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Abstract. This paper presents a simple and effective cost volume ag-
gregation framework for addressing pixels labeling problem. Our idea is
based on the observation that incorrect labelings are greatly reduced in
cost volume aggregation results from low resolutions. However, image
details may be lost in the low resolution results. To take advantage
of the results from low resolution for reducing these incorrect label-
ings while preserving details, we propose a multi-resolution cost ag-
gregation method (MultiAgg) by using a soft fusion scheme based on
min-convolution. We implement our MultiAgg in applications on stereo
matching and interactive image segmentation. Experimental results show
that our method significantly outperforms conventional cost aggregation
methods in labeling accuracy. Moreover, although MultiAgg is a sim-
ple and straight-forward method, it produces results which are close
to or even better than those from iterative methods based on global
optimization.

Keywords: Multi-resolution fusion, Cost aggregation, Stereo matching,
Interactive segmentation.

1 Introduction

Many early vision problems, such as stereo matching and image segmentation,
can be formulated as pixel-labeling problems. The labels represent some specified
local quantities [13] such as disparity for stereo matching or background/object
index for segmentation. Generally, a good labeling should be both locally smooth
and edge-preserving while being consistent with the observed data. The labeling
methods can be generally categorized into two classes. One is the local cost
aggregation methods such as the recently developed cost volume filtering [11]
and non-local aggregation [16]. In these methods, the cost volume is aggregated
within a local region by implicitly making a spatial smoothness assumption.
Another alternative to the local method is the global method. In global methods,
the labeling problem is solved by minimizing an energy function which explicitly
incorporates local smoothness constraints. In general, global methods produce
more satisfactory results at a cost of running time. Conversely, local aggregation
methods are more efficient but yield less accurate results.
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Local cost aggregations typically use adaptive supports to achieve edge pre-
serving aggregation. One good example of these methods is the bilateral filter [14]
based supports as proposed in the adaptive window method [21]. However, due
to the high computational complexity of the full kernel implementation to the
bilateral filter, many methods [17,18] are proposed for speeding up the imple-
mentation with the cost of a lower accuracy. In addition to these bilateral filter
based methods, various methods based on different types of adaptive support
are developed for cost aggregation, such as those in [6], [8], and [11]. Recently,
non-local cost aggregation methods are proposed based on tree structures [16].
Unlike the local aggregation methods as mentioned above, the non-local meth-
ods propagate the contribution of a pixel to all other pixels. These methods are
robust in low texture regions.

Multi-resolution image processing is an old but still widely used scheme [15].
One of its important characteristics in solving pixel-labeling problem is that the
incorrect labeling can be reduced in a lower resolution version of the original
image, but the risk of losing important details increases as the resolution goes
down. The balance between low resolution and high resolution is found by in-
corporating the multi-resolution or coarse-to-fine methods into an optimization
framework [4,7,19]. Yang and Pollefeys propose a multi-resolution cost aggrega-
tion method by summing up the matching scores computed from several kernels
in different resolutions [20]. Another method [22] uses the results from the lower
resolution to guide the search range at a higher resolution. These methods are
very efficient and can be easily implemented in hardware with parallel accelera-
tion. However, they do not produce satisfactory results.

Despite the fact that current cost aggregation methods achieve great success
by introducing edge-aware filtering methods into adaptive local cost aggregation
or by using minimum spanning tree (MST) for non-local aggregation, all these
methods are sensitive to the local property of the images. For example, unre-
liable results by local adaptive cost aggregation methods are usually observed
in textureless regions. By aggregating cost on a MST, non-local methods per-
form well in textureless regions, but they are vulnerable in regions containing
too much texture, particularly in regions containing repetitive patterns. Because
the contribution of a pixel to another is measured by the distance of the path
between two pixels on the tree, a pixel in highly textured regions can hardly
receive any contribution from other pixels. Then a challenging question that
follows is: whether the multi-resolution technique can be introduced to break
the bottleneck of both local and non-local cost aggregation methods, providing
comparable or even better results than global methods, while still maintaining
the computational efficiency without using any iterative optimization methods.

In this paper, we present a multi-resolution cost aggregation method (Multi-
Agg) to achieve this goal. In our method, a cost volume is computed at the origi-
nal resolution. The guidance image (e.g., the reference image in stereo matching)
and the cost volume are both down sampled from the original resolution to the
lowest resolution. Then a soft aggregation is carried out from the lowest reso-
lution. The aggregation results from the low resolution are passed to the next
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higher resolution and the results are fused with the cost volume there for the next
round of soft aggregation. The final labeling is decided from the soft aggregation
results at the original resolution by the winner-take-all (WTA) method.

A great advantage of our soft aggregation scheme is that it takes both the
advantages of reducing incorrect labeling from low resolutions and preserving
details from fine resolutions. The proposed method is a generic framework that
works well with many current state-of-the-art cost aggregation methods includ-
ing both local and non-local aggregation methods. The proposed method boosts
the robustness of these methods against different local features, such as the lack
of texture or too much texture. We implement our methods to address two vision
tasks: stereo matching and interactive segmentations. Experimental results show
that our method outperforms current state-of-the-art cost aggregation methods
both quantitatively and visually.

Another advantage of our method is its computational efficiency which is
inherited from the current well developed fast cost aggregation methods. In
addition, our method is straightforward, without involving any iterative process,
and the fusion process is carried out independently for each pixel, which means
that it can be easily embedded into parallelized acceleration systems.

2 Method

2.1 Adaptive Cost Aggregation

In this section, we firstly review several adaptive cost aggregation (ACA) meth-
ods. Assuming that a cost volume have been computed and denoted by Cl (p)
for pixel p at label l. ACA methods compute the aggregation results by

Ĉl (p) =
∑

q∈Ωp

wq,pCl (q) (1)

where Ĉl (p) is the aggregation results, wq,p is the weight between pixel p and q
measured in the guidance image I, and Ωp is the support region of p. Different
methods are used in defining wq,p and Ωp. For example, authors in [11] and [21]
use the bilateral filtering weights and the guided filtering weights as wq,p respec-
tively. In [8], Ωp is delineated by the cross based skeleton, and all pixels are used
as Ωp for non-local aggregation [16].

2.2 Multi-resolution Aggregation and Soft Cost Fusion

Unlike conventional aggregation methods, we first build two pyramids by recur-
sively half down-sampling the cost volume and the guidance image before carry-
ing out cost aggregation (see Fig. 1). The down-sampling of the cost volume is
performed at each individual label in the image space. Denote the pyramids of
guidance images and cost volumes by

{
I(1), I(2), I(3), ..., I(N)

}
and

{
C(1), C(2),

C(3), ..., C(N)
}
where N is the total number of level of the pyramids; I(1) and
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Fig. 1. Down-sampling is performed sequentially on both the guidance image and the
cost volume. The size of the original image is W ×H , and the size of label space is L.
The down-sampling of the cost volume is only carried out on image space. One pixel
in a lower resolution corresponds four pixels in the next higher resolution

C(1) are the original guidance image and cost volume. The multi-resolution ag-
gregation starts from the lowest resolution: aggregating C(N) under the guidance
by I(N) using the ACA method in Eq. (1). The aggregation results in the nth
level, Ĉ(n), are passed to the next higher resolution and are fused with C(n−1).
We expect that incorrect labelings are reduced while the details are preserved
in the fused cost volume. Therefore, the fusion should hold some properties:

1. Fusion results encourage suggested labels from the results of lower resolution.
The suggested labels are those where the value of Ĉ(n) is low.

2. The extremely low value of C(n−1) should stay low in the fusion results.
3. Labels which are close to the suggested labels should also have low cost

values in fusion results.

The functionality of the first requirement is obvious: it helps to reduce incorrect
labelings in higher resolution by considering its lower resolution results. The
second requirement is necessary for preserving details and boundaries in the
higher resolution images. Generally, when a label l of a pixel p has an extremely
low value in the cost function in the higher resolution but l does not have a
low value in the aggregation results of its corresponding pixel p′ at the lower
resolution, it is very likely that p lies in regions containing details which are
lost in the lower resolution results. The third requirement is useful in some
applications, such as stereo matching and optical flow estimation, where the
label of a pixel is close to those of its corresponding pixels in higher resolutions.
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( )2C

( )1C

....
....

A B

A' B'

(a)

��
���
�

�� ����� �	�


��
���
�

�� ����� ���


(b)

���� �����	�� �
���
�


� �	�
� ���

���� �����	�� �
���
�


� �	�
� ���

�
���
�

��� �	�
�� ��� 
�� ���

(c)

����� ���� 	�
��� �
���
�

�� 
���
 ���

����� ���� 	�
��� �
���
�

�� 
���
 ���

(d)

Fig. 2. (a) Applying a WTA method on the aggregation result at lower resolution:

Ĉ
(2)

l′ , and the cost volume at higher resolution: C(1). (b) Aggregation result at pixels
“A′” and “B′”. Label which has the lowest cost is denoted by the vertical dash line. (c)
Cost function of A and B in C(1) and min-convolution results between the aggregation
results in (b) and a truncated linear function. Lowest cost values are denoted in “green”,
“red”, and “yellow”. (d) Correct labels (green points) have the lowest cost after fusion.
Incorrect label (denoted by red cross) where the value of the original cost is the lowest
does not stay to be the lowest after fusion

Even though the fusion method which satisfies the three points as men-
tioned above may not be unique, we found that the following method is very
efficient and effective for applications at hand. In this method, Ĉ(n) is firstly
min-convoluted [5] with a robust function and then the results are added to
C(n−1) to generate a fused cost volume F (n−1) at level n− 1. The result of min-
convolution [5] at pixel p is the lower envelop of functions by rooting the robust

function at points of
(
l′, Ĉ(n)

l′ (p′)
)
for all l′. That is

M
(n−1)
l (p) = min

l′

(
Ĉ

(n)
l′ (p′) + V (n) (l − l′)

)
(2)
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Fused cost volume is then generated by

F
(n−1)
l (p) = C

(n−1)
l (p) +M

(n−1)
l (p) (3)

where p′ is the corresponding pixel of p in the lower resolution; V (n) (l − l′),
a robust function, is chosen according to applications. For example, the Potts
model function for interactive segmentation and the truncated linear function
for stereo matching. V (n) is augmented by the sampling scale at the nth level:
V (n) = 2n−1 × V , where V is the robust function at the original level: V =
V (1). To explain why the proposed fusion scheme works for both preserving
details and reducing the incorrect labelings, we now show an example of min-
convolution with a truncated linear function in stereo matching problem (see

Fig. 2). In Fig. 2, M
(1)
l (A) and M

(1)
l (B) are both subtracted by a normalization

constant for all l. Disparity “5” from the lower resolution leads to details missing
around pixel “A′”. The correct labeling to pixel “A” (disparity “6”) has an
extremely low value in the cost function, which is preserved in the fusion results.
Although incorrect labeling (disparity “14”) has the lowest value of the cost
function of pixel “B”, the correct labeling (disparity “5”) has a comparable low

value. By considering results in (b), i.e., adding M
(1)
l to the cost volume, the

correct labeling to pixel “B” now has the lowest value in the fused cost function.

2.3 Multi-resolution Soft Aggregation

Conventional ACA methods can be carried out directly on the fused cost volume

F
(n)
l for cost aggregation at the nth level; however, we found that conventional

ACA methods may introduce wider artifacts near weak boundaries of the guid-

ance image. The reason is as follows: F
(n)
l at a pixel contains the summation

of the cost values over all corresponding pixels at the original resolution, which

leads to large value differences of F
(n)
l for different labels. This large difference is

likely to over-penalize the labeling discontinuity when using conventional ACA
methods. Recall the scheme for soft cost fusion in the previous section, we pro-
pose a soft aggregation method: instead of directly using the cost volume in
aggregation, the min-convolution [5] results between F and a robust function
are aggregated (see Fig. 3). Empirically, V (n) (l − l′), the robust function in the
previous section, can be directly used here. That is

E
(n)
l (q) = min

l′

(
F

(n)
l (q) + V (n) (l − l′)

)
(4)

and
Ĉ

(n)
l (p) =

∑

q∈Ωp

wq,pE
(n)
l (q) (5)

2.4 Implementation Issues and Algorithm Steps

Being a generic framework, our method works very well with many advanced
cost aggregation methods. Theoretically, different ACA methods or different
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Fig. 3. Conventional ACA methods carried out the aggregation on the cubic of fused
cost volume of the nth level. Soft aggregation is carried out on the cubic of min-
convolution results

parameters can be used for cost aggregation in different levels. In this study, we
use the same ACA method with constant parameters, such as window size and
weighting parameters, in different levels for simplicity.

The first issue is the computational complexity. The complexity of our method
is depended on the adopted ACA method and the robust function V . We focus on
two types of V : truncated linear function and Potts model function. According
to [4], the min-convolution requires 3 operations (add or minus) for each pixel
at each label when using the truncated linear function and requires 2 operations
when using the Potts model function. As the total number of pixels is reduced
by 4 times in the next lower resolution, the operations for all resolutions is
4
3 times of that in the original resolution. For an image being processed with
size W ×H and the label space size L, the total number of operations of min-
convolution in cost fusion is

(
4
3 + 1

4

(
3× 4

3

))
WHL (for truncated linear model)

or
(
4
3 + 1

4

(
2× 4

3

))
WHL (for Potts model). The total number of operations of

min-convolution in soft aggregation is
(
3× 4

3

)
WHL (for truncated linear model)

or
(
2× 4

3

)
WHL (for Potts model). As the guidance image is the same for all

labels, guidance image down-sampling is performed only once and the overhead
is negligible. The number of operations for building the cost volumes pyramid is
4
3WHL. Assume that the ACA method being employed requires O operations
for aggregating cost volume in the original resolution level, our method requires
4
3O + 8WHL (for truncated linear model) or 4

3O + 6WHL (for Potts model)
operations in total.
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Another issue to be discussed is how many levels of hierarchical images are
needed. We found that for local aggregation methods, the larger the area covered
by Ωp in the lowest resolution is, the better the results become. Thus, we set
the number of levels N to a value so that Ωp just covers the whole image at
the lowest resolution. For the non-local aggregation method [16], the level N is
empirically set to 5.

Algorithm 1 shows the steps of the proposed method.

Algorithm 1. Steps of Multi-Resolution Soft Aggregation:
Inputs: Input image I, cost volume C, robust function V , number of multi-

resolutions N .
Outputs: A labeling for all pixels in I.

1. Build pyramids of guidance images I(1), I(2), ..., I(N) and cost volumes{
C(1), C(2), ..., C(N)

}
. Set current level, n = N , and set M

(N)
l to zeros.

2. From n = N to n = 1 iteratively perform step (a) to step (d).

a. Compute the fused cost volume, F
(n)
l , using Eq. (3).

b. Compute the min-convolution results, E
(n)
l , using Eq. (4), then carry

out ACA on E
(n)
l and obtain Ĉ(n) as given in Eq. (5).

c. If n = 1, go to step (3). Otherwise, compute M
(n−1)
l using Eq. (2).

d. Set n := n− 1.
3. Output the labeling for all pixels in I by using the WTA method on Ĉ(1).

3 Applications and Experiments

3.1 Stereo Matching

We evaluated our method combined with three popular ACA techniques: Cost-
Filter [11], MST [16], and CLMF-0 [8], using the Middlebury stereo bench-
mark [1]. These methods are denoted by MultiAgg (GF), MultiAgg (MST),
and MultiAgg (CLMF-0) respectively. All methods are implemented in C++
on a PC with 2.0 GHz CPU and 4 GB RAM using single-core implementation.
The comparison between our method and the conventional ACA methods is
conducted.

For comparison, the same method [11] is employed for calculating all cost
volumes. The default parameters in [11] and [16] are used for guided filtering
and MST based ACA in both the conventional ACA methods and those in the
MultiAgg methods. As CLMF-0 uses a different cost volume calculation method
in its original work [8], the parameters for CLMF-0 and MultiAgg (CLMF-
0) are tuned with care so that the best results are presented. The truncated
linear function is used as the robust function: V (l1, l2)=ρmin (|l − l′| , d). We
set {ρ, d} =

{
2× 10−4, 5

}
in MultiAgg (GF) and MultiAgg (MST) and {ρ, d} ={

1× 10−3, 5
}
in MultiAgg (CLMF-0). Results from different methods are shown

in Fig. 4. We further applied the weighted median filter based occlusion handling
method [11] to the results. With post-processing, the results fromMultiAgg (GF)
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(a)
CostFilter [11]

(8.05%)

(b)
MST [16]
(7.40%)

(c)
CLMF-0 [8]

(9.33%)

(d)
MultiAgg (GF)

(6.27%)

(e)
MultiAgg (MST)

(6.13%)

(f)
MultiAgg

(CLMF-0)(7.03%)

Fig. 4. Experimental results on the Middlebury datasets. (a)-(c) are results from con-
ventional aggregation methods: (d)-(f) are results from our MultiAgg methods. The
average percentage of bad pixels over four images are given at the bottom of the results.
Compared with conventional aggregation methods, the MultiAgg methods achieve glob-
ally better performance. For instance, see the highly textured regions around the top
right corner of the “Tsukuba” dataset and the regions around the head of the teddy
bear in the “Teddy”dataset

(see Fig. 6) are the best among the six methods. The quantitative evaluation is
presented in Table 1 for the comparison with other methods (including global
optimization based methods) on the Middlebury datasets. Table 1 and Fig. 4
show that our method outperforms the conventional ACA methods which use
hard aggregation in a single resolution. Our method is also close to or even better
than many iterative methods which are based on global optimization, such as [9]
and [23]. For the four Middlebury datasets, the average running time (excluding
occlusion handling) of CostFilter, MST, CLMF-0, MultiAgg (GF), MultiAgg
(MST), MultiAgg (CLMF-0) are 1.5 s, 0.14 s, 0.42 s, 2.2 s, 0.31 s, and 0.71 s
respectively. The running time of MultiAgg is about 1.5 to 2.2 times slower than
corresponding ACA methods in the original resolution.

Since methods in [11] and [23] use local linear model for addressing stereo
matching problem, we explicitly compared these two methods with our MultiAgg
(GF) which also uses the local linear model. Table 1 shows that the ranking of
our method is similar to the method in [23] (ranked 15 versus ranked 14) and
both methods significantly outperform the method in [11] (ranked 35). More
comparisons on the widely used stereo datasets are given in Fig. 5 where results
without occlusion handling from MultiAgg (GF) and [11] are presented.
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Guidance image Results by [11] Results by [23] Our results

Groundtruth Bad pixels: 4.0% Bad pixels: 2.4% Bad pixels: 2.3%

Guidance image Results by [11] Results by [23] Our results

Groundtruth Bad pixels: 5.1% Bad pixels: 3.9% Bad pixels: 4.2%

Guidance image Results by [11] Results by [23] Our results

Groundtruth Bad pixels: 10% Bad pixels: 8.3% Bad pixels: 3.8%

Fig. 5. Comparison among our method MultiAgg (GF), and methods in [11], and [23].
Ratio of bad pixels in non-occluded regions are given (error > 1 pixel). Our method
preserves details and boundaries very well while reducing large mount of incorrect
labelings in textureless regions
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Fig. 6. Stereo matching results. First row: results from MultiAgg (GF) with occlusion
handling. All results are obtained using constant parameters. Second row: error maps
(error > 1 pixel). Errors in the occluded regions are colored in gray and errors in
non-occluded regions are colored in black

Table 1. Evaluation on the Middlebury benchmarks

Total Average Tsukuba Venus Teddy Cones
Methods Rank Rank nocc all disc nocc all disc nocc all disc nocc all disc

ADCensus [10] 1 10.9 1.07 1.48 5.73 0.09 0.25 1.15 4.10 6.22 10.9 2.42 7.25 6.95
LLR [23] 14 28.3 1.05 1.65 5.64 0.29 0.81 3.07 4.56 9.81 12.2 2.17 8.02 6.42

MultiAgg (GF) 15 30.0 1.52 1.82 8.20 0.16 0.39 2.03 5.09 10.5 13.8 2.27 7.49 6.71
PMF [9] 22 34.6 1.74 2.04 8.07 0.33 0.49 4.16 2.52 5.87 8.30 2.13 6.80 6.32

CostFilter [11] 35 42.1 1.51 1.85 7.61 0.20 0.39 2.42 6.16 11.8 16.0 2.71 8.24 7.66

3.2 Interactive Image Segmentation

In image segmentation, we evaluated MultiAgg (GF) and MultiAgg (MST).
For comparison, we implement three other popular methods: CostFilter [11],
Grabcut [12], and MST [16]. Although the non-local aggregationmethod in [16] is
proposed typically for stereo matching, it can be naturally adopted for interactive
image segmentation.

For pixels whose labels l′ are given by the user we define the cost as

Cl (p) =

{
0 l = l′,
K otherwise.

(6)

where K is a very large value. To compute the cost value of pixels not labeled
by the user, we build a color histogram (8×8×8 bins) for each label based on
the provided strokes from users. The value in the histogram Hl is normalized so
that the summation over all bins equals to 1. Then the cost of assigning label lp
to p is defined as

Cl (p) = (1−Hl (Bp)) (7)

where Bp is the index of the bin where p falls into. Unlike [12], where the image is
segmented only into background and foreground, our implementation segments
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(a) (b) (c) (d) (e) (f) (g)

Fig. 7. Interactive segmentation results. Input images courtesy from [2]. From the left
to the right are: (a) strokes by users, (b) cost volume, (c) results from CostFilter [11],
(d) results from MST aggregation [16], (e) results from Graph Cuts (one iteration
of [12]), (f) results from MultiAgg (GF), and (g) results from MultiAgg (MST). Note
that the large amount of incorrect labeling disappear in our results and boundaries are
also better preserved
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image into multiple (three) parts. The robust function V (l1, l2) is a Potts model
function with value P if the two labels are not equal. Fig. 7 shows the results
from different methods on the same cost volume. The parameters of the ACA
methods in CostFilter [11] and MultiAgg (GF) are the same as those in [11].
The parameters of the ACA methods in MST [16] and MultiAgg (MST) are the
same as those in [16]. We set P = 0.25 for MultiAgg (GF), and P = 2.0 for
MultiAgg (MST).

Being a local aggregation method in a single resolution, method in [11] does
not handle the large amount of incorrectly labeled pixels well. By using MST,
method in [16] outperforms the method in [11] in textureless regions. Unfortu-
nately it does not performs well in regions containing too much texture. Grab-
Cut [12] does well in reducing incorrect labeling in both highly textured and
textureless regions thank to the global optimization; however, its smoothness
term which penalizes labeling inconsistency among 4 or 8 neighborhoods is prone
to introducing boundary shrinking artifacts. Results show that our method pro-
duces the best results where the total number of incorrect labelings is minimum
while boundaries are well preserved.

3.3 Discussions

The benefit of using MultiAgg is clearly demonstrated in our experiments. For a
better understanding for the reason behind the good performance of MultiAgg,
let us look at Fig. 8. A first observation is that the guidance image becomes
smooth as the resolution goes low. This is very important for eliminating incor-
rect labeling in the textured regions. Since the value of a pixel in low resolution is
the averaging value of all corresponding pixel in the original resolution, it is ex-
pected that regions with similar texture have a similar color in the low resolution
image. As a result, pixels in highly textured regions are able to receive contribu-
tions from other pixels in regions with similar texture when carrying out ACA
in low resolution. However, since pixel values of highly textured regions in orig-
inal resolution change dramatically, a pixel in these regions can hardly receive
contribution from other pixels even for non-local aggregation method [16]. Two
other observations are as follows: (1) The low resolution cost volume contains
less noises than that of high resolution. (2) Pixels become closer to each other in
low resolution. In virtue of these three points, incorrect labelings caused by local
characteristics can be greatly reduced in results of low resolution. The downside
of carrying out ACA in low resolution is the ambiguity of boundaries and the
missing of details owing to the averaging effect in the sampling process. Based
on the fact that the cost function of pixels at object boundaries usually has an
extremely low value at the correct label, our soft fusion strategy (in Section 2.2)
takes into account low resolution results and fuse them into a new cost volume
where the incorrect labelings are reduced while the details and boundaries are
also well preserved.

The next question that follows is how the robust function influences the re-
sults. The robust function controls the strength of the results from low resolution
fusing into the cost volume at the next higher resolution. When the strength of
the robust function increases, the final results will therefore be biased towards
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(a) Sampling scale: 8 (b) Sampling scale: 4

(c) Sampling scale: 2 (d) Original resolution

Fig. 8. Cost aggregation in multi-resolutions. From the left to the right for each sub-
figure are guidance images, cost volumes, and soft aggregation results. Note that the
highly textured region around the head of the teddy bear in the original guidance image
is smoothed in the low resolution; and ACA in low resolution produces accurate results
in these regions. Despite details are lost in the low resolution results, these details are
recovered in high resolution results thanks to the soft cost fusion strategy

the low resolution results where the labeling is smooth but details may be lost.
On the other hand, weak robust function will help preserve details, but may fail
to eliminate the large amount of incorrect labelings.

3.4 Limitations

Our method has a common limitation as other cost aggregation methods on
the application of stereo matching – it may produce incorrect disparity values
for highly slant surfaces by smoothing the values. The smoothing is caused by
the fronto-parallel surface model which is implicity used in cost aggregation
methods. One example can be found at the bottom of the “Teddy” dataset
where the disparity values of pixels on a highly slant plane are smoothed. This
artifact is unavoidable for cost aggregation methods when piecewise smoothness
is forced. Slant plane based methods (e.g., [3] and [9]) would be used for finding
slant plane models at the cost of using a complex iterative optimization process.

4 Conclusions

This paper has presented MultiAgg, a generic cost volume aggregation frame-
work for effectively addressing pixel-labeling problems. The key contribution is
the idea of adaptively fusing the cost aggregation results from multi-resolutions
in a coarse-to-fine manner. Experimental results have shown that MultiAgg pro-
duces more accurate results than current state-of-the-art methods both visually
and quantitatively. In addition to its effectiveness, another advantage is its com-
putational efficiency which is inherited from the fast cost aggregation methods.
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In future, we will explore the implementation of MultiAgg in addressing a
more challenging problem of approximate nearest-neighbor field where the size
of the labels space is huge.
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