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Abstract. The goal of this work is text spotting in natural images.
This is divided into two sequential tasks: detecting words regions in the
image, and recognizing the words within these regions. We make the
following contributions: first, we develop a Convolutional Neural Net-
work (CNN) classifier that can be used for both tasks. The CNN has
a novel architecture that enables efficient feature sharing (by using a
number of layers in common) for text detection, character case-sensitive
and insensitive classification, and bigram classification. It exceeds the
state-of-the-art performance for all of these. Second, we make a number
of technical changes over the traditional CNN architectures, including
no downsampling for a per-pixel sliding window, and multi-mode learn-
ing with a mixture of linear models (maxout). Third, we have a method
of automated data mining of Flickr, that generates word and character
level annotations. Finally, these components are used together to form
an end-to-end, state-of-the-art text spotting system. We evaluate the
text-spotting system on two standard benchmarks, the ICDAR Robust
Reading data set and the Street View Text data set, and demonstrate
improvements over the state-of-the-art on multiple measures.

1 Introduction

While text recognition from scanned documents is well studied and there are
many available systems, the automatic detection and recognition of text within
images – text spotting (Fig.1) – is far less developed. However, text contained
within images can be of great semantic value, and so is an important step to-
wards both information retrieval and autonomous systems. For example, text
spotting of numbers in street view data allows the automatic localization of
houses numbers in maps [20], reading street and shop signs gives robotic ve-
hicles scene context [39], and indexing large volumes of video data with text
obtained by text spotting enables fast and accurate retrieval of video data from
a text search [26].

Text spotting in natural images is usually divided into two tasks [12]: text
detection, and word recognition. Text detection involves generating candidate
bounding boxes that are likely to contain lines of text, while word recognition
takes each candidate bounding box, and attempts to recognize the text depicted
within it, or potentially reject the bounding box as a false positive detection.

In this paper we show that a very high quality character classifier can improve
over the state-of-the-art for both the word detection and recognition tasks of this
pipeline. To achieve this we use a Convolutional Neural Network (CNN) [27]
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(a) (b)

Fig. 1. (a) An end-to-end text spotting result from the presented system on the SVT
dataset. (b) Randomly sampled cropped word data automatically mined from Flickr
with a weak baseline system, generating extra training data.

and generate a per-pixel text/no-text saliency map, a case-sensitive and case-
insensitive character saliency map, and a bigram saliency map. The text saliency
map drives the proposal of word bounding boxes, while the character and bigram
saliency maps assist in recognizing the word within each bounding box through
a combination of soft costs. Our work is inspired by the excellent performance
of CNNs for character classification [6, 8, 47]. Our contributions are threefold:

First, we introduce a method to share features [44] which allows us to extend
our character classifiers to other tasks such as character detection and bigram
classification at a very small extra cost: we first generate a single rich feature
set, by training a strongly supervised character classifier, and then use the inter-
mediate hidden layers as features for the text detection, character case-sensitive
and insensitive classification, and bigram classification. This procedure makes
best use of the available training data: plentiful for character/non-character but
less so for the other tasks. It is reminiscent of the Caffe idea [14], but here it is
not necessary to have external sources of training data.

A second key novelty in the context of text detection is to leverage the con-
volutional structure of the CNN to process the entire image in one go instead of
running CNN classifiers on each cropped character proposal [27] . This allows us
to generate efficiently, in a single pass, all the features required to detect word
bounding boxes, and that we use for recognizing words from a fixed lexicon using
the Viterbi algorithm. We also make a technical contribution in showing that
our CNN architecture using maxout [21] as the non-linear activation function
has superior performance to the more standard rectified linear unit.

Our third contribution is a method for automatically mining and annotating
data (Fig.1). Since CNNs can have many millions of trainable parameters, we
require a large corpus of training data to minimize overfitting, and mining is use-
ful to cheaply extend available data. Our mining method crawls images from the
Internet to automatically generate word level and character level bounding box
annotations, and a separate method is used to automatically generate character
level bounding box annotations when only word level bounding box annotations
are supplied.
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In the following we first describe the data mining procedure (Sect. 2) and
then the CNN architecture and training (Sect. 3). Our end-to-end (image in,
text out) text spotting pipeline is described in Sect. 4. Finally, Sect. 5 evaluates
the method on a number of standard benchmarks. We show that the performance
exceeds the state of the art across multiple measures.

Related Work. Decomposing the text-spotting problem into text detection and
text recognition was first proposed by [12]. Authors have subsequently focused
solely on text detection [7, 11, 16, 50, 51], or text recognition [31, 36, 41], or on
combining both in end-to-end systems [40, 39, 49, 32–34, 45, 35, 6, 8, 48].

Text detection methods are either based on connected components (CCs) [11,
16, 50, 49, 32–35] or sliding windows [40, 7, 39, 45]. Connected component meth-
ods segment pixels into characters, then group these into words. For example,
Epshtein et al. take characters as CCs of the stroke width transform [16], while
Neumann and Matas [34, 33] use Extremal Regions [29], or more recently ori-
ented strokes [35], as CCs representing characters. Sliding window methods ap-
proach text spotting as a standard task of object detection. For example, Wang et
al. [45] use a random ferns [38] sliding window classifier to find characters in an
image, grouping them using a pictorial structures model [18] for a fixed lexicon.
Wang & Wu et al. [47] build on the fixed lexicon problem by using CNNs [27]
with unsupervised pre-training as in [13]. Alsharif et al. [6] and Bissacco et al. [8],
also use CNNs for character classification – both methods over-segment a word
bounding box and find an approximate solution to the optimal word recognition
result, in [8] using beam search and in [6] using a Hidden Markov Model.

The works by Mishra et al. [31] and Novikova et al. [36] focus purely on text
recognition – assuming a perfect text detector has produced cropped images of
words. In [36], Novikova combines both visual and lexicon consistency into a
single probabilistic model.

2 Data Mining for Word and Character Annotations

In this section we describe a method for automatically mining suitable photo
sharing websites to acquire word and character level annotated data. This an-
notation is used to provide additional training data for the CNN in Sect. 5.

Word Mining. Photo sharing websites such as Flickr [3] contain a large range
of scenes, including those containing text. In particular, the “Typography and
Lettering” group on Flickr [4] contains mainly photos or graphics containing text.
As the text depicted in the scenes are the focus of the images, the user given titles
of the images often include the text in the scene. Capitalizing on this weakly
supervised information, we develop a system to find title text within the image,
automatically generating word and character level bounding box annotations.

Using a weak baseline text-spotting system based on the Stroke Width Trans-
form (SWT) [16] and described in Sect. 5, we generate candidate word detections
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for each image from Flickr. If a detected word is the same as any of the image’s
title text words, and there are the same number of characters from the SWT
detection phase as word characters, we say that this is an accurate word detec-
tion, and use this detection as positive text training data. We set the parameters
so that the recall of this process is very low (out of 130000 images, only 15000
words were found), but the precision is greater than 99%. This means the pre-
cision is high enough for the mined Flickr data to be used as positive training
data, but the recall is too low for it to be used for background no-text training
data. We will refer to this dataset as FlickrType, which contains 6792 images,
14920 words, and 71579 characters. Fig. 1 shows some positive cropped words
randomly sampled from the automatically generated FlickrType dataset.

Although this procedure will cause a bias towards scene text that can be found
with a simple end-to-end pipeline, it still generates more training examples that
can be used to prevent the overfitting of our models.

Automatic Character Annotation. In addition to mining data from Flickr,
we also use the word recognition system described in Sect. 4.2 to automatically
generate character bounding box annotations for datasets which only have word
level bounding box annotations. For each cropped word, we perform the optimal
fitting of the groundtruth text to the character map using the method described
in Sect. 4.2. This places inter-character breakpoints with implied character cen-
ters, which can be used as rough character bounding boxes. We do this for the
SVT and Oxford Cornmarket datasets (that are described in section 5), allowing
us to train and test on an extra 22,000 cropped characters from those datasets.

3 Feature Learning Using a Convolutional Neural
Network

The workhorse of a text-spotting system is the character classifier. The output
of this classifier is used to recognize words and, in our system, to detect im-
age regions that contain text. Text-spotting systems appear to be particularly
sensitive to the performance of character classification; for example, in [8] in-
creasing the accuracy of the character classifier by 7% led to a 25% increase in
word recognition. In this section we therefore concentrate on maximizing the
performance of this component.

To classify an image patch x in one of the possible characters (or background),
we extract a set of features Φ(x) = (φ1(x), φ2(x), ..., φK (x)) and then learn a bi-
nary classifier fc for each character c of the alphabet C. Classifiers are learned
to yield a posterior probability distribution p(c|x) = fc(Φ(x)) over characters
and the latter is maximized to recognize the character c̄ contained in patch x:
c̄ = argmaxc∈C p(c|x). Traditionally, features Φ are manually engineered and op-
timized through a laborious trial-and-error cycle involving adjusting the features
and re-learning the classifiers. In this work, we propose instead to learn the rep-
resentation using a CNN [27], jointly optimizing the performance of the features
as well as of the classifiers. As noted in the recent literature, a well designed
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learnable representation of this type can in fact yield substantial performance
gains [25].

CNNs are obtained by stacking multiple layers of features. A convolutional
layer consist of K linear filters followed by a non-linear response function. The
input to a convolutional layer is a feature map zi(u, v) where (u, v) ∈ Ωi are
spatial coordinates and zi(u, v) ∈ R

C contains C scalar features or channels
zci (u, v). The output is a new feature map zi+1 such that zki+1 = hi(Wik∗zi+bik),
where Wik and bik denote the k-th filter kernel and bias respectively, and hi

is a non-linear activation function such as the Rectified Linear Unit (ReLU)
hi(z) = max{0, z}. Convolutional layers can be intertwined with normalization,
subsampling, and max-pooling layers which build translation invariance in local
neighborhoods. The process starts with z1 = x and ends by connecting the
last feature map to a logistic regressor for classification. All the parameters
of the model are jointly optimized to minimize the classification loss over a
training set using Stochastic Gradient Descent (SGD), back-propagation, and
other improvements discussed in Sect. 3.1.

Instead of using ReLUs as activation function hi, in our experiments it was
found empirically that maxout [21] yields superior performance. Maxout, in par-
ticular when used in the final classification layer, can be thought of as taking the
maximum response over a mixture of n linear models, allowing the CNN to easily
model multiple modes of the data. The maxout of two feature channels z1i and
z2i is simply their pointwise maximum: hi(zi(u, v)) = max{z1i (u, v), z2i (u, v)}.
More generally, the k′-th maxout operator hk′

is obtained by selecting a sub-
set Gk′i ⊂ {1, 2, . . . ,K} of feature channels and computing the maximum over
them: hk′

i (zi(u, v)) = maxk∈Gk′i z
k
i (u, v). While different grouping strategies are

possible, here groups are formed by taking g consecutive channels of the input
map: G1i = {1, 2, . . . , g}, G2i = {g+1, g+2, . . . , 2g} and so on. Hence, given K
feature channels as input, maxout constructs K ′ = K/g new channels.

3.1 Training and Implementation Details

This section discusses the details of learning the character classifiers. Training
is divided into two stages. In the first stage, a case-insensitive CNN character
classifier is learned. In the second stage, the resulting feature maps are applied
to other classification problems as needed. The output is four state-of-the-art
CNN classifiers: a character/background classifier, a case-insensitive character
classifier, a case-sensitive character classifier, and a bigram classifier.

Stage 1: Bootstrapping the Case-Insensitive Classifier. The case-
insensitive classifier uses a four-layer CNN outputting a probability p(c|x) over
an alphabet C including all 26 letters, 10 digits, and a noise/background (no-
text) class, giving a total of 37 classes (Fig. 2) The input z1 = x of the CNN are
grayscale cropped character images of 24× 24 pixels, zero-centered and normal-
ized by subtracting the patch mean and dividing by the standard deviation.

Due to the small input size, no spatial pooling or downsampling is performed.
Starting from the first layer, the input image is convolved with 96 filters of size
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Fig. 2. Convolutional Neural Networks. The method uses four CNNs. These share
the first two layers, computing “generic” character features and terminate in layers
specialized into text/no-text classification, case-insensitive and case-sensitive character
classification, and bigram classification. Each connection between feature maps consists
of convolutions with maxout groups.

Fig. 3. Visualizations of each character class learnt from the 37-way case-insensitive
character classifier CNN. Each image is synthetically generated by maximizing the
posterior probability of a particular class. This is implemented by back-propagating
the error from a cost layer that aims to maximize the score of that class [43, 17].

9 × 9, resulting in a map of size 16 × 16 (to avoid boundary effects) and 96
channels. The 96 channels are then pooled with maxout in group of size g = 2,
resulting in 48 channels. The sequence continues by convolving with 128, 512,
148 filters of side 9, 8, 1 and maxout groups of size g = 2, 4, 4, resulting in feature
maps with 64, 128, 37 channels and size 8× 8, 1× 1, 1× 1 respectively. The last
37 channels are fed into a soft-max to convert them into character probabilities.
In practice we use 48 channels in the final classification layer rather than 37 as
the software we use, based on cuda-convnet [25], is optimized for multiples of
16 convolutional filters – we do however use the additional 12 classes as extra
no-text classes, abstracting this to 37 output classes.

We train using stochastic gradient descent and back-propagation, and also
use dropout [22] in all layers except the first convolutional layer to help pre-
vent overfitting. Dropout simply involves randomly zeroing a proportion of the
parameters; the proportion we keep for each layer is 1, 0.5, 0.5, 0.5. The train-
ing data is augmented by random rotations and noise injection. By omitting
any downsampling in our network and ensuring the output for each class is one
pixel in size, it is immediate to apply the learnt filters on a full image in a
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convolutional manner to obtain a per-pixel output without a loss of resolution,
as shown in the second image of Fig 4. Fig. 3 illustrates the learned CNN by
using the visualization technique of [43].

Stage 2: Learning the Other Character Classifiers. Training on a large
amount of annotated data, and also including a no-text class in our alphabet,
means the hidden layers of the network produce feature maps highly adept at
discriminating characters, and can be adapted for other classification tasks re-
lated to text. We use the outputs of the second convolutional layer as our set
of discriminative features, Φ(x) = z2. From these features, we train a 2-way
text/no-text classifier1, a 63-way case-sensitive character classifier, and a bi-
gram classifier, each one using a two-layer CNN acting on Φ(x) (Fig. 2). The
last two layers of each of these three CNNs result in feature maps with 128-2,
128-63, and 128-604 channels respectively, all resulting from maxout grouping
of size g = 4. These are all trained with Φ(x) as input, with dropout of 0.5 on
all layers, and fine-tuned by adaptively reducing the learning rate. The bigram
classifier recognises instances of two adjacent characters, e.g. Fig 6.

These CNNs could have been learned independently. However, sharing the
first two layers has two key advantages. First, the low-level features learned
from case-insensitive character classification allows sharing training data among
tasks, reducing overfitting and improving performance in classification tasks with
less informative labels (text/no-text classification), or tasks with fewer training
examples (case-sensitive character classification, bigram classification). Second,
it allows sharing computations, significantly increasing the efficiency.

4 End-to-End Pipeline

This section describes the various stages of the proposed end-to-end text spot-
ting system, making use of the features learnt in Sect. 3. The pipeline starts with
a detection phase (Sect. 4.1) that takes a raw image and generates candidate
bounding boxes of words, making use of the text/no-text classifer. The words
contained within these bounding boxes are then recognized against a fixed lex-
icon of words (Sect. 4.2), driven by the character classifiers, bigram classifier,
and other geometric cues.

4.1 Text Detection

The aim of the detection phase is to start from a large, raw pixel input image
and generate a set of rectangular bounding boxes, each of which should contain
the image of a word. This detection process (Fig. 4) is tuned for high recall, and
generates a set of candidate word bounding boxes.

1 Training a dedicated classifier was found to yield superior performance to using the
background class in the 37-way case-sensitive character classifier.
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Fig. 4. The detector phase for a single scale. From left to right: input image, CNN
generated text saliency map using that text/no-text classifier, after the run length
smoothing phase, after the word splitting phase, the implied bounding boxes. Subse-
quently, the bounding boxes will be combined at multiple scales and undergo filtering
and non-maximal suppression.

The process starts by computing a text saliency map by evaluating the
character/background CNN classifier in a sliding window fashion across the im-
age, which has been appropriately zero-padded so that the resulting text saliency
map is the same resolution as the original image. As the CNN is trained to detect
text at a single canonical height, this process is repeated for 16 different scales
to target text heights between 16 and 260 pixels by resizing the input image.

Given these saliency maps, word bounding boxes are generated independently
at each scale in two steps. The first step is to identify lines of text. To this end,
the probability map is first thresholded to find local regions of high probability.
Then these regions are connected in text lines by using the run length smoothing
algorithm (RLSA): for each row of pixels the mean μ and standard deviation σ
of the spacings between probability peaks are computed and neighboring regions
are connected if the space between them is less than 3μ−0.5σ. Finding connected
components of the linked regions results in candidate text lines.

The next step is to split text lines into words. For this, the image is
cropped to just that of a text line and Otsu thresholding [37] is applied to
roughly segment foreground characters from background. Adjacent connected
components (which are hopefully segmented characters) are then connected if
their horizontal spacings are less than the mean horizontal spacing for the text
line, again using RLSA. The resulting connected components give candidate
bounding boxes for individual words, which are then added to the global set of
bounding boxes at all scales. Finally, these bounding boxes are filtered based on
geometric constraints (box height, aspect ratio, etc.) and undergo non-maximal
suppression sorting them by decreasing average per-pixel text saliency score.

4.2 Word Recognition

The aim of the word recognition stage is to take the candidate cropped word im-
ages I ∈ R

W×H of widthW and heightH and estimate the text contained in them.
In order to recognize a word from a fixed lexicon, each word hypothesis is scored
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(a) (b)

Fig. 5. (a) The optimal placing of breakpoints for the word “SHOGUN” in the image,
with the 1D character response map for 37 character classes below. Each row of the
response map is the horizontal CNN response for a particular character, with classes
in row order from top to bottom: no-text, 0-9, a-z (i.e. first row is the no-text class
response, last row is the “z” class response). (b) The optimal breakpoint placing for
“County” with the bigram responses of only the ground-truth text bigrams shown
below. Green lines show the placed breakpoints bw with red circles showing the implied
character center.

using a generative model that combines multiple visual cues. The computational
complexity is therefore linear in the lexicon size.

The input to the word recognition are the 2D character probability maps (case
sensitive and insensitive) and bigram probability maps generated using the CNN
classifiers. Restricted to the cropped word region, this results in a W×H map for
each character hypothesis. These W ×H maps are reduced to W × 1 responses
by averaging along the columns (averaging uses a Gaussian weight centered on
the middle row). Grouping the 1D responses per classifier type, this result in
matrices P ∈ R

37×W , Q ∈ R
63×W , R ∈ R

604×W for the case-insensitive, case-
sensitive, and bigram classifier classifiers respectively (Fig. 5).

Given matrices P,Q,R, the next step is to score each word hypothesis w =
(c1, c2, . . . , cLw). Let bw = (bw1 , b

w
2 , . . . , b

w
Lw+1) denote the breakpoints between

characters (where bw1 marks the beginning of the first character and the bwLw
the

end of the last one). The word-breakpoints hypothesis (w, bw) receives score

s(w, bw, P,Q,R) =
1

|bw|

⎛
⎝

|bw|∑
i=1

mi(b
w
i , R) +

|bw|∑
i=2

φ(bwi , b
w
i−1, P,Q,R)

⎞
⎠ . (1)

For each word hypothesis w the optimal location of breakpoints are deter-
mined using dynamic programming and the word with best score s(w, I) =
maxbw s(w, bw, P,Q,R) is recognized.

The unary scores mi(b
w
i , R) combine the following cues: distance from ex-

pected breakpoint placement, distance to out of image bounds, no-text class
score, the bigram score, and, for the first and last breakpoint, the distance
from the edge of the image. The pairwise score φ(bwi , b

w
i−1, P,Q,R) combines:
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Table 1. A description of the various datasets used to evaluate on. # im. denotes
the total number of images in the dataset, and # words the total number of word
occurrences.

Label Description Lex. size # im. # words

IC03 ICDAR 2003 [1] test dataset. – 251 860

IC03-50 ICDAR 2003 [1] test dataset with fixed lexicon. 50 251 860

IC03-Full ICDAR 2003 [1] test dataset with fixed lexicon. 860 251 860

SVT SVT [46] test dataset. – 250 647

SVT-50 SVT [46] test dataset with fixed lexicon. 50 250 647

the character score at the midpoint between breakpoints, the no-text score at
the character center, the deviation from the average width of the character, and
a dynamic contribution from the left and right bigram responses relative to the
character score – this allows bigram responses to take control when it is difficult
to classify the character in focus, but easy to classify characters on either side.
Also it is ensured that there is no violation of the sequence of characters in the
word and that the character centers are all in the region of the word image.
Each score is weighted and linearly combined, with the parameters found by
grid search on a validation set.

Given the recognized word, the bounding box is adjusted to match the es-
timated breakpoints and added to a list of candidate recognized word regions.
The final step is to perform non-maximal suppression on this set of bounding
boxes in order to eliminate duplicate detections.

5 Experiments

This section evaluates our method on a number of standard text-spotting bench-
marks. Data and technical details are discussed next, with results in Sect. 5.1.

Datasets. We train and evaluate on a number of datasets. The four ICDAR
datasets – ICDAR 2003 [1], 2005 [28], 2011 [42], and 2013 [24] – containing a
varied array of photos of the world that contain scene text. ICDAR 2003, 2005,
and 2013 have word and character bounding box annotations, whereas the IC-
DAR 2011 dataset contains only word bounding box annotations. The Street
View Text dataset (SVT) [46] contains images downloaded from Google Street
View of road-side scenes, and only has case-insensitive word bounding box an-
notations. The labelled text can be very challenging with a wide variety of fonts,
orientations, and lighting conditions. KAIST provide a scene text dataset [5]
consisting of 3000 images of indoor and outdoor scenes containing text, with both
a mixture of photos from a high-resolution digital camera and a low-resolution
mobile phone camera. Word and character bounding boxes are provided as well
as segmentation maps of characters, and the words are a mixture of English and
Korean. The Oxford Cornmarket Scene Text dataset [39] provides high res-
olution images of a busy street scene, with case-insensitive, word level bounding
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Fig. 6. Some training samples used
for bigram classification as seen by
the CNN. From left to right, the top
row labels are “de”, “sf”, “aw”, “lp”,
“oa”, and “ad”.

box annotations. Not all text is labelled, but there are some difficult samples.
The Chars74k [10] and the StanfordSynth [47]. Both datasets contain small
single-character images of all 62 characters (0-9, a-z, A-Z). Chars74k comprises a
set of characters from natural images, and a set of synthetically generated char-
acters. The StanfordSynth characters are all synthetically generated, but are
very representative of natural scene characters, whereas the Chars74k synthetic
characters are not.

Classifier Training Data. The case-insensitive character classifier is learned
on 163k cropped 24× 24 pixel characters from ICDAR 2003, 2005, 2011, 2011,
2013 training sets, KAIST, the natural images from Chars74k (we do not use
the synthetically generated images), StanfordSynth, and FlickrType. After this
training, the characters in the SVT training set and Oxford Cornmarket dataset
are automatically annotated, and training continues including those samples,
giving a total of 186k characters. No-text data is generated from all four ICDAR
training datasets (all other datasets do not annotate all text occurrences). The
case-sensitive character classifier is trained on the same data, excluding Flick-
rType and automatically annotated characters, giving 107k training samples.
Wherever possible, the characters were cropped and resized to maintain their
original aspect ratio.

The bigram classifier performs 604-way classification – the number of unique
bigrams present in the ICDAR 2003 and SVT lexicons. We train on 24 × 24
pixel samples, generated by centering a window with width 1.5 times that of
the height at the breakpoint between two characters, cropping the image, and
resizing to 24× 24 pixels, thus squashing the aspect ratio. We use the character
annotations from the ICDAR 2003, 2005, 2011, 2011, 2013 training sets, KAIST
dataset, FlickrType and the automatically annotated datasets giving a total of
92k samples. However, due to the relative distribution of bigrams in natural
text, some bigram classes have no training data, while others have thousands of
samples – on average there are 152 image samples per bigram class.

Weak Baseline System. The Flickr mining process described in Sect. 2 uses
a weak baseline end-to-end text spotting system based on the Stroke Width
Transform (SWT) [16]. First, the SWT word detection algorithm is run as de-
scribed in [16]. The SWT labels each pixel with a value of the width of the
stroke it is estimated to belong to. Regions of similar stroke width are combined
into connected components and are character candidates. Using simple heuris-
tics [16], these character candidates are grouped together to form words, gener-
ating word bounding boxes, character bounding boxes, as well as rough character
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Table 2. The accuracy of classifiers for 36-way character classification, 62-way case-
sensitive character classification, 2-way text detection, and 604-way bigram classifica-
tion on ground-truth cropped patches. For the SVT dataset the character-level anno-
tation is automatically generated by our system. *Value read from graph.

Character
Classifier

(%)

Case-sensitive
Character

Classifier(%)

Text/No-text
Classifier

(%)

Bigram
Classifier

(%)

Method IC03 SVT IC03 IC03 SVT IC03

Wang & Wu [47] - - 83.9 97.8* - -
Alsharif [6] 89.8 - 86.0 - - -
Proposed 91.0 80.3 86.8 98.2 97.1 72.5

segmentations. This process is run with multiple sets of parameters, as the SWT
is very sensitive to changes in them, producing a large number of word detec-
tion candidates. A random forest classifier based on [7] is then used to produce
a text saliency map for each candidate bounding box, rejecting false positive
SWT word detections. For each remaining word detection candidate, the rough
SWT character segmentations are used to generate a color model to fully seg-
ment characters using Graph Cut [9], after which the word detections are filtered
based on profile features described in [15]. Finally, the segmented word detec-
tion is fed in to an off-the-shelf OCR package, Tesseract [2], for case-insensitive
character recognition. When tested on the standard benchmarks, this baseline
system achieves an unconstrained end-to-end word recognition f-measure of 0.50
on ICDAR 2003 ([33] get 0.41, higher is better) and 0.42 on ICDAR 2011 ([35]
get 0.45).

5.1 Results

This section compares the performance of our system against the standard
benchmarks and state-of-the-art. It also reports the performance of the indi-
vidual components of the system. The evaluation datasets are given in Table 1.

CNN Classifiers. Table 2 shows the results of the trained classifiers on IC-
DAR 2003 cropped characters (IC03) and SVT automatically annotated cropped
characters, as well as ICDAR 2003 cropped bigrams. To make results compara-
ble with published ones, the background class is ignored in this case. The 37-
way case-insensitive character classifier and case-sensitive classifier both achieve
state-of-the-art performance, as does the text/no-text classifier used for detec-
tion. Our bigram classifier gives a recognition accuracy of 72.5%, a good result
for a problem with 604 classes.

Although the CNNs are large (2.6 million parameters for the case-insensitive
classifier), the method does not require any unsupervised pre-training as is done
in [47], and incorporating the unsupervised approach described in [47, 13] gives
no improvement. Empirically, maxout and dropout were found to be essential
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Fig. 7. Five randomly chosen cropped groundtruth cropped words out of only 33 that
were recognized incorrectly in the IC03-50 cropped word benchmark

Table 3. Left: Ground-truth cropped word recognition accuracy (%) on different
datasets. Right: End-to-end word recognition F-measure results (%). These methods
report PASCAL VOC style 50% overlap match measure for the detection.

Cropped Words
Method IC03-

50
IC03-
Full

SVT-
50

Wang [45] 76.0 62.0 57.0
Mishra [31] 81.8 67.8 73.2
Novikova [36] 82.8 - 72.9
Wang & Wu [47] 90.0 84.0 70.0
Alsharif [6] 93.1 88.6 74.3
Goel [19] - - 77.3
PhotoOCR [8] - - 90.4
Proposed 96.2 91.5 86.1

End-to-End
Method IC03-

50
IC03-
Full

SVT-
50

Wang [45] 68 51 38
Weak Baseline - 55 41
Wang & Wu [47] 72 67 46
Alsharif [6] 77 70 48
Proposed 80 75 56

to achieve this performance. For example, replacing maxout with ReLU non-
linearities (this equates to reducing the number of filters to give the same layer
output dimensionality) causes slight overfitting hence worse accuracy (−3.3%
accuracy for case-insensitive character classification). We also found experimen-
tally that pooling and downsampling have no effect on classifier accuracy.

Sharing feature maps between tasks improves results compared to learning
independent models: +3% accuracy for text/no-text, +1% accuracy for the case-
sensitive character classifier, and +2.5% accuracy for the bigram classifier. In-
cluding the FlickrType mined data also gives an extra 0.8% accuracy for the
case-insensitive character classifier, illustrating the importance of more training
data. On the contrary, learning on more synthetic data from Chars74k dataset
(black and white renderings of different fonts) and Wang et al. [45] harmed
recognition accuracy by causing the CNN to overfit to the synthetic data.

Fixed Lexicon Cropped Word Recognition. The cropped word recogni-
tion accuracy of the recognition sub-system (Tab. 3) is evaluated following the
protocol of [45] (in particular, words smaller than two characters are ignored).
For each word, a set of hypothesis is formed adding to the ground-truth text a
small number of distractors. These distractors are: in IC03-full the full lexicon,
in IC03-50 the 50 words from [45], and in SVT, 50 selected words.

Our word recognition system gives state of the art accuracy on the ICDAR
2003 benchmarks, improving on state of the art by 3.1% for the 50 word lexicon
and 2.4% for the full lexicon. The total recognition accuracy of 96.2% for the 50
word lexicon makes only 33 mistakes out of 860 test images, and many of the
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Fig. 8. The precision/recall curves on the IC03-50 dataset (left), IC03-Full (middle),
and SVT-50 dataset (right) with lines of constant F-measure. The results from [47, 6]
were extracted from the papers.

misclassified examples can be very difficult to classify even for a human (Fig. 7).
On the SVT dataset, we achieve an accuracy of 86.1%, which while 4.3% off state-
of-the-art, improves on the next best result [19] by 8.8%. This is a competitive
result considering our method is trained on two orders of magnitude less data,
and so must use a smaller model than the state-of-the-art PhotoOCR [8] method.

End-to-End Word Recognition. The results of our end-to-end system are
evaluated on the ICDAR 2003 test set with different sized lexicons and the SVT
dataset (Tab. 3, Fig. 8). A recognition result is considered to be correct if the
bounding box has at least 50% overlap with the ground truth and the text is
correct. The detector described in Sect. 4.1 is tuned for high recall and generates
word bounding boxes with localization P/R (precision/recall) of 0.19/0.80 (IC03)
and 0.04/0.72 (SVT). After word recognition, detection results are re-ranked
by word recognition score, P/R curves generated, and the P/R/F-measure at
the maximum F-measure working point is reported [47, 45, 6]. Our end-to-end
pipeline outperforms previous works, with P/R/F-measure of 0.90/0.73/0.80 for
IC03-50, 0.89/0.66/0.75 for IC03-Full, and 0.73/0.45/0.56 for SVT-50. Interest-
ingly, due to the fact that our pre-recognition bounding boxes are generated by
a detector trained from the same data as the character recognizer, we find that
the difference between the localization and recognition scores to be inline with
the cropped word recognition results: at maximum recall, 95% of correctly lo-
calized words are subsequently correctly recognized in IC03-50. When removing
the bigram response maps from the word recognition process, F-measure drops
significantly from 0.8 to 0.76 for IC03-50 and from 0.56 to 0.50 for SVT-50.

6 Conclusions

In this paper we have presented a text spotting system using a single set of
rich, learnt features, that achieve state-of-the-art performance on a number of
benchmarks. These results illustrate the power of jointly learning features to
build multiple strong classifiers as well as mining additional training data in
publicly available resources such as Flickr. One additional potential advantage,
to be explored in future work, is that by implementing sliding window detection
as a byproduct of the convolutional network, our method allows the use of CNN
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speedup methods [23, 30] to dramatically accelerate detection. In addition, it
would be interesting to continue classifier learning by self-supervision using the
system to continually and automatically mine more data, and find other sources
for this. Finally, this framework is not only limited to fixed lexicon recognition,
as the major contributions are agnostic as to whether a lexicon is used or not.

Acknowledgements. Funding for this research is provided by the EPSRC and
ERC grant VisRec no. 228180, and thanks to Prof. Ingmar Posner for his insights
in discussions.
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