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Abstract. This paper presents a generic optimization framework for efficient fea-
ture quantization using sparse coding which can be applied to many computer vi-
sion tasks. While there are many works working on sparse coding and dictionary
learning, none of them has exploited the advantages of the marginal regression
and the lasso simultaneously to provide more efficient and effective solutions. In
our work, we provide such an approach with a theoretical support. Therefore, the
computational complexity of the proposed method can be two orders faster than
that of the lasso with sacrificing the inevitable quantization error. On the other
hand, the proposed method is more robust than the conventional marginal regres-
sion based methods. We also provide an adaptive regularization parameter se-
lection scheme and a dictionary learning method incorporated with the proposed
sparsity estimation algorithm. Experimental results and detailed model analysis
are presented to demonstrate the efficacy of our proposed methods.

Keywords: Sparsity estimation, marginal regression, sparse coding, lasso, dic-
tionary learning, adaptive regularization parameter.

1 Introduction

Sparse coding has been successfully applied to many machine learning and computer
vision tasks, including image classification [30,31,8], face recognition [28,5], activity-
based person identification [22,15], etc. Sparse coding refers to a feature quantization
mechanism which obtains a codebook to encode each input signal as a sparse histogram
feature based on the linear combination of a few visual words. Due to its soft assignment
principal, it can make the quantization error much smaller [9,22]. Moreover, sparse
coding is more robust to the noise and easily incorporating into the bag-of-feature (BoF)
framework.

The least absolution shrinkage and selection operator which is also known as lasso
[27] in short is a popular sparse coding model in statistics signal processing which has
wildly used in sparsity estimation. It simultaneously minimizes the quantization error,
and impose an L1 penalty with a regularization parameter λ which controls the sparsity
of the coefficients. While there exists many efficient algorithms [20,7,29], however,
finding the lasso solutions remain a computational task with the complexityO(p3+dp2)
where d refers to the input feature dimension, and p refers to the amount of visual
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words in the dictionary. Thus, it hardly supports large scale data analysis efficiently and
effectively [6,23,11,1].

Recently, marginal regression, has been revisited and shown its efficient performance
for visual word selection and sparsity estimation [6,11,1]. For each feature, it calculates
the correlation with each visual word and imposes a tuning parameter to achieve the
sparsity. While marginal regression is simple and fast with the complexity O(dp), it
usually considers and utilizes a fixed tuning parameter which is not always the good
cut-off point for each feature and could result in a large quantization error since some
coefficients may be shrunk too much, but some may be included too much noise. Hence,
how to determine a suitable cut-off point becomes an typical problem in featuring cod-
ing. To address this, the sure independent screening (SIS) [6] method imposes an L1-
norm penalty and an energy constraint E to each marginal regression coefficient vector.
It sorts coefficients in terms of their absolute values and selects the top k coefficients
whose L1 norm is bounded by E so that each sparse code can be represented by similar
sparsity level. However, this method may also cause a large quantization error, because
marginal regression works well when visual words have low correlation in the dictio-
nary [1,23]; however, in general, they are highly correlated, and thus may fail to clarify
the relationship between visual words and the input feature.

While there are many works working on sparse coding and dictionary learning, none
of them has exploited the advantages of the marginal regression and the lasso simul-
taneously to provide more efficient and effective solutions. To this end, we provide in
this paper such an approach with a theoretical support. We propose an efficient sparsity
estimation approach using Marginal-Lasso Coding (MLC) which quantizes each fea-
ture into a small set of visual words using marginal regression combined with the lasso
framework. Our model represents each sparse code with similar sparsity level bounded
by a global sparsity energy and simultaneously shrinks individual coefficients to allevi-
ate the bias of sparse codes caused by the highly correlated visual words. Moreover, our
approach automatically determines the shrinking regularization parameter for each fea-
ture and further designs a self-ratio energy constraint of sparsity level which is different
from the traditional constraint with a case-dependent chosen value.

Contribution: 1) We propose an efficient Marginal-Lasso Coding (MLC) framework
for feature quantization with sparsity estimation, regularization parameter selection and
dictionary learning. 2) We exploit the advantages of the marginal regression and the
lasso simultaneously to provide more efficient and effective solutions. 3) We determine
the regularization parameter automatically and adaptively for each individual feature
and provide a self-ratio energy bound. 4) We provide a theoretical support for the pro-
posed model. 5) We successfully apply the proposed method to various recognition
tasks.

2 Related Work

Our approach is related to the general sparse coding model which has been widely used
for sparse representation [28,27,30,22], and there exist many algorithms to estimate
sparse codes, such as least angle regression [4], gradient descent [7,29], and feature-sign
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search [20]. The feature-sign search method [20,8,31] is a popular and efficient solu-
tion for sparsity estimation. It continuously selects and updates potential candidates in
an active set to maintain these nonzero coefficients and their corresponding signs until
reaching the constraint. However, with a large dictionary size, the active set would be-
come large and the feature-sign searching process may be hard to terminate [1,23]. While
these methods aim to obtain a small quantization error, they have a large computational
cost [6,11]. Therefore, different from traditional sparsity estimation techniques which
estimate sparse codes by continuously selecting variables to the active set based on the
searching criteria, we incorporate marginal regression coefficients into the sparse coding
model which is more efficient for sparsity estimation.

Recently, Fan and Lv [6] proposed a sure independent screening (SIS) method using
marginal regression to obtain sparse codes efficiently and can easily deal with large-
scale problems. Genovese et al. [11] provided a statistical comparison of the lasso and
marginal regression. Due to the promising performance in terms of accuracy and speed,
Krishnakumar et al. [1] applied marginal regression to learn sparse representation for
visual tasks. While these solutions use hard-thresholding-type methods, we propose in
this work a soft-thresholding-type method with a theoretical support to use marginal
regression combined with the lasso model for sparsity estimation.

3 Efficient Sparsity Estimation via Marginal-Lasso Coding

3.1 Sparsity Estimation via Marginal Regression

Consider a regression model x = Us + z with an input feature x ∈ R
d, a coefficient

vector s ∈ R
p, a column-wisely normalized dictionary U = [u1, . . . , up] ∈ R

d×p

(p � d) and a noise vector z ∈ R
d. The feature quantization task is to quantize an input

feature x into a feature histogram s with a few non-zero elements so that the linear
combination of U and s can gain a minimized quantization error. The mathematical
expression can be shown as follows:

min
s

1

2
‖x− Us‖22 (1)

To estimate the sparse code s, we first compute the component-wise marginal regression
coefficients â:

â ≡ UTx (2)

where â(k) = uT
k x is the kth element of â and uk is the kth column of the dictionary

U . Then, we threshold the coefficients in terms of their absolute values using a tuning
parameter t > 0 [3,11] so that the coefficients whose absolute values are larger than
t are kept and the rest are set to zero. The mathematical expression can be written as
follows:

ŝ(k) =

{
â(k) if |â(k)| > t

0 otherwise
(3)

According to Eq. 3, however, utilizing a fixed tuning parameter may cause a large quan-
tization error since it is not always the good cut-off point for each feature. Instead of



Efficient Sparsity Estimation via Marginal-Lasso Coding 581

cut-off point selection, we can select the top k large coefficients in terms of their ab-
solute values whose L1-norm is bounded by a constraint E [6,1]. The equation can be
reformulated as follows:

ŝ(k) =

{
â(k) if k ∈ B

0 otherwise
(4)

where

B = {J1, . . . , Jr : r ≤ p :

r∑
k=1

|â(Jk)| ≤ E} (5)

We sort the coefficients in terms of their absolute values in descending order which
denotes by indexes J1, . . . , Jp where |ŝ(J1)| > |ŝ(J2)| > · · · > |ŝ(Jp)|. The two thresh-
olding approaches above are hard-thresholding-type methods.

3.2 Marginal-Lasso Coding

While marginal regression has shown its effectiveness, there still exists three limita-
tions: (i) Marginal regression works well when the columns of dictionary have low
correlation [1,23]. However, in general, the columns of over-complete dictionaries are
usually highly correlated, and thus, in a linear regression model, their coefficients can
become poorly determined and exhibit high variance. (ii) In addition, the fixed regu-
larization parameter may cause a large quantization error. Some coefficients may be
shuck too much and some may be included too much noise. (iii) Moreover, the exist-
ing marginal regression solutions are hard-thresholding-type methods, and there are no
theoretical supports.

To address this, we consider the following conditions: (1) The regularization pa-
rameter should be chosen adaptively and automatically for each feature to minimize
individual estimate of expected quantization error. (2) The L1-norm in the lasso frame-
work should be considered locally for visual word selection and coefficient shrinkage
to alleviate the bias of sparse codes caused by the highly correlated visual words. (3)
The L1-norm in the constraint should be bounded locally and globally for sparse repre-
sentation. To this end, we introduce a Marginal-Lasso Coding (MLC) method to better
characterize input features and provide a theoretically soft-thresholding-type solution.
Similar to the existing works, we first compute the marginal regression coefficients of
each feature via Eq. 2. Then, we consider the following optimization problem:

min
s,λ

1

2
‖UTx− s‖22 + λ‖s‖1

subject to ‖s‖1 ≤ E

(6)

The first term is the quantization error, and the second term is a local L1 penalty with
an adaptive regularization parameter λ which controls the cut-off point selection and
the shrinkage of coefficients. The global sparsity constraint E bounds each sparse code
to the similar sparsity level. In this model, we aim to estimate a sparse code and a
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parameter λ so that the quantization error can be minimized and the coefficients can be
shrunk simultaneously for sparse representation. When considering multiple features,
the optimization problems can be refined as follows:

min
s1,...,sN
λ1,...,λN

1

2
‖UTX − S‖2F +

N∑
i=1

λi‖si‖1

subject to ‖si‖1 ≤ E ∀i
(7)

where X = [x1, . . . , xN ] ∈ R
d×N be a set of features, and S = [s1, . . . , sN ] ∈ R

p×N

be a set of corresponding sparse codes. Since the sparsity energy E is case-dependent
variable, we provide here another self-ratio energy e such that each feature can obtain
its sparse code by proportionally shrinking their marginal coefficients to the desired
level. The constraint can be reformulated as follows:

min
s1,...,sN
λ1,...,λN

1

2
‖UTX − S‖2F +

N∑
i=1

λi‖si‖1

subject to
‖fλ(UTx)‖1
‖UTx‖1 ≤ e ∀i

(8)

where fλ(A) refers to the solution of Eq. 3 with â = A and t = λ. While Eq. 7
considers the similar L1-norm between sparse codes, Eq. 8 considers the similar self-
ratio between each other.

3.3 Sparsity Estimation

When λ is fixed, we can solve the optimization problem of Eq. 6 by rewriting the ob-
jective as follows:

min
s

1

2
‖â− s‖22 + λ‖s‖1 (9)

Minimizing the Eq. 9 is equivalent to minimize individual element errors with their
corresponding absolute values. Thus, we can rewrite the objective as follows:

min
s

1

2

p∑
k=1

(â(k) − s(k))2 + λ|s(k)| (10)

Since the marginal regression coefficients are computed independently for each ele-
ment, hence, we can decompose the problem into p separate optimization tasks. For
each task k, the optimization problem can be defined as follows:

min
s(k)

(â(k) − s(k))2 + λ|s(k)| (11)

Then, by solving the above optimization problem, we can obtain a soft-thresholding-
type optimal solution of each element s∗(k):

s∗(k) =

⎧⎪⎨
⎪⎩

â(k) − λ if â(k) > λ

â(k) + λ if â(k) < −λ

0 otherwise

= sign(â(k))(|â(k)| − λ)+

(12)
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where sign(j) refers to the sign of j, and (l)+ means to keep the value when l is positive
and set it to zero when l is negative. The L1-norm can be defined as the sum of absolute
elements ‖s∗‖1 =

∑p
k=1 |sign(â(k))(|â(k)|−λ)+|. In Eq. 12, the regularization param-

eter λ controls the element selection and the shrinkage of the coefficients. If λ equals to
zero, then ‖s∗‖1 = ‖â‖1. Instead, if λ > 0, then some coefficients will be directly set
to zero and others will be shrunk towards zero automatically so that ‖s∗‖1 < ‖â‖1. By
maximizing ‖s∗‖1 bounded by the global sparsity constraint E, the individual λ∗ can
be calculated as follows:

λ∗ =argmax
λ

‖s∗‖1 = argmax
λ

p∑
k=1

|sign(â(k))(|â(k)| − λ)+|

subject to ‖s∗‖1 ≤ E

(13)

By doing so, we can estimate each element of the sparse code s∗(k) = sign(â(k))(|â(k)|−
λ∗)+ which is a soft-thresholding-type solution. When considering a set of features, the
optimization problem of Eq. 7 or 8 can be solved via Algorithm 1.

4 Marginal-Lasso Coding for Dictionary Learning

The dictionary U is a set of normalized visual words denoting by each column uk. To
learn the dictionary, we iteratively optimize U and S by obtaining S with a fixed U and
updating U based on a given S. The sparsity estimation S via the marginal-lasso model
has been introduced in the previous subsection. In this subsection, we introduce the
dictionary learning method. Since marginal regression works well when the columns in
the dictionary have low correlation [6,11,1,23], we formulate the optimization problem
of the dictionary learning as follows:

min
U

N∑
i=1

‖xi − Usi‖22 + γ‖UTU − I‖2F

subject to uT
k uk ≤ 1 ∀k

(18)

We simultaneously minimize the quantization errors denoting by the first term and the
correlations between columns in the second term with a regularization parameter γ.
This optimization problem can be solved via the first-order gradient descent method
[23,1]:

Uq+1 = ΠU{Uq − β∇F (Uq)} (19)

where

F (U) =

N∑
i=1

‖xi − Usi‖22 + γ‖UTU − I‖2F (20)

and
∇F (Uq) = 2(UqSS

T −XST ) + 4γ(UqU
T
q Uq − Uq) (21)

∇F (Uq) is the gradient of F (U) with respect to U at each iteration q, parameter β is
the step size, and ΠU is the projection function which maps each column uk to the
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Algorithm 1. Efficient Sparsity Estimation via Marginal-Lasso Coding

Require: Data X = [x1, . . . , xN ] ∈ R
d×N , a learned dictionary U = [u1, . . . , up] ∈ R

d×p,
and a specific value of the sparsity constraint E or a self-ratio constraint e

Ensure: Sparse coefficients S = [s1, . . . , sN ] ∈ R
p×N

1: For xi ∀i, compute the marginal regression coefficients

âi
(k) =

uT
k xi

‖uk‖22
∀k (14)

2: Calculate the regularization parameter λi for each xi ∀i based on the sparsity constraint E
of Eq. 6 and 13

λ∗
i =argmax

λi

‖s∗i ‖1 = argmax
λi

p∑

k=1

|sign(âi
(k))(|â(k)

i | − λi)+|

subject to ‖si‖1 ≤ E

(15)

Or calculate the regularization parameter λi for each xi ∀i based on the self-ratio constraint
e in Eq. 8

λ∗
i =argmax

λi

‖s∗i ‖1 = argmax
λi

p∑

k=1

|sign(â(k)
i )(|â(k)

i | − λi)+|

subject to
‖fλi(U

Txi)‖1
‖UTxi‖1 ≤ e

(16)

3: Obtain sparse codes

s
∗(k)
i =

⎧
⎪⎪⎨

⎪⎪⎩

â
(k)
i − λ∗

i if â(k)
i > λ∗

i

â
(k)
i + λ∗

i if â(k)
i < −λ∗

i

0 otherwise

(17)

L2-norm unit ball. More specifically, the dictionary is learned iteratively by finding the
local minimum along the gradient direction based on the small step size and normalizing
each column vector with length smaller or equal to one until convergence. The sparsity
estimation and the dictionary learning process is shown in Algorithm 2.

5 Experimental Results

In this section, we describe the experimental settings and analyze the proposed method
on the image classification, action recognition and activity-based human identification
tasks. We denote the proposed marginal-lasso coding approach by MLC with Matlab
implementation. We compare the proposed method with 5 algorithms: (1) The lasso
model with feature-sign search (LASSO-FS): the code has been implemented by its au-
thors in Matlab [20]. (2) The lasso model with least angle regression (LASSO-LAR):
we used the code from SPAMS software implemented by C++ [23]. (3) The marginal
regression model with the hard-thresholding method (MR-Hard): we implemented it in
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Algorithm 2. Sparsity Estimation and Dictionary Learning

Require: Data X = [x1, . . . , xN ] ∈ R
d×N , an initial normalized dictionary U =

[u1, . . . , up] ∈ R
d×p, and an energy bound with value E or self-ratio e

Ensure: Learned dictionary U ∈ R
d×p, sparse coefficients S = [s1, . . . , sN ] ∈ R

p×N

1: repeat
2: Obtain sparse code via Algorithm 1 using the latest dictionary.

min
s1,...,sN
λ1,...,λN

1

2
‖UTX − S‖2F +

N∑

i=1

λi‖si‖1

subject to ‖si‖1 ≤ E ∀i
(22)

3: Update the dictionary based on the sparse codes obtained from the previous step.

min
U

N∑

i=1

‖xi − Usi‖22 + γ‖UTU − I‖2F

subject to uT
k uk ≤ 1 ∀k

(23)

4: until convergence

Matlab according to Eq. 3. (4) The marginal regression model with the soft-thresholding
method (MR-Soft): we implemented it in Matlab according to Eq. 3 with soft threshold-
ing. (5) The marginal regression model with the sure independence screening method
(MR-SIS): we implemented it in Matlab according to Eq. 4.

5.1 Image Classification

We evaluate the performance of the proposed method for the image classification task
on USPS and Scene 15 datasets. USPS is a handwritten digits dataset [14,31] which
consists of 7291 training images and 2007 test images of size 16 × 16 with digits 0
to 9. We represent each sample by a 256-dimensional vector. The dictionary sizes are
selected from 32, 64, 128, 256, 512, 1024 under different training sizes. For the penalty
constraint, we adopt self-ratio in Eq. (8), and the parameters are set empirically via
cross-validation. To evaluate the performance, we train a linear SVM classifier and
compare to original regression (OR) and sparse coding (SC) methods. Table 1 shows
the results under different sizes of training samples from 100 to 7291. As shown, the
proposed MLC method outperforms the other two methods in most of the cases and
obtains the best accuracy result 95.3 under 5000 training sample size.

Scene 15 [24,21,19] contains 4485 images with 15 categories. Each category con-
sists of ranging from 200 to 400 images with average size of 300 × 250 pixels. This
dataset is very diverse from indoor such as living room, kitchen, office, store, etc.,
to outdoor including street, inside city, building, mountain, forest, etc. Following the
same setting as the previous works [19,30], we randomly select 100 images per cat-
egory as training samples and the rest as test samples and incorporate the proposed
method with spatial pyramid matching which denotes by MLcSPM. Table 2 shows the
results. As shown, our MLcSPM method outperforms other methods, especially for the
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Table 1. Recognition accuracy (%) of different methods on the USPS dataset

�����������Method
Size of training set

100 500 1000 2000 5000 7291

OR 81.7 88.4 90.1 91.4 92.3 93.8
SC 79.6 88.0 90.4 91.8 92.9 94.5
MLC 74.5 91.1 92.9 94.2 95.3 94.0

Table 2. Recognition accuracy (%) of different methods on the Scene 15 dataset

�����������Method
Size of training set

100

KSPM [19] 81.40
KC [10] 76.67
ScSPM [30] 80.28
HardSPM 75.72
SoftSPM 79.48
SISSPM 81.37
MLcSPM 82.54

popular lasso-based ScSPM scheme. Further, the proposed MLcSPM outperforms other
marginal regression based methods.

5.2 Action Recognition

We analyze the characteristic of the proposed method using the KTH action recognition
dataset. The KTH dataset [26] contains 25 persons. Each person performed 6 different
activities, including boxing, handclapping, handwaving, jogging, running, and walking,
respectively. There are 4 scenarios under each activity, including outdoors, outdoors
with scale variation, outdoors with different clothes and indoors, respectively, resulting
599 video sequences in total. We follow the original experimental setup which divides
clips into 2391 subclips with 863 clips for the test set (9 subjects) and 1528 clips for
the training set (16 subjects). We use three space-time local feature descriptors in the
experiments, HOG, HOF and HOGHOF [18] obtained by a 3D-Harris detector [17], and
quantize each local feature into a sparse code via Algorithm 1. After that, we represent
each video clip using the maximum pooling method and use a non-linear support vector
machine [2] with a X2 kernel [18]. We select the parameters using cross validation.
To speedup the dictionary learning process, we firstly learn an initial dictionary using
online dictionary learning method [23] with 100 runs as the warm start.

Comparison between Hard-Thresholding and Soft-Thresholding: We encode
each HOF local feature using a hard-thresholding technique, MR-Hard, and a soft-
thresholding technique, MR-Soft, respectively, with dictionary size 4000 in the train-
ing set as the tunning parameter t varies. Fig. 1 (a) shows the averageL1-norm energy of
sparse codes under different t. As shown, using the soft-thresholding scheme is a more ef-
fective way for variable selection and coefficient shrinkage. Further, the soft-thresholding
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Fig. 1. Comparison of the soft and hard-thresholding schemes. (a) The average L1-norm energy of
sparse codes under different t. As shown, using the soft-thresholding scheme is a more effective
way for variable selection and coefficient shrinkage. (b) The average standard deviation of the L1-
norm energy between sparse codes as t changes. Sparse codes obtained via the soft-thresholding
scheme are much stable than those obtained via the hard-thresholding scheme under different t.

scheme achieves smaller standard deviation between sparse codes as t varies as shown
in Fig. 1 (b). In the recognition point of view, Fig. 2 shows the recognition accuracy of
MR-Soft and MR-Hard with the HOG, HOF, and HOGHOF features respectively under
different t. The accuracy of the MR-soft method is much better than that of the MR-Hard
method. Therefore, we can conclude that soft-thresholding technique such as MR-Soft
is much stable and robust than hard-thresholding technique such as MR-Hard.

Energy Discussion: The sparsity constraint E in Eq. 6 needs to be specified a value,
and the value may vary with different datasets. Instead, the self-ratio constraint e in Eq.
8 aims to keep the certain ratio of the marginal regression coefficients in terms of L1-
norm energy. For example, the self-ratio e = 5% means that, for each feature, only 5%
of its marginal regression coefficients in terms of the L1 norm can be kept and the rest
will be set to zero. Thus, we can obtain sparse codes more easily by assigning a desired
ratio. Fig. 3 shows the recognition accuracy between different values of the self-ratio
constraint e. The results show that we obtain around 90% recognition accuracy by set-
ting the self-ratio e from 5% to 35%, and obtain poor recognition accuracy (below 10%)
by setting e from 75% to 100%. Therefore, we can conclude that sparse representation
helps signal interpretation.

Speed Comparison: In this subsection, we examine the feature quantization speed
using different sparsity estimation methods under three different feature descriptors,
HOG, HOF and HOGHOF, respectively. The dictionary sizes are set from 1000 to 4000.
It is worth mentioning that all the methods except for LASSO-LAR were implemented
in Matlab, and thus it would be unfair to compare them with the LASSO-LAR method
together since C++ program of LASSO-LAR has a built-in speed advantage. Never-
theless, as shown in Table 3, the marginal regression related methods still take signifi-
cantly less time than those of the lasso solutions. In addition, MR-SIS and MLC have
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Fig. 2. Accuracy of soft and hard-thresholding with the HOG, HOF and HOGHOF features as
t varies. The accuracy of MR-soft is much better than that of MR-Hard in terms of recognition
accuracy under three different features.

comparable quantization speed but perform slower than MR-Hard and MR-soft since
the former two consider the L1-norm energy constraint, and the latter two do not.

Feature Quantization Error: Except for the speed comparison, Table 3 also shows
the quantization errors. As shown, LASSO-FS and LASSO-LAR achieve the low-
est quantization error. For the marginal regression related methods, the energy-based
methods (MR-SIS and MLC) achieve lower quantization error than those without L1-
norm energy (MR-Hard and MR-Soft) constraint. In addition, the soft-thresholding-like
methods achieve lower quantization error than the hard-thresholding-like methods pair-
wisely, i.e. MR-Soft against MR-Hard, and MLC against MR-SIS.

Recognition Accuracy: Table 4 shows the recognition accuracy under three different
features with the dictionary size 4000. In this experiment, we select the sparsity con-
straint E via cross validation, and compare the proposed MLC model to other marginal
related methods: MR-Hard, MR-Soft and MR-SIS. As shown, the proposed MLC ap-
proach obtains the best results, and the MR-Hard method obtains the worst and per-
forms poorly under the HOF feature. In addition, the energy-based methods (MLC
and MR-SIS) performs better than those without the energy constraint (MR-Hard and
MR-Soft), and the soft-thresholding-type methods have better performance against
the hard-thresholding-type methods pairwisely (MLC against MR-SIS and MR-Soft
against MR-Hard).
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Fig. 3. Recognition accuracy under different self-ratios

Table 3. Comparison with the existing methods for the KTH dataset. The results are shown in
terms of speed and quantization error. Notice that here we random sampled 1, 258 features from
the training set. The actual numbers of the local features in the KTH dataset are 261, 946 for the
training set and 136, 219 for the test set.

time (sec) Reconstruction error�����������Method
Dictionary size

1000 2000 3000 4000 1000 2000 3000 4000

HOG-LASSO-FS [20] 8.08 9.71 18.83 19.77 0.04 0.03 0.03 0.03
HOG-LASSO-LAR [4] 1.69 3.61 5.81 7.67 0.04 0.03 0.03 0.03
HOG-MR-Hard 0.03 0.05 0.08 0.11 781.94 3438.42 8079.61 14863.70
HOG-MR-Soft 0.03 0.06 0.09 0.12 68.40 319.07 764.57 1423.95
HOG-MR-SIS [6] 0.54 1.01 1.48 2.03 2.92 2.90 12.13 4.68
HOG-MLC 0.47 0.92 1.44 1.93 2.20 2.43 2.47 2.57

HOF-LASSO-FS [20] 5.47 6.95 13.89 14.96 0.03 0.03 0.03 0.02
HOF-LASSO-LAR [4] 1.15 2.64 4.61 6.07 0.03 0.03 0.03 0.02
HOF-MR-Hard 0.03 0.06 0.09 0.12 7317.76 32218.46 77688.51 142454.52
HOF-MR-Soft 0.03 0.07 0.10 0.14 1258.00 5818.47 14413.56 26806.27
HOF-MR-SIS [6] 0.65 1.19 1.80 2.34 17.02 29.80 39.24 65.60
HOF-MLC 0.64 1.21 1.86 2.48 3.35 3.27 3.12 3.09

HOGHOF-LASSO-FS [20] 7.73 9.34 17.83 18.46 0.07 0.06 0.05 0.05
HOGHOF-LASSO-LAR [4] 1.60 3.52 5.79 7.78 0.07 0.06 0.05 0.05
HOGHOF-MR-Hard 0.03 0.06 0.09 0.12 595.99 2366.80 5247.93 9215.52
HOGHOF-MR-Soft 0.03 0.06 0.10 0.14 47.14 192.52 431.67 765.61
HOGHOF-MR-SIS [6] 0.52 0.97 1.45 1.93 2.90 2.95 3.03 2.91
HOGHOF-MLC 0.44 0.88 1.34 1.79 2.18 2.33 2.43 2.47
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Table 4. Comparison with the existing methods for the KTH dataset

Feature-Method KTH

HOG-MR-Hard 82.27
HOG-MR-Soft 82.39
HOG-MR-SIS [6] 84.01
HOG-MLC 85.98

HOF-MR-Hard 61.76
HOF-MR-Soft 85.52
HOF-MR-SIS [6] 89.11
HOF-MLC 92.47

HOGHOF-MR-Hard 87.83
HOGHOF-MR-Soft 90.73
HOGHOF-MR-SIS [6] 90.03
HOGHOF-MLC 92.35

Summary: While the lasso-like models (LASSO-FS and LASSO-LAR) achieve the
lowest quantization error, they take more time to obtain sparse codes. Instead, the
marginal regression models without energy constraint (MR-Hard and MR-Soft) can
reach the fastest speed to generate sparse codes; however, they also gain the highest
quantization errors. While MR-SIS can compete with our model in terms of the quan-
tization error, we reach better recognition accuracy than that of MR-SIS as shown in
Table 4 because the proposed approach is a soft-thresholding method which is more
stable and robust. There are two main differences between the MR-SIS model and the
proposed MLC model: 1) While the idea of MR-SIS is frequently used of the hard-
thresholding technique in the applications, it has no theoretical support. We integrates
marginal regression and the lasso model with a theoretical support which is a soft-
thresholding scheme. 2) We estimate the regularization parameter for each individual
input feature and gain the lower quantization error than that of the MR-SIS model.

5.3 Activity-Based Human Identification

The activity-based human identification task aims to recognize the identity of a per-
son based on his/her activities. We performed the experiment on two publicly available
databases, weizmann [13] and MOBISERV-AIIA [16], respectively. In the dataset, each
clip contains a person performing one activity. For each image frame, we extract human
body silhouette which is similar to the way in [25,12,16,22,15]. An initial dictionary is
learned via the online learning method proposed in [23] to speed up the learning pro-
cess. The weizmann dataset contains 215 clips with 9 persons performing 9 different
activities. The bend activity is excluded due to lack of samples. We randomly select
one clip per action per class as training data, and use the remaining as test data. The
MOBISERV-AIIA dataset contains 12 persons performing eating and drinking activ-
ities with 2 clothing scenarios in four different days. We adopt 2 kinds of the activi-
ties, drinking with a cup and eating with a fork, with 776 clips in total. We randomly
choose one-day sequences as test samples and use the rest as the training samples.
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The parameters are determined via cross validation. Table 5 shows the recognition
accuracy based on the 10% self-ratio sparsity constraint. In this application, the soft-
thresholding-type methods (MLC and MR-Soft) work better than the hard-thresholding-
type methods (MR-Hard and MR-SIS). In addition, MLC outperforms MR-Soft.

Table 5. Comparison with the existing methods for the weizmann and the MOBISERV-AIIA
datasets

backslashboxMethodDataset weizmann MOBISERV-AIIA

MR-Hard 69.40 62.69
MR-Soft 79.85 70.47
MR-SIS [6] 77.61 67.88
MLC 85.82 73.06

6 Conclusion

In this paper, we have proposed a novel feature quantization approach for sparsity es-
timation by exploiting the advantages of the marginal regression and the lasso simul-
taneously to provide more efficient and effective solutions. The proposed approach has
been evaluated on three visual applications: image classification, action recognition and
activity-based human identification. Experimental results have shown that our method
can achieve excellent performance in terms of speed, quantization error and recognition
accuracy. All these sufficiently demonstrate the efficacy of our proposed methods.
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