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Abstract. In this paper, we introduce a new general strategy for active learning.
The key idea of our approach is to measure the expected change of model outputs,
a concept that generalizes previous methods based on expected model change and
incorporates the underlying data distribution. For each example of an unlabeled
set, the expected change of model predictions is calculated and marginalized over
the unknown label. This results in a score for each unlabeled example that can be
used for active learning with a broad range of models and learning algorithms. In
particular, we show how to derive very efficient active learning methods for Gaus-
sian process regression, which implement this general strategy, and link them to
previous methods. We analyze our algorithms and compare them to a broad range
of previous active learning strategies in experiments showing that they outper-
form state-of-the-art on well-established benchmark datasets in the area of visual
object recognition.

Keywords: active learning, Gaussian processes, visual recognition, exploration-
exploitation trade-off.

1 Introduction

Over the last decade, the amount of accessible data has been growing dramatically and
our community discovered the benefits of “big data” for learning robust recognition
models [2,11]. However, in several important applications, e.g., defect detection [15] or
fine-grained categorization of rare categories [7], collecting labeled samples turns out to
be a hard and expensive task, where labeling uninformative samples should be avoided
as much as possible. Therefore, actively selecting an informative set of samples to label
is important, especially if the labeling budget is strictly limited. Furthermore, it is nec-
essary for life-long learning of visual objects, where we are interested in incrementally
enriching object models with minimal user interaction.

In active learning, we are interested in reducing expensive manual labeling efforts.
This goal is achieved by identifying a subset of unlabeled samples from a huge pool,
such that the resulting accuracy (classification or regression accuracy depending on the
application) of a model learned using the additional subset is maximized. The chal-
lenges are that the labels of the selected examples are only available after the selection
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Fig. 1. Illustration of the active learning strategy introduced in this paper: an initial model is
trained from labeled samples (blue and green). Unlabeled samples (gray) are evaluated with re-
spect to the change of model outputs after adding them to the train set. For three exemplary
samples (red, orange, and pink), the resulting model output change (MOC) for three different im-
ages is visualized. The sample leading to the strongest output change marginalized over all data
Ω is finally queried.

and that the accuracy for unseen data can not be correctly measured beforehand and a
proxy for it needs to be optimized. Although approximations exist based on estimated
labels [16] or estimated confidence [1], they have to perform time-consuming extensive
model evaluations and updates. Furthermore, estimating class labels is especially prone
to errors in the presence of only few labeled data – which is the working range of nearly
all active learning scenarios.

To circumvent these drawbacks, a variety of different strategies has been proposed,
which are based on what one assumes to be important for higher accuracies, e.g., a
rapid exploration of the whole feature space [10], the identification of ’hard samples’
among unlabeled points with respect to the current model [17], or combinations of
existing techniques [1,4]. Although being intuitive in their different ways, none of these
strategies can actually guarantee an impact of active learning on future model decisions.

In this paper, we therefore introduce a new general active learning strategy facing the
problem by predicting the influence of an unlabeled example on future model decisions.
If the unlabeled example is likely to change future decisions of the model when being
labeled, it is regarded as an informative sample. An illustration of our strategy is visu-
alized in Fig. 1. In the toy example, the final query is likely to change model outputs
for a whole set of samples and is therefore preferred over samples which would lead
to almost no changes. In summary, the contributions of this paper are two-fold: (1) we
present a novel active learning strategy applicable to different applications and models,
and (2) we derive an efficient algorithm based on Gaussian process regression from our
general strategy.

The active learning strategy most similar to ours is to calculate the expected model
change [6,20], which is mostly realized by measuring the Euclidean distance between
the current model parameters and the expected model parameters after labeling. As we
show in this paper, this strategy completely ignores the underlying data distribution,
which is not the case for our approach, where we consider the change of model out-
puts instead of model parameters. Our technique is rather general and can be used for
several different learning methods; however, we show that in the case of Gaussian pro-
cess regression (or kernel ridge regression), the expected model output change can be
efficiently calculated without learning from scratch. Furthermore, several active learn-
ing methods derived from the new approach are empirically compared with each other
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Fig. 2. Visualizing our active learning technique (EMOC). Figure is best viewed in color and
by zooming in. Current classification scores are color coded, and thickness of unlabeled samples
corresponds to their active learning scores, with large scores being preferred. You are invited to
compare also against results of different strategies given in the supplementary material.

and we demonstrate in our experimental evaluation on well-known visual recognition
datasets the advantage of expected model output change as a tool for active learning.

Why Yet Another Active Learning Technique? While facing active learning and
diving through the enormous amount of great work done in this field, we sought for
gaining clarity about which technique to use in which scenario. We investigated several
playgrounds, among it a 2D toy example simple on first sight (see Fig. 2 and supple-
mentary material). To our surprise, the majority of existing approaches struggled heav-
ily due to either a focus too strong on outliers, or poor discovery abilities (see Table 1
in the suppl. mat. for an overview of our findings). The only positive exception, how-
ever, performed surprisingly poor in experiments on real-world data. As a consequence,
we found the necessity to develop a technique inheriting advantages of previous active
learning approaches, i.e., being capable of discovering new clusters of data while be-
ing resistant to outliers, and on the same time focusing on regions where unconfident
classification boundaries badly need improvements. In the remainder of the paper, we
derive our technique from a theoretical position, prove it on real-world data, and, with-
out further anticipating, show here already on the 2D problem that our technique offers
the desired properties (see Fig. 2).

After reviewing related work in Sect. 2, we derive the main principle of our approach
in Sect. 3. How to obtain efficient query strategies by utilizing Gaussian process models
is shown in Sect. 4 and fast approximations are derived. Sect. 5 shows that the typical
trick of density weighting in active learning can be motivated as a very rough approx-
imation of our approach. We finally analyze the derived strategies on well-established
benchmark datasets for visual object recognition in Sect. 6.

2 Related Work

As mentioned earlier, active learning techniques aim for selecting samples that lead to
the highest improvement in accuracies, or similarly reduce the error as fast as possible.
Since accuracies can not be reliably estimated in the absence of test data, multitudes of
proxies and heuristics have been developed, which can be grouped into several general
strategies. We review a prominent subset of them and list a few representative works.
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Rapid Exploration. In order to quickly obtain label information for the whole fea-
ture space, exploration strategies prefer samples maximally far away from all current
training samples, like KFF by [1] or the Gaussian process predictive variance [10].
However, since recognition problems are often characterized by low-dimensional man-
ifolds of the original input space, these techniques often struggle with querying outliers
rarely related to the class distribution.

Maximum Uncertainty. Similar to exploration, techniques relying on classifier un-
certainty aim for selecting samples the current model is most uncertain about. In con-
trast to the previous strategy, this is done in a supervised manner taking the current
model boundaries into account. Exemplary techniques are given in [21] and [10] for
Support Vector Machines (SVM) or Gaussian process classifiers (GP), respectively.

Maximization of Expected Model Change. To balance exploration and exploitation
and additionally ensure that queried samples affect the current model, techniques in
this area favor samples that result in the largest model change after retraining. Since
the process of model retraining is costly, techniques had been restricted to parametric
models where the model change can be traced back to the change of the gradient of
the objective function [20]. In our earlier work [6], we extended this strategy to non-
linear GP regression models by exploiting efficient closed-form updates. However, a
theoretical connection to the goal of error reduction is missing and assuming that a large
model change results in an acceptable change of predictions is not valid in general.

Reduction of Estimated Classification Error. To overcome the previous shortcom-
ings, this strategy directly aims at reducing the unknown classification error of the
current model under a specified loss function. The technique most famous here was
introduced by [16], where the true conditional distribution is approximated with the pre-
diction of the current model, which leads to an expected entropy minimization scheme.
Although being closest to the goal of active learning, techniques of this strategy suffer
from two drawbacks: (i) they often have to face the computational costs of model re-
training for every unlabeled sample and additionally have to evaluate the error on all
available data, and (ii) the estimation of unknown labels needed for error evaluations is
crucial and prone to errors especially in the presence of only few training data.

Work Most Similar to our Approach. The active learning approach we introduce in
this paper is located in between the general strategies of Maximization of expected model
change and Reduction of estimated classification error. While the first one does not take
the actual change of model decisions into account at all, the latter requires perfectly reli-
able estimates of class labels used for empirical risk estimation. Both drawbacks are less
present in our strategy. Additionally, we show that the density re-weighting technique
introduced by [19] can be derived as an approximation of our proposed method. Fur-
thermore, [22] present a technique to actively pick unlabeled nodes in a CRF to improve
semantic segmentation quality based on the amount of CRF nodes flipping their state,
which is generalized in our approach as well. For the choice of a GP regression model,
we show how to transfer the work in [6] to our approach, which thereby additionally
exploits the density information available in unlabeled data.
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3 Expected Model Output Change (EMOC)

In pool-based active learning, a set L ∈ Ωn of n labeled examples with labels y ∈ Yn

and a set U ⊂ Ω of unlabeled examples is given from a problem domain Ω and an
algorithm should select an example x′ ∈ U to be labeled by an annotator, i.e., assigned
an output value y′ ∈ Y . The selection aims at improving the accuracy of a model
f : Ω → Y (e.g., a classifier for Y = {−1, 1} or a regressor for Y = R) learned by
the given training data. In this paper, we deal with selecting one example at a time also
known as myopic active learning.

As reviewed in the last section, several quite different active learning strategies exist.
However, what we ultimately look for are high accuracy models with less annotated
data, i.e., we should select unlabeled examples x′ that lead to the maximum increase in
accuracy when being labeled and used to improve the current predictor. Unfortunately,
we can never precisely predict the change in accuracy after adding a sample to the
labeled pool in advance1. Therefore, we would like to raise the question: Given a pool
of unlabeled samples – some of them changing your model outputs when being labeled
and added, others do not change anything – which one would you query?

In absence of further knowledge, we argue that examples that lead to high expected
model output changes should be queried. Therefore, we consider how strongly a new
sample x′ influences the model decisions marginalized over all possible inputs x ∈ Ω
and over its yet unknown output y′ ∈ Y:

Δf(x′) = Ey′∈Y Ex∈Ω

(
L (f(L,y)(x), f([L,x′],[y,y′])(x)

))
, (1)

where f(·,·) is a model trained from labeled data and L is a loss function measuring the
difference between model outputs. In the following, we skip the dependency of L,y,x′

and y′ on f in the notation and instead write f(x) and f ′(x) for models before and
after including (x′, y′) as additional training sample:

Δf(x′) =
∫
Y

(∫
Ω

L(f(x), f ′(x)) p (x) dx
)
p(y′|x′)dy′.

The active learning algorithm we propose evaluates Δf(x′) for all unlabeled examples
x′ ∈ U and selects the example with the maximum value. In the following, we motivate
the usefulness of this strategy for active learning and derive a specific algorithm from it
by defining probability estimators, loss functions, and model classes.

EMOC Is an Upper Bound for Loss Reduction. Using EMOC for active learning
can be motivated as an upper bound for the expected loss reduction. The additional
assumption we need is that the loss function L obeys the following triangle inequality
for a, b, c ∈ Y:

L(a, b) ≤ L(a, c) + L(c, b) . (2)

1 Note that we can not even precisely measure the accuracy of our system before the update and
instead have to rely on approximations based on validation and test sets.
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Furthermore, we assume that the model g(x) learned from all possible data of the prob-
lem domain Ω exists2 and that

εf = Ex∈Ω (L (f(x), g(x))) , (3)

is giving us an error measure for f . The expected decrease in loss for f ′ can now be
defined as Δε = Ey′∈Y(εf − εf ′) and the following shows that the expected model
output change defined in Eq. (1) is an upper bound [22]:

Δε = Ey′∈Y Ex∈Ω (L(f(x), g(x))− L(f ′(x), g(x)))
≤ Ey′∈Y Ex∈Ω (L(f(x), f ′(x))) = Δf(x′).

It is impossible to directly maximize the loss reduction term on the left-hand side for
active learning, because g is unknown. Therefore, our active learning methods search for
the unlabeled example x′ with highest upper bound in loss reduction given by EMOC.
It should be noted that this of course does not guarantee a proper decrease in the loss,
but it at least does not limit it in advance by selecting examples that do not change
model outputs at all.

Possible Choices for L(·, ·) and p(x). The choice of L naturally complies with the
problem settings faced. The absolute difference |f (x) − f ′ (x) | in model response is
well suited for regression tasks with continuous output values. For classification tasks,
where Y is a discrete set, the common choice for measuring model output changes
would be the classification loss, where L(a, b) is 1 for a �= b and zero everywhere else.
However, we will see that for classification decisions based on thresholding underlying
continuous model outputs, simpler losses can be used that avoid estimating a threshold
(Sect. S1 in the supplementary material). Marginalization over y′ is done by computing
estimates based on the current model output and we discuss the details in the next
section. In the future, we are planning to investigate also losses suitable for multi-class
classification tasks.

What remains is how to model the probability distribution over the input space in
practice, i.e., how to specify p(x). Since we only have access to the set S = L ∪ U of
labeled examples L and unlabeled examples U, we approximate p(x) with the empirical
density distribution:

p(x) ≈ 1

|S|
∑
xj∈S

δ(x− xj) , (4)

where δ(x) is the Dirac function. Note that this implies a representative data distribution
in S, which however is one of the main assumptions for active learning. In summary,
EMOC scores (see Eq. (1)) for models with continuous outputs can be calculated based
on empirical estimates for given data by:

Δf(x′) = Ey′∈Y

⎛
⎝ 1

|S|
∑
xj∈S

|f (xj)− f ′ (xj) |
⎞
⎠ , (5)

independent of the learning algorithm for f .
2 For classification, we need this requirement for g because the label space is not R. However,

for regression, we could even assume that g is the ground-truth function.
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4 Efficient EMOC with GP Regression

Our active learning strategy introduced in the previous section applies to a broad span of
possible models and a naive approach to calculate the scores is to train a new predictor
f ′ for each unlabeled example x′ ∈ U by adding the example to the training set, retrain
the predictor, and evaluate it on the whole set of examples given. In the following,
we show that this is not necessary when using Gaussian process regression models.
Furthermore, we also show how the marginalization over y′ can be directly done.

Gaussian process regression is a kernel approach with the following decision
function:

f(x) =

n∑
i=1

αi κ(xi,x) = αTk(x) (6)

where κ is a given kernel function. The weight vector α of the model is the result of ker-
nel ridge regression and given by

(
K+ σ2

n · I)−1
y, where K is the kernel matrix of the

training set L, y is the vector of outputs of L, and σ2
n their assumed noise variance [13].

For the model in Eq. (6), the influence of a new sample on all possible predictions can
therefore be computed as follows:

Δf(x′) = Ey′∈Y

⎛
⎝ 1

|S|
∑
xj∈S

|k(xj)
Tα− k̄(xj)

Tᾱ|
⎞
⎠

= Ey′∈Y

⎛
⎝ 1

|S|
∑
xj∈S

|k̄(xj)
T

([
α
0

]
− ᾱ

)
|
⎞
⎠

where k̄(x) = [k(x) κ(x′,x)] and ᾱ = K̄−1

[
y
y′

]
is the updated weight vector

computed using the regularized kernel matrix K̄ of L ∪ {x′}.

Efficient Model Updates. Instead of computing expected model output changes
from scratch by retraining the model with each unlabeled example, GP regression al-
lows us to compute the new model and therefore also the change Δα of model coeffi-
cients efficiently and in closed form for a given output y′:

Δα
·
=

[
α
0

]
− ᾱ =

y′ − kTα

σ2
f∗ + σ2

n

[(
K+ σ2

n · I
)−1

k
−1

]
, (7)

where σ2
f∗ is the predictive variance of x′ and k is the vector of pairwise kernel values

of the training set and x′. A proof is given in [6] and is based on block-wise matrix
inversion. Please note that similar derivations for linear models are also possible and
known for several decades [12].

EMOC for Classification with Label Regression. With GP regression as an illus-
trative example, we focused on models with a continuous output. For classification, we
assume the final output to be obtained by maximizing a given p(y | f(x)). In fact,
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a prominent set of popular models used for binary classification, such as SVMs [18],
GP-regression [13], or LDA [9], first compute continuous scores for test samples which
are then transformed to discrete responses, e.g., by comparing against an application-
specific threshold. For the case of GP classification, using GP regression scores as pro-
posed by [10] leads to treating outputs as continuous values with Gaussian random
noise and allows for skipping approximate inference necessary for direct GP classifi-
cation [13]. Since we focus on binary classification settings in the rest of this paper,
we argue to compute model output changes directly on the continuous scores, which
reflects the non-ordinal nature of these models, avoids tricky threshold determinations,
and will also be important to develop a fast version of our active learning algorithms.
Furthermore, we will see in the experiments that label regression leads to an even better
classification performance than proper classification models with approximate infer-
ence (supplementary material, Sect. S1).

Although our computed model output changes are based on continuous scores, the
labels y′ are still binary, i.e., y′ ∈ {−1, 1}, and we need a method to compute the
expectation with respect to y′ in Eq. (1). We know that the output of GP regression
is not only a deterministic estimate but rather a predictive Gaussian distribution with
mean f(x′) and variance σ2

f∗ . Therefore, we compute p(y′ = 1|x′) by calculating the
probability that a sample from this distribution is positive, which directly corresponds
to the manner in which classification decisions are done in [10]3. This probability can
be calculated in closed form:

p(y′ = 1|x′) =
1

2
− 1

2
· erf

(
−f(x′)/

√
2σ2

f∗

)
(8)

using the error function erf(z) and is related to the cumulative Gaussian noise model
presented by [13]. In summary, the inner part of Δf(x′) is evaluated using Eq. (7) for
y′ = 1 as well as y′ = −1, and both values are used to compute a weighted average
using the probability in Eq. (8).

Fast Approximated EMOC. Even with the efficient model updates presented, we
have to compute k̄(xj)

TΔα for every unlabeled example xj , which can be a huge
computational burden for large sets of unlabeled examples. Fortunately, the computa-
tion time necessary to evaluate EMOC can be significantly reduced by the following
approximation:

Δf(x′) = Ey′∈Y
( 1

|S|
∑
xj∈S

|k̄(xj)
TΔα|

)
(9)

≤ Ey′∈Y
( 1
S
∑
xj∈S

k̄(xj)
T abs(Δα)

)
(10)

3 A more sophisticated estimation might also marginalize over possible thresholds, and future
work should focus on integrating this aspect efficiently.
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where abs(·) denotes element-wise absolute value. Since the model change Δα itself is
independent of xj , we can write this in short form as

Δffast(x
′) = Ey′

(n+1∑
i=1

(
|Δαi| 1S

∑
xj∈S

κ (x,xj)
))

. (11)

The computational benefit of the approximation introduced above is two-fold: (i) the
asymptotic runtime reduces (see Table 2), and (ii) instead of demanding the kernel
matrix consisting of kernel values between every two samples of S, computing the
approximated version only needs the resulting row sums. Additionally, note that the
approximation has an interesting interpretation: the right-hand side can be seen as a
Parzen density estimation

PDE(x;S) ∝ 1

|S|
∑
xj∈S

κ(x,xj) (12)

of each of the corresponding training samples estimated with both labeled and unlabeled
data (S = {L ∪ U}). Therefore, the changes of model coefficients are weighted with
respect to the data likelihood, i.e., an outlier with a high change in α should not have
a huge impact on EMOC and therefore also not on the selection process during active
learning. Note that kernel density estimation takes place in a possibly high-dimensional
input space, however, we have not seen any issues with respect to the curse of dimen-
sionality in our experiments.

5 Density Weighting as a Special Case of EMOC

In the following section, we do not propose any novel method, but show that a further
approximation of the EMOC principle leads to density-weighted queries [19]. This con-
nection emphasizes the importance of density weighting for active learning in general,
which will be further studied in our experiments. Density weighting has been known
for quite a while for active learning, but to the best of our knowledge, we are the first
ones presenting it as an approximation of a very general active learning strategy.

Let us now denote the vector containing density values of all labeled samples with
pL : p

(i)
L = PDE(xi;S) and let further be px′ = PDE(x′;S) the data density value

of the new sample. We can then even further approximate Δffast(x
′):

Δffast(x
′) = Ey′

(∣∣∣∣ΔαT ·
[
pL

px′

]∣∣∣∣) (13)

≤ Ey′
(
‖Δα‖1 ·

∥∥∥∥
[
pL

px′

]∥∥∥∥
1

)
(14)

∝ Ey′
(
‖Δα‖1 · |px′ |

)
, (15)

where we used the fact that only terms depending on x′ are important for the selection
process during active learning.
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Consequently, we notice that this very rough and simplified approximation of our
proposed active learning strategy is equivalent to taking queries based on expected
model change, e.g., using [6], and to multiply the scores with a Parzen density esti-
mate of the corresponding unlabeled sample. This indeed seems intuitive, since we now
can ensure that the samples being queried not only affect the model, but are also likely
to occur in dense regions of the space with respect to our current subspace of interest.
Note that in contrast to [6], we marginalize over y′ instead of using only the most likely
y′ as proposed by the authors.

Extension to Arbitrary Query Strategies. Based on the previous ideas, we will use
the following straight-forward replacements of arbitrary query strategies4 Q(x) in order
to integrate the data density:

Q∗(x) = px · Q(x) . (16)

The suggested replacement is a heuristic, which is easy to apply and motivated by our
approach. We thereby ensure that samples of high density areas5 are preferred over
outliers from non-important, sparse regions. We show in our experiments that this mod-
ification improves the performance of previous active learning methods and therefore
also offers a fairer comparison to our new active learning methods based on expected
model output change.

Note that the idea for density-based re-weighting of query scores was already intro-
duced in [19] for the task of sequence labeling. However, the authors proposed it as a
heuristic without a clear theoretical motivation and simply note that they would recom-
mend it in practice. In contrast to that, we place this technique in a proper theoretical
background by deriving it as a special approximation of the more general active learn-
ing approach introduced in this paper. Furthermore, the Parzen estimates in Eq. (12)
use all the given samples S = {L ∪ U} in contrast to S = U as proposed in [19]. This
is reasonable, since (1) density estimates do not have to be adapted during the query
process, which naturally changes U and (2) we estimate densities for the actual problem
setting, i.e., we rely on all information and data we have and not only on an arbitrary
subset.

6 Experimental Results

For an experimental evaluation, we have been interested in the following aspects (i) how
do active learning techniques derived from our strategy compare to previous state-of-
the-art strategies (see Sect. 6.1), (ii) how strongly does the density-based re-weighting
affect learning accuracies of state-of-the-art techniques (see Sect. 6.2), (iii) how pow-
erful is the EMOC approach under ideal settings, where we assume a perfect label
estimation for model updates (see Sect. 6.3), and is label regression enough for classi-
fication (supplementary material, Sect. S1)? To answer these questions, we follow the
experimental setup of [6] and use the corresponding evaluation protocol6. We conduct

4 If Q is designed to query samples with minimum score, multiply by 1− p(x) instead.
5 Density is considered with respect to the current problem and its induced data distribution.
6 Evaluation protocol was taken from
https://github.com/cvjena/activeLearning-GP

https://github.com/cvjena/activeLearning-GP
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Fig. 3. Active Learning on binary tasks derived from ImageNet (left) and Caltech 256 (right) .
We compare against active learning strategies ’rapid exploration’, ’maximum uncertainty’, ’max-
imization of expected model change’, and ’reduction of estimated classification error’. See text
for further details. The figure is best viewed in color.

experiments on two well-established benchmark datasets for image categorization: Im-
ageNet [3] and Caltech-256 [8]. Source code of our techniques and experiments will be
made publicly available at our homepage http://www.inf-cv.uni-jena.de/
active learning.

6.1 Comparison to State-of-the-Art

Experimental Setup. As done in [6], we derive 100 random binary tasks from the
ImageNet challenge consisting of a single positive and 9 negative classes. Every task
is repeated with 10 random initializations, which finally results in 1,000 experiments
to allow for reliable conclusions. Images are represented using the publicly available
bag-of-words-features of ILSVRC 20107 and we evaluate our EMOC approach when
using GP regression models as introduced in Sect. 4. In particular, we rely on the ex-
act model output change as introduced in Eq. (4) (EMOC), its approximation given in
Eq. (13) (Fast EMOC), as well as the density-weighted model change (GP-impact ·
density, see Eq. (15)), which is an extension of [6] derived from the EMOC principle.
We compare against passive learning (random), which is the naive baseline for all active
learning settings. Apart from that, we chose representative state-of-the-art methods for
the reviewed strategies: GP-var (using examples with a high predictive GP variance)
and GP-unc (seek for small ratios of predictive GP mean and variance) have been intro-
duced by [10] and are representative for the rapid exploration and maximum uncertainty
strategy, respectively. Additionally, we compare against the technique introduced in [6]
(GP-impact) for the expected model change strategy, and the approach of [16] trans-
ferred to GP (GP-minRisk) for reduction of estimated classification error principle. See
Sect. S4 in the supplementary material for further details of the experimental setup.

Evaluation. Active learning curves on tasks derived from ImageNet are shown in
the left plot of Fig. 3. Dashed curves correspond to strategies existing in the litera-
ture, whereas our techniques are plotted in solid lines. First of all, we observe that the
rapid exploration strategy leads to worse classification accuracies then passive learning,

7 http://www.image-net.org/challenges/LSVRC/2010

http://www.inf-cv.uni-jena.de/active_learning
http://www.inf-cv.uni-jena.de/active_learning
http://www.image-net.org/challenges/LSVRC/2010
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Table 1. Experimental results for ImageNet and Caltech 256: Average AUC value (in %) after 50
queries for 100 random binary tasks averaged over 10 random initializations. (∗) Our approach
significantly outperforms all other approaches verified by a paired t-Test and p < 10−3.

Strategy ImageNet Caltech 256

Random 76.83 81.70
Predictive variance [10] (GP-var) 73.11 77.06
Classification uncertainty [10] (GP-unc) 76.97 84.31
Reduction of classification error [16] (GP-minRisk) 76.08 84.59
Model change [6] (GP-impact) 78.32 84.56

EMOC strategy (Ours)∗ 80.03 85.88

which indicates the preference of outliers being queried. In contrast, nearly all remain-
ing methods improve random sampling. Interestingly, empirical risk minimization leads
to results slightly inferior to passive learning, emphasizing the negative influence of
wrongly estimated labels. In contrast, queries based on expected model output change
result in a significant improvement, confirming the intuition that samples resulting in
different model responses are worth being labeled. As argued in Sect. 4, this partly orig-
inates from the fact that previous methods focus on less important aspects of unlabeled
examples, e.g., looking for unexplainable samples (as done by GP-uncertainty) might
result in interesting samples, but without a clear relation to improvement of accuracy.

To further verify our findings, we performed experiments with an identical setup
on the Caltech-256 dataset and visualized results in the right plot of Fig. 3. The re-
sults clearly indicate the before-mentioned relation between different active learning
approaches. Uncertainty-based strategies obviously have problems querying useful sam-
ples if the size of training data is relatively small. Apart from that, the results are
consistent with the observations from the ImageNet experiment. In addition, Table 1
contains average AUC values obtained after 50 queries. Our approach outperforms all
other strategies significantly (paired t-Test, p < 10−3). It has to be emphasized again
that we obtained this result from experiments with 100 different recognition tasks and
10 different initializations. Furthermore, we compare against representative approaches
of five active learning strategies.

With respect to the approximations of the EMOC principle, we further observe that
for few labeled data in the ImageNet experiment, the approximation performs better
then the exact EMOC scores, whereas for a larger number the relation switches. This
suggests that the introduced approximations are less affected by randomly initialized
training sets, whereas exact EMOC scores are especially valuable when the current
model can be trained more robustly.

Evaluation in a One-vs-All Scenario. We also evaluated our approach in binary
tasks created in a one-vs-all manner as done by [10] (see supplementary material for
further details). As can be seen in Fig. 4, we observe a similar performance benefit of
our methods as in the previous experiments. Visualizations of queried images for the
airplane task as well as some hand-picked, interesting queries for remaining scenarios
are given in the supplementary material (see Sect. S5, Fig. 1).
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Fig. 4. Active learning improvement over passive baseline after 20 queries for 30 one-vs-all bi-
nary tasks derived from Caltech-256. Left: Results on all 30 individual classes with our Fast
EMOC technique. Right: Averaged results for all compared techniques.

Table 2. Computation times needed performing active selection with our method and approxima-
tions (Sect. 4) and n labeled examples as well as u unlabeled examples

Method GP-impact [6] [6] · density Fast EMOC EMOC

Time (n = 10, u = 990) 7.81 · 10−4 s 7.64 · 10−4 s 8.08 · 10−4 s 2.38 · 10−2 s
Asymptotic time O(n2u) O(n2u) O(n2u) O(n2u + nu2)

Runtime Evaluation. An empirical comparison of computation times8 for the de-
rived methods when querying the first sample in the previous experiments is given in
Table 2. As expected, exact EMOC computation is significantly slower than its approx-
imated versions, which are as fast as existing strategies. Furthermore, the asymptotic
time reveals that in case of a large number u of unlabeled examples, Fast EMOC should
be the method of choice, because the selection time only depends linearly on the num-
ber of unlabeled samples. The approach of [16] has the same asymptotic time as exact
EMOC, but we observed a speed-up of 1.6 over [16] in practice.

6.2 Importance of Density-Based Re-weighting

As mentioned earlier, density-based re-weighting of query scores is not limited to our
introduced strategies, but can be extended to arbitrary active learning techniques. In the
left plot of Fig. 5, we show the resulting gains when applying the re-weighting scheme
to GP active learning strategies introduced in the literature. First of all, we observe that
learning results are improved in almost all cases. Apart from this, it is also intuitive why
some of the methods can only benefit from the heuristic in late stages of learning (like
GP-var), whereas others can draw a partial advantage in early stages (e.g., GP-impact).
For example, as stated in [6], relying on the highest estimated model change leads to an
implicit balancing between exploration and exploitation. Consequently, in early stages
of learning, where the exploration aspect is usually more important, the density-based

8 Computation times have been measured using a Matlab implementation on a 3.4 GHz CPU
without parallelization and excluding precomputed kernel values.
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Fig. 5. Left: Gain of density-based re-weighting of active learning scores for several active learn-
ing strategies. Right: Performance of our EMOC method in a real active learning setting with
unknown label y′ (EMOC), when label y′ is known during selection with EMOC (Ideal EMOC),
and when the ground-truth label is used to greedily maximize AUC (AUC oracle).

re-weighting leads to exploration more focused on dense clusters than on outliers. In
later stages, where exploration is less necessary, a focus too strong on dense regions is
also less important and might even decrease performance.

6.3 Ideal EMOC

In a last experiment, we analyze the performance of our approach for a perfect esti-
mation of model updates, i.e., an artificial setup with known labels y′. Although we
could directly use them for performance optimization on U, we are instead interested
in the upper bound for EMOC. Therefore, we follow the previous experimental setup,
and replace the expectation over possible labels in Eq. (1) by ground-truth labels for the
unlabeled pool. As can be seen in the right plot of Fig. 5, working with correct label
estimations again significantly improves learning rates. This observation is interesting
by considering the experimental results in Sect. 6.1, where the EMOC strategy already
outperformed existing techniques. Consequently, it would be highly beneficial to better
infer unknown labels, especially if only few labeled samples are available and the initial
model might be learned poorly. The right plot of Fig. 5 also contains the results of a per-
fect AUC oracle, where examples are chosen that maximize the AUC performance on
U. The plot of this method is the upper bound for all myopic active learning methods.

7 Conclusions

We presented a new general active learning strategy based on calculating the expected
change of model outputs when an unlabeled example would be labeled and incorpo-
rated. The main motivation is that examples with a high overall impact on the model
outputs are most informative during learning. Our approach is flexible and allowed us
to derive several new active learning methods. In particular, we showed how to compute
expected model output changes efficiently for Gaussian process regression models. An
extensive experimental evaluation revealed that our strategies outperform several ex-
isting active learning techniques on established benchmark datasets for image catego-
rization. We further showed that density-based re-weighting of arbitrary active learning



576 A. Freytag, E. Rodner, and J. Denzler

scores can be derived as a rough approximation of our introduced approach and pre-
sented its benefits. We conclude that our general strategy for active learning – to query
samples which lead to the highest change of model responses – is beneficial in scenar-
ios, where collecting labeled data is expensive or time-consuming.

For future research, several directions are possible: (1) combining our strategy with
others in a reinforcement learning scheme [1,4], (2) improved estimation of class la-
bels for unlabeled samples using semi-supervised learning [23], (3) active learning for
regression and multi-class classification tasks by testing other loss functions, and (4)
using sparsification techniques or efficient kernel evaluations [14,5] to speed up evalu-
ation in the presence of large-scale data, such as the whole ImageNet dataset
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