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Fig. 1. Given a YouTube video of a person’s face our method estimates high detail
geometry (full 3D flow and pose) in each video frame completely automatically

Abstract. We present an approach that takes a single video of a per-
son’s face and reconstructs a high detail 3D shape for each video frame.
We target videos taken under uncontrolled and uncalibrated imaging con-
ditions, such as youtube videos of celebrities. In the heart of this work is
a new dense 3D flow estimation method coupled with shape from shad-
ing. Unlike related works we do not assume availability of a blend shape
model, nor require the person to participate in a training/capturing pro-
cess. Instead we leverage the large amounts of photos that are available
per individual in personal or internet photo collections. We show results
for a variety of video sequences that include various lighting conditions,
head poses, and facial expressions.

Keywords: 3D reconstruction, faces, non-rigid reconstruction.

1 Introduction

Reconstructing the time-varying geometry of a person’s face from a video is
extremely challenging. Indeed, the highly nonrigid nature of the human face,
coupled with our ability to discern even minute facial details and geometry flaws,
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make it very difficult to achieve high quality results. Operating on free-form video
captured “in the wild” adds another level of complexity; only a handful of such
results have been reported in the literature [14,13,23,20,17].

Rather than reconstruct the input video in isolation, suppose that we had
access to a large collection of other photos of the same person captured at dif-
ferent times, with varying pose, expression and lighting. Indeed, most people
are captured in numerous photos and videos over their lifetimes; we propose to
leverage the total corpus of available imagery of the same person to help recon-
struct his/her face in an input video. We call this problem total moving face
reconstruction.

Virtually all modern 3D face tracking and video reconstruction approaches
leverage an assumption that the human face is well represented by a linear
combination of blend shapes, e.g., Morphable models [9,10,41], AAMs [22,19],
and Nonrigid Sfm [14,13,23,20]. The advantage of the blend-shape model is that
it makes the problem more constrained, as the number of parameters (blend
shapes and/or coeflicients) is less than the number of measurements (pixels in
the video). The main disadvantage is the low-rank model limits expressiveness
and the ability to capture fine details.

Instead, our approach is based on deriving a person-specific face model (from
all available imagery), and fitting it to each image in the video using a novel 3D
optical flow approach coupled with shading cues. The combination of flow and
shading enables capturing even minute shape variations (e.g., dimples, wrinkles,
pimples, etc.) over the sequence.

We leverage the corpus of images to compute a person-specific face model that
captures both the average 3D shape and the illumination-dependent appearance
subspace. One key property of this model is that it enables appearance matching
of any new image, and solving for dense correspondence via a 3D optical flow
approach, yielding more precise alignment and robust 3D tracking than are pos-
sible by matching sparse fiducials, e.g., [17]. Another key property is that our
use of previously captured photos enables accurate reconstruction even under
degenerate motions (e.g., no head rotation) that foil nonrigid structure-from-
motion methods [14,13,23,20]. Finally, we incorporate shading cues to obtain
higher resolution details than are possible to capture with any other method.

2 Related Work

High quality time-varying 3D face geometry capture is extremely challenging due
to highly non rigid nature of the human face—ultimately we would like to capture
wrinkles, eye and muscle movement, dimples, detailed mouth expressions, eye lid
details, and so forth. All these together form our perception of a person’s face
and are highly important for further face analysis.

Early methods in 3D facial performance capture use marker-based motion
capture systems, e.g., [26], that track a sparse set of markers on a person’s face.
This requires the person to spend hours in a lab, and tracks only a sparse set of
points. In contrast, modern high detail reconstruction methods use multi-view
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stereo approaches on input coming from multiple high resolution synchronized
cameras which does not require markers but assumes calibration of the cameras
and controlled lighting [7,8,11] or uncontrolled lighting[42]. Structured light [45]
and light stages [16,2,3,25] provide the ability to use multiple synchronized and
calibrated lights for reconstruction.

Recently, RGBD cameras were proven to be extremely successful in face and
expression tracking [10,41,33]. The idea is to fit raw depth camera output to a
deformable facial expression model (blend shapes) created by an artist for facial
expression retargeting, puppeteering, and high quality face tracking. Similarly,
[17] showed that it is possible to achieve high quality tracking via 3D regression
and fitting to a blend shape model extracted from large number of face shapes
captured via kinect fusion method [18]. These methods achieve very impressive
face tracking results, however 1) require the person to participate in the training
stage or be present in front of a depth camera, and 2) assume that face shapes
can be represented by a linear combination of blend shapes. Representing face
shapes using linear combinations of laser scans of other people’s faces and artist
created blend shapes goes back to the classical work by Blanz and Vetter [9] as
well as more recent works by [21,40]. These however only enable capture of large
scale deformations and tend to miss the fine details (wrinkles, dimples, etc.) that
distinguish individuals.

Non-rigid structure from motion methods enable reconstruction from a single
video by creating a linear basis for the non rigid motion that appears in the par-
ticular video; correspondence between the frames is typically given [14,13,20] or
estimated via optical flow [23]. The major drawback of these methods is that the
basis is extracted from the video itself which not only limits the ability to cap-
ture fine details, but also requires head pose to change significantly throughout
the video to enable basis reconstruction.

Most related to our work are single view methods, particularly [30,28,27,29].
These methods can produce detailed reconstructions, but do not estimate how
the scene deforms over time. Similar to scene flow methods [39], we reconstruct
a dense 3D flow field; key differences include our illumination invariance model,
and that we compute 3D to 2D correspondence rather than 3D to 3D. Further-
more, recent scene flow methods either assume availability of a stereo pair of
photos taken in the same rigid configuration (e.g., same expression) [37,38] or
rigid motion throughout the video [4]. The most relevant to our work is [24], who
also operate on monocular video and leverage motion and shading cues to recon-
struct a moving face model. However, whereas we simply fit a rigid 3D model
independently to each frame, their technical approach involves several additional
steps including blend-shape coefficient fitting, keyframe selection, feature-point
refinement, multi frame optical flow, and temporal shape filtering (we filter only
pose, not shape or flow). We believe the success of our much simpler approach
stems from our 3D flow model ([24] move mesh vertices only parallel to the image
plane), and our use of all available imagery to build an illumination-invariant ap-
pearance model. Most importantly, their approach requires a prior, lab-captured
model of each actor (requiring a stereo rig and manual work), and hence is not
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applicable to videos of celebrities or other content in personal photo and video
collections.

In this paper we target high detail reconstruction from a single video captured
in the wild, i.e., under uncontrolled imaging conditions. Instead of requiring the
person to be scanned in the lab or participate in the reconstruction process
(as many other methods require [24,18,10,41,33]), we leverage whatever existing
imagery is available online or in personal photo collections. This enables applying
our approach on YouTube videos of celebrities (e.g., video of Prince Charles! as
in Figure 1), for which we produce arguably the best reconstructions to date.

3 Overview of the Method

Given a video of a person, we seek to reconstruct a moving 3D model of his/her
face that captures apparent motion and fine-scale shape details as well as pos-
sible. Specifically, we compute a 3D reconstruction that optimally fits both the
image motion and shading in each frame. Because the problem is not fully con-
strained (we have only one view of the deforming face at each time instant), we
leverage all available imagery of the person’s face (e.g., photos on the Internet or
in personal collections) to compute a reference model of that person (Section 4),
capturing both their average shape and appearance under a subspace of illumi-
nations. The reference model is used to constrain the gross shape of the sought
reconstruction.

To compute the 3D facial deformation in each frame, we formulate a novel 3D
optical flow problem (Section 5.1) that computes dense correspondence between
the 3D model and each video frame, and optimally deform the reference mesh
to fit. Similarly, to capture wrinkles and other high frequency structures, we
introduce a novel approach to deform the reference mesh so that, when rendered,
the mesh shading fits the image shading as accurately as possible.

We note that our method does not guarantee an accurate fit to ground-truth
geometry, as the shape of the face may change in each frame and single-image
cues are not sufficient for this purpose. Rather, we seek to produce a reason-
ably convincing model (leveraging all available imagery) which optimally fits
the image information in each frame.

4 Average Shape and Appearance from All Available
Imagery

While a person’s face shape may be slightly different at each time instant, their
rough shape (e.g., distance between eyes, nose length, overall geometry), tends to
be consistent over time. Hence, we leverage all available imagery (photos and/or
video frames) to reconstruct a shape and appearance model of the person that
captures their average shape and appearance under a subspace of illuminations.

! http://www.youtube. com/watch?v=s89KEI2AfBU
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Fig. 2. Overview of our method. Given a video sequence we estimate 3D pose (average
shape is rotated to the input pose for each of the 3 examples), followed by estimate
of dense 3D flow of the average model to fit the input expression, and final refinement
using shading cues (note the appearance of teeth, details in eyes, and so forth.)

In principle, this shape could be acquired in a number of different ways, e.g.,
a laser scan, kinect fusion model, stereo reconstruction, ohotometric stereo, etc.
Given registered or rendered imagery of the same person under many different
illuminations, we can construct an illumination subspace by projecting onto the
first four singular vectors [5].

In practice, such 3D data with registered imagery is seldom available. Hence,
we leverage Kemelmacher et al’s Face Reconstruction in the Wild approach [31]
to obtain an average shape and appearance model (rank-4 linear basis of the
aligned image set). In practice, we find that aligning the images using Collection
Flow [32] prior to reconstruction yields slightly sharper reconstructions. We will
assume that as a result of this process we have obtained an average shape of the
PETSON Vgyg, texture basis I,4,4, and initial 3D pose estimate F.

5 Total Moving Reconstruction

We now describe our approach for reconstructing a moving 3D face shape by
deforming an average model to fit the motion and shading cues in each video
frame. The face in any given frame may have unknown and possibly changing
lighting conditions, arbitrary facial expressions, and varying head orientation
(even profile or other highly non-frontal poses are supported—see supplementary
video).
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Key to our approach is a metric based on photo consistency, i.e., comparing
mesh renderings with input video frames. This capability depends critically on
being able to match the illumination and shading in each input frame to that of
the rendered mesh, a property achieved by our appearance subspace representa-
tion (Section 4).

We recover shape in two steps: first, we deform the average shape to fit the
image motion, and second, we deform the resulting shape to fit the shading cues
in each frame. We now formulate each problem in turn.

5.1 3D Flow Objective

Given an average shape, we seek a 3D flow field mapping it to the reconstructed
shape in a given input image (video frame). Denote by v := (2,9, 2) " a vertex on
the average mesh we wish to deform, and f(v) € R? is the desired per vertex 3D
flow (3D displacement to the reconstruction). As the average shape is provided
as a depth map d(u,v), vertices are connected to form triangle meshes over 4
neighbor pixels in a regular 4-connected grid of the depth map and flow f(v)
can also be parametrized on 2D image plane as f(u,v) = f(u,v,d(u,v)). I(u,v)
gives the input image intensity at pixel (u,v), and denote C(v) to be the intensity
of vertex v in the rendering of the average shape from the viewpoint of the input
image. Define the camera function as P : R? — R? which takes a vertex as input
and applies a rigid transformation and weak-perspective projection to produce
2D point on the image plane. We therefore cast 3D flow as an optimization
problem with the following objective:

Efiowsa(f Z\I (V+F(V) = COVP +a(VFl> + IVF [ +IVF-)
(1)

. 2 2
where |V f,|? = (%’:j) + (88’; “) is the gradient magnitude of the x component
of flow parametrized on 2D image plane and |V £, |, |V f.|? along y and z and are

defined similarly. o > 0 is the smoothness weight that serves as a regularization
parameter. We will describe how to optimize this function shortly.

5.2 Shape-from-Shading Objective

Applying the estimated 3D flow field f yields a new mesh v/ = v+ f that deforms
the average shape to match the input image. While the resulting reconstruction
captures dense nonrigid correspondence, it does not model the impact of the
deformation on surface normals and their resulting shading effects. Hence, we
introduce a second step to optimize the reconstruction to best fit the shading of
the input image, by iteratively deforming the mesh vertices and re-rendering.

Specifically, we optimize for new z-coordinate z(v’) of each vertex v/ by min-
imizing the sum of photometric and position error terms:

Eshading Z ‘I 7l hV’ ( ( /)) |2 + 5‘2(‘/) - Vlz|2 (2)
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v/, is the original z-coordinate of v/ after 3D flow, h- is a 4D spherical harmonics
approximation to surface reflectance at new vertex mesh (v, v, z(v')) and [ is
a 4D vector of spherical harmonics coeflicients. [ is a regularization weight for
the second position error term that constrains final z to be close to the original
shape. We describe in detail each of the optimization steps in the following

subsections.

6 Optimization

We now describe our optimization approach for computing 3D flow and shading-
based mesh refinement. Our approach requires an initial estimate of 3D head pose
and lighting (described in Section 6.3).

High-detail
Refinement

CeEee

Fig. 3. 3D flow convergence example. The optimization starts from an average model
of Bush with closed mouth, the mouth opens with 3D flow estimation iterations and
gets refined at the shading step. This computation is done independently for each single
frame in the video (temporal constraint is applied only at the rigid pose estimation
step).

Average Shape 3D flow

6.1 3D Flow Estimation

Minimizing Eq. 1 is a non-linear optimization task even if we assume
weak-perspective projection with L2 norm because I (P(v + f(v))) is generally
non-linear in the image coordinate. To optimize this objective, we use Levenberg-
Marquardt (LM) implemented in the Ceres Solver [1]. This requires a calculation
of the Jacobian matrix in which the variables are x, y, and z for each flow value.
To compute the derivatives of I (P(v + f(v))) with respect to each flow compo-
nent x,y and z, let us denote P(v + f(v)) = (u,v)" and f(v) = (z,9,2) . By
applying the chain rule with respect to = we get:

0 ou ov
o TE o+ F) =1, + 1, (3)

where I, and I, denote image derivatives along the horizontal and vertical axis
and are computed using the 5-point derivative filter ',[~1 8 0 — 8 1]. Let us
further define the camera function as
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P(g) = m(R3x3q + Tsx1) (4)
w(r) = (f-ro/2fry/2)] (5)

where Rsyx3 is a rotation matrix and Tsy is a translation vector. 7 is a weak-
perspective projection with Z being the constant average of vertex z-coordinate;
g; and g“ are evaluated using automatic differentiation. This provides a deriva-
tive with respect to x, derivatives with respect to y and z are computed similarly.

To differentiate the smoothness term, we approximate the partial derivatives
of Vfa,VFy, Vf. by forward differences (i.e., re-parametrize flow on 2D image
plane 88{;‘ = fo(u+1,v) — fo(u,v), aafv"' = fo(u,v+1) = fr(u,v)), and then
take the derivatives. Similar computation is done for y and z components.

We implement this in a coarse-to-fine multi-resolution scheme [15] to deal
with large flow displacements, i.e., we construct a Gaussian pyramid of the input
image with down sampling rate of 0.75, and use the output flow in a coarser level
as an initialization for the next finer level.

6.2 Shading-Based Refinement

We deform the average mesh to fit the input face according to the estimated 3D
flow and use this new mesh as initialization to shading based mesh refinement.
The idea is to capture high frequency details, e.g., wrinkles, folds, etc. We assume
Lambertian reflectance and use the 1st order spherical harmonics (SH) approx-
imation to Lambertian reflectance [6] to model the relationship between surface
normals and image intensities. From Eq. 2, we define the SH approximation to

surface reflectance at each new vertex w = (v, vy, 2) as

By — (1, l(wuvv)x (WUW)H)T (©)

(Wy — W) X (W, — W)

where w, and w, are vertices adjacent to w in the mesh structure along the
positive horizontal and vertical directions. We estimate the SH coefficients I by
finding the best coefficients that fit the deformed mesh after 3D flow to the input
via:

mlinz 1I(P(v') =1 hy (V) 2 (7)

To finally optimize Eq. 2, we pre-compute I (P(v’)) and further linearize by
precomputing the normalizing factor ||(w, — w) x (w, — w)|| as suggested in
[30] using the deformed mesh. The resulting formulation becomes linear in z and
solved efficiently using linear least squares optimization.

6.3 Pose and Lighting

Faces in input frames/photos may appear in an arbitrary 3D pose, and often in
highly non-frontal poses, e.g., 90 degrees out of plane rotation. To estimate 3D
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Fig. 4. Pose refinement algorithm. (a) non-frontal photo—challenging for current meth-
ods, (b) landmarks detection and (c) pose estimation using landmarks (slightly off)
which is used to initialize our refinement. (d) optical flow matching between an aver-
age model rendering in the initial pose and input image. (e) final pose estimation result
using PnP on dense point sets chosen via RANSAC.

flow we first need to compute the 3D rigid transformation P = [R | T] that takes
the average mesh v and transforms it to the position of the face in the image.
While we obtain an initial estimate from the warping process in Section 4, it is
performed using a 3D reference model of a different individual (see [31] for more
details), thus pose estimation error increases with larger angles of rotation, e.g.,
due to difference in nose shape across people. We propose the following process
(Alg. 1) to recover accurate face pose in a single photo, and we further show how
to leverage temporal information in videos to achieve accurate pose estimates.
We solve the Perspective-n-Point problem (PnP) using OpenCV’s implementa-

Data: Py = P,y initialize pose from Sec. 4;
I: input image;
A%: rendering of an average shape vq., with texture in pose P and lighting L;
i = 0;
Result: 3D pose P
while until convergence do
estimate lighting L; of input I using process described in Sec. 4;
render vqyg in pose P; and input lighting Lj;;
run 2D optical flow between A1L>f and I;
generate 3D-to-2D correspondences from vqvg to I through 2D flow ;
solve PnP using RANSAC on subset of correspondences:;
solve PnP on all inliers to compute new estimate of pose P;11;
end
Algorithm 1. Out of plane pose estimation in a single photo.

tion of Levenberg-Marquardt [12]. Following the optimization in Alg. 1 we get
high quality pose estimates for challenging poses. To achieve temporal coherence
across the video, we refine the individual pose estimates using nearby frames.
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Specifically, we use each frame’s 12 neighbors and their corresponding poses for
refinement, as follows. We compute bi-directional 2D optical flow between every
consecutive pair of frames, then we concatenate them to produce flows between
frame j and all its neighbors. Once these flows are available, we project 3D points
of v4u4 onto the image plane using pose estimate of frame j 4 1 then follow 2D
flow from frame j + 1 to j to produce dense 3D-to-2D correspondences between
Vquvg and the image pixels of frame j. Then we solve RANSAC PnP problem as
in Alg. 1 to get another pose estimate for frame j. Performing this for all its
neighbors will produce 12 additional estimates for frame j which are averaged
together using quarternion average for rotations and linear average for transla-
tions. While we did not rigorously evaluate our method in comparison to state
of the art [44,46,36], we have found that our pose estimation is comparable to
these methods and gives temporally smooth, drift-free pose estimates, as can be
observed from the accompanying videos. This process is completely automatic
and the same for all video sequences.

7 Results

We evaluate the performance of our approach on a variety of videos downloaded
from the Internet. Figure 7 shows example frames from four different videos
(Tom Hanks, George Bush, Arnold Schwarzenegger, and Thaksin Shinawatra)
downloaded from YouTube.com? and the corresponding per-frame 3D shape re-
constructions obtained using our algorithm. On the left of Figure 7, we also
present the average shapes (that are used to initialize the 3D flow estimation)
for each person; these were obtained using [31]. The level of detail in the recon-
structions is remarkable; the algorithm succeeds in capturing very fine details
such as wrinkles and subtle expressions. Note the change in facial expression
(compared to the average shape) in each frame, e.g., mouth opening, eyes close
and open, wrinkles appear and disappear, detail in eye region, and so forth.
The approach is robust to very large changes in pose, providing high quality
results even for profile views (e.g., supplementary video of Tom Hanks). The
stability of our results without any temporal smoothing other than pose filtering
is evidence for the strength of the photo-based illumination subspace approach.
Specifically, the illumination matching process makes the flow more accurate
and thus stable. We strongly encourage the readers to watch the accompanying
videos where we show per frame reconstructions for full length videos. Specif-
ically, the lengths are: Tom Hanks: 20s (591 frames), George Bush 20s (610
frames), Arnold Schwarzenegger 24s (719frames), and Thaksin Shinawatra 20s
(600 frames). Note that unlike non-rigid SfM methods [23], our reconstruction
quality is independent of input video length (we can produce good results from

2 URLSs of input videos:
Hanks: https://www.youtube.com/watch?v=emLpj38huDA
Bush: https://www.youtube.com/watch?v=BJbUXw87jOA
Schwarzenegger: https://www.youtube. com/watch?v=wH8VtPG-okI
Shinawatra: https://www.youtube.com/watch?v=dZdhr1WcYEM


https://www.youtube.com/watch?v=emLpj38huDA
https://www.youtube.com/watch?v=BJbUXw87j0A
https://www.youtube.com/watch?v=wH8VtPG-okI
https://www.youtube.com/watch?v=dZdhr1WcYEM
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even a single frame). And since we estimate pose independently in each frame
(and then average) by matching to an illumination-matched reference, the ap-
proach is not susceptible to drift problems that plague many tracking methods.
We show long and short sequences to illustrate the quality of the reconstruction
under a large variety of imaging conditions, non rigid motion, pose and lighting.

Average Shape Input Reconstructed  Side View  Average Shape Input Reconstructed  Side View
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sdlsioBe;

23
4

-

o
—

Fig. 5. Example results on still images in non-frontal views. Single view methods typ-

ically fail on such extreme poses.

In addition to handling videos, we can also estimate 3D shapes from single
still images, and we show a number of results in Figure 5. We chose to show
photos of faces that appear in highly non-frontal poses, these are typically the
hardest cases for any state of the art single view method. The algorithm’s ability
to handle such extreme poses stems from our use of a person-specific template
and appearance model that can be relit to match the input photo. In contrast,
most other face tracking methods use generic face models which produce less
reliable pose estimates, particularly for non-frontal poses.

Implementation Details. We use the Ceres solver [1] for optimization in the
3D flow estimation stage with o = 0.03. For pose refinement we used the 2D opti-
cal flow code of [34] with the following parameters: «=0.02, ratio=0.75, nOuterF-
Plterations=4, nSORIterations=40. The regularization weight in shading-based
refinement step is § = 2 for all videos. The running times are 35s for pose esti-
mation (incl. 15s for temporal refinement), 70s for 3D flow, and 0.1s for shading,
for a 350 x 350 frame size (face size 220 x 260 pixels).

Limitations. While we found our method to be extremely robust to a variety
of lighting conditions, individuals and poses, there are a number of limitations
that we would like to discuss. The first are due to the use of spherical harmon-
ics approximation to reflectance modeling, and the Lambertian assumption. In
Figure 6 we present a number of frames where (a) the person rotates the head
and specularities appear on the forehead, and (b) cast shadows appear around
the nose area. These are not covered by our reflectance model and therefore
the algorithm will produce slightly erroneous results in the specular and shadow
vertices.
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Fig. 6. Limitations of our reconstruction due to (a) specular highlight (b) cast shadows.
We show a few frames from a video where the method introduces artifacts on the
forehead in case of specularities or near the nose in case of cast shadows. This is due to
violations of the Lambertian assumption. The full video and per frame reconstruction
is shown in the accompanying video at 30fps.

Comparisons. We provide qualitative comparisons to calibrated results cap-
tured in the lab using range sensing and multi view stereo. We run our algorithm
on data from [8] and compare their capture with our reconstruction in Figure 8,
note the resemblance to the model captured by [8] (acquired by stereo setup) and
our single view reconstruction. The base shape was acquired using the method
described in Sec. 4 on 100 renders under different random lightings of frame 390
(neutral expression). The input photos are renderings of frames 80 and 340 in
the dataset provided by [8]. We have also compared with Kinect Fusion [35] and
present the results in Figure 9. The input to our reconstruction is a single frame;
to obtain the Kinect Fusion result the person had to stay still while the depth
camera captures him from a number of different viewpoints. To preserve con-
sistency we ran our method on the direct RGB stream of kinect camera (lower
in resolution than typical videos). We also compare to single view reconstruc-
tion methods, see results in the supp. material. The comparisons are qualitative
since our method currently does not guarantee an accurate fit to ground-truth
geometry due to gauge and bas-relief ambiguities. Any monocular uncalibrated
approach will have this limitation, unless they assume a 3D model of the per-
son a priori, e.g., [8,10,17,24,41] or sufficient 3D head rotation [23]. Rather, we
seek to produce a reasonably accurate model (leveraging all available imagery)
which optimally fits the image information in each frame. It is our future work
to conduct a quantitative evaluation once time-varying 3D datasets exist with
the level of detail we are attempting to capture and extend our work to handle
shadows and specularities, and account for non-uniform albedo as introduced by
earlier work [43].
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Average
Shapes

Fig. 7. Results of our reconstruction on four video sequences. Average shape per indi-
vidual are presented on the left. The video reconstruction results illustrate variety in
facial expressions, head pose, appearance of wrinkles, eye detail, and even partial teeth.
Take a look at the full videos in the supplementary material for the full experience!
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Input Average Shape  Ground Truth Reconstructed Input Average Shape Ground Truth Reconstructed

Fig. 8. Comparison to ground truth meshes [8]. Given the input photo (left) we show
our reconstruction and the original shape captured by [8] for this particlar expression.

Average Shape Input Kinect Fusion ~ Reconstructed Input Kinect Fusion Reconstructed

Pt

Fig. 9. Comparison to KinectFusion [35]. Two input photos, our reconstructions and
results obtained using Kinect Fusion. The input photos are of lower quality than typical
video sequences (taken from RGB kinect stream).

Acknowledgements. We thank Google and Intel for supporting this re-
search.

All the examples are viewed best as videos, so we strongly encourage
you to watch the supplementary video!
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