and use
3-layer spatial pyramid (i.e., 1 x 1, 2 x 2 and 4 x 4). For FV, we reduce the
dimensionality of SIFT feature to 64 by applying Principal Component Anal-
ysis (PCA) and use Gaussian Mixture Model (GMM) with different numbers
of components (e.g., K = 32, 64, 256). Power- and L2 normalization schemes
are also applied [22]. To roughly encode the spatial relationship of FV, we also
combine FV with a [2x2] spatial pyramid. For both methods, we use linear SVM
classifiers with the cost parameter C' = 10. For PHOW, we train the same-sized
codebook and 3-layer spatial pyramid as LLC and use a homogeneous kernel
map for the x? kernel. For our approach, we only use K= 32 components of FV
on each landmark due to the high dimensionality of our final part-based feature
representation.

To validate the effectiveness of these baseline methods, we apply them on a
public fine-grained car dataset [23] (denoted as BMVC dataset). Experimental

! We will publicly release our dataset, landmark annotations, and source code at
www.cmlab.csie.ntu.edu.tw/~yenliang/FG3DCar/
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Table 1. Classification comparison. We report the results of our method and several
state-of-the-art methods: LLC [26], PHOW [25] and Fisher vector (FV) [22] on BMVC
[23] and a new fine-grained 3D car dataset (FG3DCar). The baseline methods show very
competitive results on BMVC dataset compared to best reported methods [23,14] (not
publicly available), demonstrating their effectiveness for fair comparison. We compare
our method with these baselines on FG3DCar dataset (The reasons why we did not
evaluate our method on BMVC dataset are explained in Sec. 6.2). Our 3D part-based
representation shows superior performance compared to the baseline methods (shown
in bold font), validating the feasibility of using 3D models to improve fine-grained
classification performance. To further analyze where future work should focus, we also
investigate classification performance under idealized cases (last two rows); the results
show that better alignment (GT alignment) would lead to further improvements. See
Sec. 6.3 for more detailed explanations.

Method BMVC [23] FG3DCar
LLC [26] 84.5% 51.3%
PHOW+x? [25] 89.0% 54.7%
FV [22)(K=32, 64, 256) 88.3%, 90.7%, 93.9% 62.0%, 64.7%, 70.0%
FV [22] [2x2)(K=32, 64, 256) 90.9%, 91.7%, 92.6% 60.0%, 64.0%, 69.3%
structDPM [23] 93.5% -
BB-3D-G [14] 94.5% .
Regression + FV - 82.7%
3D-part (mean prior)+(HOG/FV) (ours) - 55.3% / 88.7%
3D-part (class prior)+(HOG/FV) (ours) - 57.3% / 90.0%
3D-part+GT model prior+(HOG/FV) - 70.0% / 90.0%
3D-part+GT alignment+(HOG/FV) - 90.7% / 95.3%

results (left column in Table. 1) show that they achieve very competitive results
compared to best reported methods [23,14]2. Also, the classification performance
on BMVC dataset is saturated, which is why we chose not to incur the cost of
manual annotating 3D pose and did not evaluate our method on this dataset
(since our regression models are currently trained based on manually annotated
landmark locations). Instead, we will compare our methods with these baselines
on our new and more challenging fine-grained 3D car dataset.

6.3 Fine-Grained Classification Results

We compare our 3D part-based representation to several 2D-based state-of-the-
art approaches on our FG3DCar dataset. Empirically, we find that the conver-
gence of our approach is achieved after 2 iterations (i.e., 7' in Alg. 1) for most
cases when using Fisher vectors. Therefore, we only report the results for the
first and second iteration, which are also denoted as “mean prior” and “class
prior” respectively. In addition, we also provide an in-depth analysis of different

2 The source codes of methods [23,14] are not publicly available.
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choices of feature descriptors and 3D features, and also study the idealized cases
for the task of fine-grained classification.

3D Versus 2D Representation. Table. 1 summarizes the overall classifica-
tion accuracy for different methods. The overall performance of baseline methods
on our dataset is lower than the BMVC dataset, implying that our dataset is
more challenging as it contains more classes (i.e., 30 classes for ours versus 14
classes for BMVC). From the results, our 3D part-based representation (3D-
part+mean/class prior+FV) significantly outperforms baseline methods, con-
firming the feasibility of using 3D models to improve fine-grained classification
accuracy - they provide more precise part locations and tolerance to viewpoint
changes. Moreover, the classification performance is further improved by using
class prior (see mean prior vs. class prior in Table. 1), as it more closely matches
to the instance shape, which supports the proposed iterative approach for further
improvements.

In Table. 2, we investigate the impact of using 3D features (e.g., flipping and
visibility). Flipping improves over un-flipped by 10% and visibility modeling
further improves the results by 3%. It is worth noting that even when we do
not use flipping and visibility, our method still outperforms baseline methods,
gaining from the precise landmark locations derived from 3D models?.

Fisher Vector Versus HOG. In Table. 1, we observe that the Fisher vec-
tor significantly outperforms HOG. We hypothesize that this is because Fisher
vector adopts a bag-of-visual-words (BOW)-like feature representation, which
ignores spatial relationships and thus can tolerate a higher amount of local dis-
placement. We also find that the classification accuracy of HOG significantly
improved (55.3% to 70.0%) when using ground truth model prior (3D-part+GT
model prior+HOG) (i.e., perfect shape parameters), indicating that HOG needs
more accurate alignment to obtain good classification accuracy compared to
the classification-oriented Fisher vector. To better understand the effectiveness
of HOG and Fisher vector, we further investigate the classification accuracy of
these two features under different degrees of misalignment. To do this, we gen-
erate test data by adding Gaussian noise to the ground truth (e.g., translation),
where the degree of misalignment is quantified by mean average pixel distance
(mean APD):

K N

1 1

K E APDZ, APD:N E dist(mj,gj) (12)
=1 Jj=1

Here, m; and g; correspond to j-th landmark on the fitted model and ground
truth. K is the number of testing images and N is the number of landmarks.
Fig. 5 plots the classification accuracy versus mean average pixel distance using

3 Geometric constraints (e.g., shape, visibility) from 3D models further improved the
results from regression model. Based on our 3D model representation, we believe
more sophisticated image rectification techniques (e.g., [11]) can be utilized for fur-
ther improvements, but leave these for future work.
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different features. The result further confirms that Fisher vector is less sensitive
to misalignment than HOG.

Idealized Case. To understand where future work should focus, we also evaluate
our model with idealized perfect shape parameters (GT model prior) and land-
mark alignment (GT alignment) from ground truth data. We find that the model
prior does not improve performance, due to the imperfect image landmark loca-
tions estimated by DPM and our regression model. Using ground truth alignment,
the performance is increased to 95%, suggesting the possible future benefit from
improving landmark estimation accuracy. We will discuss this issue in Sec. 6.4.

Table 2. Different settings of 3D fea- ¢ o awoe
tures are analyzed for the method: 3D- A

part+class prior+FV. The results show
that using flipping and visibility state fur-
ther improve the classification accuracy.
Even if we do not use flipping and visibil-
ity, our method still outperforms baseline
methods (77.3% vs. 70%), gaining from the 40
precise landmark locations derived from Y o
3D models. mean APD

60

50

classification accuracy (%)

Flipping Visibility Classification accuracy Fig.5. Comparison of Fisher vector

No No 77.3% and HOG under different levels of mis-
Yes No 87.3% alignment. Fisher vector can tolerate
Yes Yes 90.0% more displacement error than HOG.

6.4 3D Model Fitting Results

Having discussed the power of our 3D part-based representation for fine-grained
classification, we now describe experiments to evaluate the model fitting accu-
racy. There are two main sources of error for model fitting: initial parameters
and estimated landmarks. We analyze their effects in the following paragraphs.

Class Versus Mean Shape Prior. Table. 3shows the model fitting results, where
“pose” indicates optimizing pose parameters only (keeping shape parameters fixed),
while “pose+shape” optimizes both shape and pose parameters. Our results show
that the class shape prior outperforms the mean shape prior, as it more closely
matches the instance shape than the mean shape prior for highly non-linear objec-
tive functions as mentioned in Sec. 4. In Fig. 6, we further investigate this by
evaluating the mean APD for each category. We see the largest improvement
for those categories (e.g., pickup truck) that deviate the most from the mean
shape, validating the utility of using the class label to improve the 3D model
fitting. We also evaluate the edge-based Jacobian [16]; it obtains lower model
fitting accuracy (e.g., mean APD = 43.6 and 45.0 for mean prior+pose and mean
prior+pose+shape) than our landmark-based Jacobian, since it is susceptible to
noise and clutter. Fig. 7 shows some fitting results of our system.
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Pose Versus Pose + Shape. We find that optimizing pose alone yields better
results than optimizing both pose and shape for the class prior case. A possi-
ble reason is that imperfect landmark positions estimated from DPM and our
regression models introduce errors into the shape model parameters. Therefore,
optimizing pose alone allows the shape model slightly compensate prediction
errors from regression models and lead to better fitting results. Meanwhile, if

Table 3. Model fitting accuracy with dif- 40 BlVoan+posershape|
ferent shape priors. Class prior achieves [iMean+pose

. . 30} |[JClass+pose+shape
better fitting accuracy than mean prior, EClass+pose

validating the effectiveness of using the
predicted class labels to refine model fit-
ting.

mean APD
n
o

=)

Method mean APD o

Initial parameter 44.4 & @9\
Mean prior+pose 20.4

Mean prior+pose+shape 20.3 Fig.6. Mean APD for each category.
Class prior+pose 18.1 Class prior provides more benefit to the

Class prior+pose+shape 18.8 model fitting accuracy for those cate-

gories (e.g., pickup truck) that deviates
far from the mean shape.

mean prior

class prior

mean prior

class prior

Fig. 7. Comparison of model fitting results. Top row shows the output of mean
prior+pose+shape, and the bottom shows our final fitting results: class prior+pose.
Our approach can produce better fitting results (e.g., the backside of pickup truck,
SUV, hatchback and the grille part of Alfa romeo) compared to the mean prior, be-
cause it can more closely match to the target shape (benefiting from the predicted class
label) and avoids falling into local minima for our non-linear objective function.
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Fig. 8. Some failure cases of our system mainly caused by wrongly estimated part
locations from DPM and errors introduced by regression models

the class label can be estimated correctly, the role of shape optimization might
not be as important. We conjecture that the fitting performance can be further
improved if we have more training images for each category so that we can train
better regression models.

7 Conclusions and Future Work

In this work, we have presented an iterative approach for simultaneously opti-
mizing 3D model fitting and fine-grained classification. By leveraging 3D models,
we improved fine-grained classification performance over several state-of-the-art
2D-based methods, confirming the ability of our model to deliver more infor-
mative features than previous work. At the same time, we also showed that the
predicted class label can further improve the 3D model fitting results. In future
work, we seek further improvements on landmark estimation accuracy by using
class label information and incorporate image rectification techniques (e.g., [11])
to better associate images across different viewpoints.
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