
Robust Bundle Adjustment Revisited

Christopher Zach

Toshiba Research Europe, Cambridge, UK�

Abstract. In this work we address robust estimation in the bundle ad-
justment procedure. Typically, bundle adjustment is not solved via a
generic optimization algorithm, but usually cast as a nonlinear least-
squares problem instance. In order to handle gross outliers in bundle
adjustment the least-squares formulation must be robustified. We inves-
tigate several approaches to make least-squares objectives robust while
retaining the least-squares nature to use existing efficient solvers. In par-
ticular, we highlight a method based on lifting a robust cost function into
a higher dimensional representation, and show how the lifted formulation
is efficiently implemented in a Gauss-Newton framework. In our experi-
ments the proposed lifting-based approach almost always yields the best
(i.e. lowest) objectives.

Keywords: Bundle adjustment, nonlinear least-squares optimization,
robust cost function.

1 Introduction

Large scale nonlinear least-squares optimization occurs frequently in geometric
computer vision and robotics to refine a set of continuous unknowns given all the
observations extracted from acquired (image) data. Least-squares estimation in
general has an underlying Gaussian noise (or residual) assumption if viewed as
inference in a probabilistic model. This Gaussian assumption is typically violated
whenever large residuals are observed, and consequently least-squares formula-
tions are robustified to cope with such large residuals. Nevertheless, least-squares
methods are popular even in the robustified setting because of their simplicity,
efficiency, and the general availability of respective implementations. Thus, a
robustified problem has to be cast as a nonlinear least-squares instance in order
to make use of existing software and algorithms. Recent improvements for large-
scale nonlinear estimation in geometric computer vision focus on the aspect
of efficiently solving least-squares optimization, but usually do not explicitly
address robustness of the formulation. In this work we focus on different op-
tions to cast a robustified objective into a nonlinear least-squares one. Thus, our
contributions include:

– we review a number of approaches to make nonlinear least squares robust
(Section 3)
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– we provide an in-depth discussion of lifting schemes (Section 3.4),
– we show how to make the lifting approach computationally attractive (Sec-

tion 4),
– and experimentally compare the discussed approaches on large scale bundle

adjustment instances (Section 5).

In our experiments the lifting method shows generally a very promising perfor-
mance by reaching a much better local minimum in most test cases.

The main application of nonlinear least-squares in 3D computer vision is in
the bundle adjustment routine, which refines the camera parameters (such as
their pose, focal lengths and distortion coefficients) and the 3D point positions.
We refer to [11] for a general treatment of geometric computer vision and to [22]
for an in-depth discussion of bundle adjustment. Since the number of cameras of
a typical dataset is in the hundreds or thousands (with about 10 scalar unknowns
each) and the number of 3D points is in the millions, a modern bundle adjustment
implementation must be able to cope with such large-scale problem instances.

The current work horse for bundle adjustment is the Levenberg-Marquardt
algorithm [16,19], which at its core solves a sequence of linear systems of normal
equations with a (strictly) positive definite and generally very sparse system ma-
trix. The standard tool to solve such linear systems are sparse Cholesky factor-
ization [8] in combination with a column reordering scheme to reduce the fill-in.
More recently, iterative conjugate-gradient based solvers to address the normal
equations have been explored to speed up bundle adjustment (e.g. [4,6,15,14]).
To our knowledge none of these recent works on bundle adjustment provide
guidelines on how to incorporate a robust cost function into a least-squares ob-
jective such that existing solvers can be reused. The standard method to utilize
robust costs into a nonlinear least-squares framework is iteratively reweighted
least squares (IRLS), i.e. by reweighting the terms in the objective according to
the current residual values. Two notable exceptions are [22] and [9], which are dis-
cussed in more detail in Section 3. Although the Levenberg-Marquardt method
is by far the most popular to address nonlinear least-squares problems, related
trust-region methods may be more efficient for bundle adjustment tasks [18]. It
is also possible to reduce the problem size in bundle adjustment significantly by
algebraically eliminating some unknowns (often the 3D points) and optimizing
essentially over multi-view relations directly [23,20,12]. We stay with the clas-
sical projection-based formulation (optimizing over camera parameters and 3D
points) for bundle adjustment, since we feel that a robustified noise model is
most appropriate in that setting.

2 Background

In this section we introduce some notation and terminology, and provide a brief
description of nonlinear least-squares objectives playing a central role in this
work.
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2.1 Notations

We address minimization problems of the form

Θ∗ = arg min
Θ∈Rn

M∑

k=1

ψ
(
rk(Θ)

)
, (1)

where rk(Θ) : R
n → R

d is the k-th residual function dependent on the unknown
vector Θ. Therefore d is the dimension of the residuals, which is usually 2 in a
standard bundle adjustment instance. All of the residual functions are assumed
to be differentiable.

Without loss of generality all the (differentiable) penalizing functions ψ are the
same for the residual terms. Typical choices for ψ have the properties that ψ(r) ≥
0, ψ(0) = 0, and ψ is monotonically increasing with respect to the norm of its
argument (the residual vector). Sensible choices for ψ feature a sub-linear growth
of its function value in order to make the objective robust to outlier residuals.
Therefore we call ψ a robust kernel in this work. Nevertheless, we assume that
small residuals are penalized in the least-squares sense, i.e. the Hessian of ψ is
the identity matrix, which corresponds to a Gaussian noise assumption in the
underlying probabilistic model. This explains in particular the 1/2 scaling factor
in many of the objectives stated below, and also the choice of scaling for robust
kernels ψ in Section 3.4.

While ψ : Rd → R
+
0 maps residual vectors to non-negative costs, in Section 3.2

we will use functions ρ : R+
0 → R

+
0 mapping squared norms of residual vectors

to costs. A choice of ρ induces ψ via ψ(r) = ρ(‖r‖22). Note that ρ penalizes
residuals isotropically ignoring the direction of rk. In the following we drop the
explicit subscript to denote the Euclidean norm, and every occurrence of a norm
‖·‖ should be always read as ‖·‖2.

Further, we stack the residual vector rk and the respective Jacobians Jk
def
=

∇Θrk into a large vector and matrix, respectively,

r(Θ)
def
=

⎛

⎜⎝
r1(Θ)

...
rM (Θ)

⎞

⎟⎠ J(Θ)
def
=

⎛

⎜⎝
J1(Θ)

...
JM (Θ)

⎞

⎟⎠ . (2)

In general, bold-face letters indicate quantities spanning the whole objective not
only individual residual terms.

Finally, for a positive semi-definite (p.s.d.) matrix A we denote the respective
square root matrix either by

√
A or A1/2, A = (

√
A)2 = (A1/2)2.

2.2 Nonlinear Least Squares Optimization

Nonlinear least squares optimization aims to find a minimizer Θ∗ of a least-
squares objective,

Θ∗ = argmin
Θ

1

2

∑

k

‖rk(Θ)‖2 = argmin
Θ

1

2
‖r(Θ)‖2 . (3)
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It is beneficial to exploit the outer least-squares structure instead of solely relying
on general minimization methods such as gradient descent, conjugate gradients,
or quasi-Newton methods. Most popular methods to solve Eq. 3 are based on
first order expansion of the residual rk,

rk(Θ +ΔΘ) ≈ rk(Θ) + Jk(Θ)ΔΘ, (4)

where Jk(Θ) is the Jacobian of rk with respect to the parameters Θ (and evalu-
ated at the current linearization point Θ). In the following we implicitly assume
the dependence of rk and Jk on Θ and consequently drop the respective argu-
ment Θ. Plugging the first order expansion into Eq. 3 and rearranging terms
yields the normal equations of the Gauss-Newton method,

JTJΔΘ = −JT r. (5)

While it may be numerically advisible to solve the overconstraint linear equation
JΔΘ = −r directly e.g. via a QR-decomposition [22], to our knowledge all meth-
ods to solve large scale instances of Eq. 3 are based on the Gauss-Newton method
and the normal equations. In particular, the Levenberg-Marquardt method using
augmented normal equations,

(
JTJ+ μI

)
ΔΘ = −JT r, (6)

with μ > 0, became very popular over the last years. The key requirement for
Gauss-Newton-type methods to be competitive solvers is that JTJ is a sparse
matrix, which can be exploited to solve the (augmented) normal equations effi-
ciently. In terms of the original problem formulation (Eq. 3) the sparsity of JTJ
means, that each residual rk depends only on a small subset of parameters in Θ.

Most available implementations for large scale nonlinear least squares prob-
lems have an interface, that allows the user to specify the residual vector r and
the Jacobian J (as sparse matrix). In some implementations a weight or even
a covariance matrix may be provided with each residual. Two of the methods
described in Section 3 require a minimal extension to such an interface: in the
computation of JTJ and JT r we allow block diagonal matrices to be inserted,
i.e. we facilitate the efficient computation of

JTDJ and JT D̄r (7)

for block diagonal matrices D and D̄ with d × d non-zeros blocks along the
diagonal. Note that JTJ and JTDJ will have the same sparsity pattern.

3 Robustified Nonlinear Least-Squares

The objective given in Eq. 1 has, at a first glance, little in common with nonlinear
least-squares instances in Eq. 3 (other than that the objective is composed of
individual terms). Often ψ(·) in Eq. 1 behaves like a quadratic function for small
arguments, i.e. for residual vectors r close to 0 we have that ψ(r) ≈ ‖r‖2/2. This
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usually corresponds to a Gaussian assumption on the noise model for inliers,
which are characterized by having non-heavy tail residuals. In most estimation
tasks the majority of observations are inliers, hence the majority of terms in
Eq. 1 are (close to) quadratic functions near the minimizer Θ∗. Consequently, it
appears beneficial to cast the problem Eq. 1 as nonlinear least-squares instance
(Eq. 3) in order to leverage available efficient solvers for the latter problem
class. Below we discuss several options to introduce robustness into least-squares
estimation.

3.1 Iteratively Reweighted Least Squares

We assume that ψ is isotropic, i.e. ψ(r) = φ(‖r‖) for a function φ : R+
0 → R

+
0 .

Then the first-optimality condition for Θ∗ in Eq. 1 are

0 =
∑

k

φ′
(∥∥rk(Θ∗)

∥∥) rTk (Θ
∗)∥∥rk(Θ∗)
∥∥
∂rk
∂Θ

(Θ∗) =
∑

k

φ′
(∥∥rk(Θ∗)

∥∥)
∥∥rTk (Θ∗)

∥∥
︸ ︷︷ ︸

def
=ω
(
rk(Θ∗)

)

rTk (Θ
∗)Jk(Θ∗)

=
∑

k

ω
(
rk(Θ

∗)
)
rTk (Θ

∗)Jk(Θ∗).

If the (scalar) values ω∗
k

def
= ω

(
rk(Θ

∗)
)
are known for a minimizer Θ∗ (and

therefore constant), the optimality conditions above are the ones for a standard
nonlinear least-squares problem,

Θ∗ = argmin
Θ

1

2

∑

k

ω∗
k

∥∥rk(Θ)
∥∥2. (8)

Since the weights ω∗
k are usually not known, one can employ an estimate based on

the current solution maintained by the optimization algorithm. This also implies
that the objective to minimize varies with each update of the current solution.
Further, algorithms such as the Levenberg-Marquardt method have a built-in
“back-tracking” step, which discards updates leading to an inferior objective
value. Depending on the programming interface this back-tracking stage may
only see the surrogate objective in Eq. 8 or the true cost in Eq. 1.

3.2 Triggs Correction

For completeness we review the approach outlined in [22] (and termed “Triggs
correction” in [3]) to introduce robustness into a (nonlinear) least-squaresmethod.
Let ρ : R+

0 → R
+
0 be a robust kernel mapping the squared residual norm to a real

number i.e. the objective is

min
θ

1

2

∑

k

ρ
(
‖rk(θ)‖2

)
. (9)
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A first-order expansion of rk(Θ + ΔΘ) ≈ rk + JkΔΘ (dropping the explicit
dependence of rk and Jk on the current linearization point Θ) together with a
second-order expansion of

hk(ΔΘ)
def
=

1

2
ρ
(
‖rk + JkΔΘ‖2

)
(10)

yields

hk(ΔΘ) ≈ ρ′rTk JkΔΘ +
1

2
(ΔΘ)T JTk

(
ρ′I + 2ρ′′rkrTk

)
︸ ︷︷ ︸

def
=Hk

JΔΘ + const, (11)

where ρ′ and ρ′′ are evaluated at rk. This expression is rewritten in [22] as a
nonlinear least-squares instance by replacing J with J̃ =

√
HkJ (given that Hk

is strictly p.d.1). In theory, any existing algorithm for nonlinear least squares
minimization can be used, provided that the implementation allows sufficient
powerful reweighting of the residuals and the Jacobian.2

Observe that one eigenvector of Hk is rk with corresponding eigenvalue ρ′ +
2ρ′′‖rk‖2, and all other eigenvalues are ρ′ (which is non-negative since a sensible
function ρ is monotonically increasing) with eigenvectors v⊥rk. Consequently,
Hk is p.s.d. iff ρ′ +2ρ′′‖rk‖2 is non-negative. If Hk is indefinite, one approach is
to drop the ρ′′ term entirely (i.e. set ρ′′ to 0, as e.g. done in the Ceres Solver [3]).
This amounts to representing the mapping ΔΘ 	→ 1

2ρ(‖r(Θ+ΔΘ)‖2) locally at
Θ via the (strictly) convex surrogate function

ΔΘ 	→ ρ′rkJkΔΘ +
ρ′

2
(ΔΘ)T JTk JkΔΘ + const. (12)

One could replace an indefinite Hk by its closest p.s.d. approximation H̃k, which
(using the Frobenius norm as distance between matrices) is determined by

H̃k =

{
Hk if Hk 
 0

ρ′
(
I − rkr

T
k

‖rk‖2

)
otherwise.

(13)

Consequently, the respective normal equations to solve in each iteration read as

∑

k

JTk H̃kJkΔΘ = −
∑

k

ρ′JTk rk. (14)

In practice this approach converged to higher objectives, and therefore we use
the same strategy as Ceres for indefinite Hk.

1 One way to model
√
Hk is using the ansatz

√
Hk =

√
ρ′(I +αr0k(r

0
k)

T ) for an α [22].
2 The Jacobian and the residuals need to be reweighted differently.
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3.3 Square-Rooting the Kernel

Another option proposed in [9] is to rewrite ψ(r) as
(√

ψ(r))
)2

, which implies

that
√
ψ(r) is now employed as the residual in the outer least-squares formula-

tion. In some way this is a complete opposite approach to the “Triggs correction”
above, since the robust kernel is pulled into the inner scope of the minimization
problem. Note that by naive “square rooting” the robust kernel one effectively
replaces a d-dimensional residual r with a one-dimensional one,

√
ψ(r), which

loses structural information. By noting that for any d-dimensional vector u with
unit norm we have

ψ(r) =
〈√

ψ(r)u,
√
ψ(r)u

〉
=
∥∥∥
√
ψ(r)u

∥∥∥
2

, (15)

we can use the specific choice of u = r/‖r‖ to obtain ψ(r) =
∥∥∥
√
ψ(r)/‖r‖ · r

∥∥∥
2

,

which means that the original residual r is weighted by a factor of
√
ψ(r)/‖r‖,

which is a different one than used in IRLS (Section 3.1), since—first of all—
this weight is explicitly dependent on Θ. Further, for convenience we state the
derivative of this modified residual with respect to the unknowns Θ,

d

dΘ

(√
ψ(r)

‖r‖ r

)
=

(
1

2‖r‖√ψ(r) r
dψ(r)

dr
+

√
ψ(r)

‖r‖3
(‖r‖2I − rrT

)
)
dr

dΘ
. (16)

3.4 Lifting the Kernel

Another way to represent a robust cost function within a (nonlinear) least-
squares framework is by introducing extra variables playing the role of “confi-
dence weights” for each residual. Converting a minimization problem to a higher-
dimensional one by augmenting the set of unknowns is often termed “lifting” in
the optimization literature. Sometimes lifting allows a global optimal solution
for an otherwise difficult minimization problem (e.g. [13,7]). Our motivation for
enriching the set of unknowns is different: we hope to circumnavigate the flat
regions in robust kernels by indirectly representing the robustness and therefore
have better chances to reach a good local minimum. Initial evidence for such an
improved behavior of lifted costs in a synthetic line-fitting experiment is given
in [24]. Rewriting non-convex robust costs via lifting has a long history: “half-
quadratic” optimization introduces additional variables to allow efficient mini-
mization by using a block-coordinate method in the context of low-level vision
tasks [10,5]). More recently, “switching constraints” (analogous to confidence
weights) are employed to make pose graph optimization robust [21,1] (where the
robust kernel is identified as the Geman-McClure one). These methods use an
IRLS approach to incorporate robustness into a non-linear least-squares solver.

In our setting, one instance of a lifted kernel for robust objectives is

min
Θ

∑

k

1

2
ψ
( ‖rk(Θ)‖

)
= min

Θ,w

∑

k

1

2

(
w2
k ‖rk(Θ)‖2 + κ2(w2

k)
)

︸ ︷︷ ︸
def
= ψ̂(rk(Θ),wk)

, (17)
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where wk is the confidence weight for the k-th residual. We denote the lifted
kernel of ψ(·) as ψ̂(·, ·). Depending on the choice of κ one arrives at different
kernels ψ, and in the following we briefly discuss a few sensible choices for κ.

L1-cost: The choice of ψ̂(r, w) = 1
2

(
w2r2 + 1

w2

)
, i.e. κ2(w2) = 1/w2, results in

ψ(r) = minw ψ̂(r, w) = ‖r‖/2.

Tukey’s biweight: One can lift the robust biweight kernel

ψ(r) =

⎧
⎨

⎩

τ2

6

(
1−

(
1− ‖r‖2

τ2

)3)

τ2

6

=

{‖r‖2

2

(
1− ‖r‖2

τ2 + ‖r‖4

3τ4

)
if ‖r‖2 ≤ τ2

τ2

6 otherwise

(18)

by setting

ψ̂(r, w) =
1

2
w2‖r‖2 + 1

6
(|w| − 1)2(2|w|+ 1). (19)

Note that the regularizer of w, (|w| − 1)2(2|w| + 1)/6, is a double-well poten-
tial with minima at w = ±1 (inlier case), finite cost at w = 0 (outlier), and
unbounded cost as |w| → ∞ (see also Fig. 2). Formally we have in this setting

κ2(w2) =
1

6

(√
w2 − 1

)2 (
2
√
w2 + 1

)
.

Smooth truncated quadratic: The kernel of our main interest was proposed in [17]
(but without establishing the strong connection between the introduced weights
and robust estimation) and is given by

κ2(w2) =
τ2

2

(
w2 − 1

)2
or κ(w2) =

τ√
2

(
w2 − 1

)
. (20)

Again the regularizer κ2(w2) is a double-well potential with zero cost at w = ±1,
finite cost at w = 0 (outlier case), and unbounded cost for |w| → ∞ (see Fig. 2).
It can be easily shown that

ψ(r) =
1

2
min
w

{
w2‖r‖2 + τ2

2

(
w2 − 1

)2
}

=

{
1
2‖r‖2

(
1− ‖r‖2

2τ2

)
if ‖r‖2 ≤ τ2

τ2/4 otherwise,

(21)

which is a particular smooth approximation to a truncated quadratic kernel. We
can create a family of such smooth approximations by making κ dependent on
a parameter p > 1, e.g.

κ2(w2) =
τ2

p

(
w2 − 1

)p
, (22)



780 C. Zach

which corresponds to the robust kernel

ψ(r) =

⎧
⎨

⎩

1
2‖r‖2

(
1− p−1

p

(
‖r‖2

τ2

) 1
p−1

)
if ‖r‖2 ≤ τ2

τ2

2p otherwise,
(23)

In the limit p → 1 this kernel ψ approaches the truncated quadratic cost (see

also Fig. 1(a)). Fig. 1(b) illustrates the lifted kernel ψ̂, which has almost nowhere
a zero gradient (in contrast to the one-dimensional function ψ, which has a zero
gradient whenever the argument is larger than τ). Our hypothesis therefore is,
that it is exactly this feature that enables lifted representations to have a better
chance of escaping poor local minima than direct robust kernels.

(a) ψ(r) for different p (b) ψ̂(r,w) for p = 2

Fig. 1. Different robust kernels ψ for different values of p in Eq. 23 (left), and the
visualization of the lifted kernel ψ̂ for p = 2. Note that the lifted kernel appears
“relatively convex” for large residuals.

From weight functions to lifted representations: As in Section 3.1 we now assume
ψ(r) = φ(‖r‖) for a function φ : R+

0 → R
+
0 . We will use e = ‖r‖ in the following.

The weight function ω for the kernel φ is given by ω(e)
def
= φ′(e)/e. This weight

function plays a crucial role in iteratively reweighted least-squares. In order to
lift φ (and consequently ψ), we have to find a function κ2, such that

φ(e) = min
w
φ̂(e, w) = min

w

1

2

(
w2e2 + κ2(w2)

)
.

First order optimality conditions imply w = 0 or e2 + (κ2)′(w2) = 0. Since in
a reweighted approach, ω(e) plays the role of w2 in the lifted formulation, we

use the ansatz w2 = ω(e), leading to e = ω−1(w2) or e2 − (ω−1(w2)
)2

= 0.
Comparing this with the first-order optimality condition we read that

(κ2)′(w2) = − (ω−1(w2)
)2
,

where ω−1 is the inverse function of ω (if it exists). For instance, the Cauchy

kernel, φ(e) = τ2

2 log
(
1 + e2/τ2

)
, has a weight function ω(e) = 1/(1 + e2/τ2)

and a lifted representation
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φ̂(e, w) =
1

2
w2e2 +

τ2

4

(
w4 − 2 log(w2)− 1

)
. (24)

Similarly, lifted formulations for all robust kernels with strictly monotonically
decreasing weight function ω can be derived. This construction is related but
not equivalent to the one in [5].

Fig. 2. Tukey’s biweight, the smooth truncated quadratic (Eq. 21), and the Cauchy
kernels (left). The associated regularization w �→ κ2(w2) in the lifted representation
(right).

Note that for all the choices of ψ̂ above we can rewrite ψ̂(r, w) as

ψ̂(r, w) =
1

2

(
w2‖r‖2 + κ2(w2)

)
=

1

2

∥∥∥∥
wr

κ(w2)

∥∥∥∥
2

, (25)

i.e. ψ̂ can be written as a nonlinear least-squares term over a lifted residual

r̂
def
=

(
wr

κ(w2)

)
, and therefore lifted kernels can be immediately incorporated

into a standard nonlinear least squares solver. This is probably not advisible,
since having a potentially huge number of extra unknowns puts extra burden on
the column reordering step and on the employed matrix factorization method.
Consequently, we describe a more efficient implementation of lifted approaches
in the next section.

4 Efficient Implementation of Lifted Kernels

Lifting the robust kernel requires maintaining one extra variable per residual.
While we believe that the cost of storing an extra confidence weight is negligible,
the computational burden in particular in Gauss-Newton-type solvers seems to
increase significantly using a lifted representation. In this section we demonstrate
that the computational complexity is essentially the same for lifted and non-lifted
representations. Since a confidence weight wk is linked to exactly one residual
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rk, the sparsity structure of the lifted Jacobian stays the same. If we consider
the lifted residual as in Eq. 25, then we have for the lifted full Jacobian Ĵ,

Ĵ =

(
WJ R
0 K′

)
r̂ =

(
Wr
k

)
(26)

where

– W
def
= diag(w1, . . . , wM )⊗ Id×d,

– k
def
=
(
κ(w1), . . . , κ(wM )

)T
,

– K′ def
= 2diag

(
w1κ

′(w2
1), . . . , wMκ

′(w2
M )
)
, and

– R is a rectangular block matrix R
def
= diag(r1, . . . , rM ).

Thus, ĴT Ĵ and ĴT r are given by

ĴT Ĵ =

(
JTW2J JTWR

RTWJ RTR+K′2

)
ĴT r̂ =

(
JTW2r

RTWr+K′k

)
. (27)

Note that RTR = diag
(‖r1‖2, . . . , ‖rM‖2), and we have the vector

RTWr+K′k =
(
wk
(‖rk‖2 + 2κ′(w2

k)κ(w
2
k)
))
k=1,...,M

.

Since the confidence weights are only appearing in exactly one residual term,
one can eliminate all wk in parallel from the (augmented) normal equations

(
ĴT Ĵ+ μI

)(
ΔΘ
Δw

)
= −ĴT r̂, (28)

via the Schur complement, which leads to the reduced system

(
JTW(I−DRRT )WJ+ μI

)
ΔΘ = r.h.s. (29)

where D = (RTR+K′2 + μI)−1 is a diagonal matrix with

Dkk =
1

‖rk‖2 + (2wkκ′(w2
k))

2 + μ
, (30)

and RRT is a block diagonal matrix with d × d blocks (RRT )kk = rkr
T
k . Note

that I − DRRT � 0 for μ > 0. Further, the (block) non-zero structure of
JTW(I−DRRT )WJ is the same as for JTJ, since W(I−DRRT )W is a block
diagonal matrix with d × d blocks along the diagonal. One can easily calculate
a square root of I −DRRT via the ansatz (I −DRRT )1/2 = I− D̃RRT with
D̃ being a diagonal matrix,

D̃kk =
1

‖rk‖2
(
1−

√
(2wkκ′(w2

k))
2 + μ

‖rk‖2 + (2wkκ′(w2
k))

2 + μ

)
. (31)
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Consequently, themodified Jacobian can be easily computed by left-multiplication
with a block-diagonal matrix, i.e.

J �
(
I− D̃RRT

)
WJ, (32)

which is provided to the solver. The right hand side in Eq. 29 is given by

r.h.s. = JTW
(
RD

(
RTWr+K′k

)−Wr
)
= −JTWr̃, (33)

which corresponds to using a reweighted and adjusted residual vector,

r̃k
def
= wk

(
1− ‖rk‖2 + 2κ′(w2

k)κ(w
2
k)

‖rk‖2 + (2wkκ′(w2
k))

2 + μ

)
rk (34)

together with a reweighted Jacobian WJ. Backsubstitution to determine Δwk
leads to

Δwk = −wk r
T
k (rk + JkΔΘ) + 2κ′(w2

k)κ(w
2
k)

‖rk‖2 + (2wkκ′(wk))2 + μ
. (35)

With the minimal extension to a standard Levenberg-Marquardt code as out-
lined in Section 2.2, it is straightforward to implement this Schur-complement
approach by solving

(
JTBJ+ μI

)
ΔΘ = −JT B̄r

in each iteration, where B and B̄ are appropriate block diagonal matrices.

5 Numerical Results

We use a freely available sparse Levenberg-Marquardt C++ implementation3

and extended its interface to allow insertion of block-diagonal matrices as in-
dicated in Section 2.2. The test problems are the ones used in [4] based on
structure-from-motion datasets generated from community photo collections [2].
We had to leave out the larger problem instances due to their memory consump-
tion. The utilized objective in our bundle adjustment is

∑
ψ
(
fiηi (π(RiXj + ti))− p̂ij

)
, (36)

where p̂ij ∈ R
2 is the observed image observation of the j-th 3D point in the i-

image, Xj ∈ R
3 is the j-th 3D point, Ri ∈ SO(3) and ti ∈ R

3 are the orientation
parameters of the i-th camera, π : R3 → R

2, π(X) = X/X3 is the projection, and
fi is the respective focal length. ηi is the lens distortion function with ηi(p) =
(1+ki,1‖p‖2+ki,2‖p‖4)p, and ψ is the robust kernel from Eq. 21 with τ = 1 (i.e.

3 We selected the “simple sparse bundle adjustment” software,
http://www.inf.ethz.ch/personal/chzach/oss/SSBA-3.0.zip, mostly because of
the simplicitly of the underlying API.
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Table 1. The main characteristics of the used datasets

Number Dataset # cameras # 3D points # observations

1 Trafalgar 257 65132 225911
2 Dubrovnik 356 226730 1255268
3 Ladybug 598 69218 304170
4 Venice 427 310384 1699145
5 Final-93 93 61203 287451
6 Final-394 394 100368 534408
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Fig. 3. Initial and final objectives (normalized with the observation count) reached by
the different methods
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Fig. 4. Initial and reached final ratios obtained by the different methods. The inlier
ratio is an indicator of how many terms in the objective are in the flat outlier region.

inliers may have up to 1 pixel reprojection error). We run bundle adjustment in
two modes: the “metric” mode optimizes only over Xj , Ri and ti and keeps the
focal lengths and lens distortion parameters fixed, and the “full” mode optimizes
over all unknowns. We report both settings in order to determine whether the
additional nonlinearity induced by the internal camera parameters has an impact
on the results.
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The runtime varies between the datasets and ranges from about 1 minute
(Final-93 using metric refinement only) and 30 minutes (Final-394 with full
adjustment) on a standard laptop computer. The computational complexity of
all approaches is similar. The median slowdown (with respect to IRLS) of one
LM iteration is 1.0 (IRLS), 1.0337 (Triggs), 1.6643 (

√
ψ), and 1.5814 (lifted).

Please refer to the supplementary material for detailed runtimes.
The maximum number of iterations in the Levenberg-Marquardt algorithm

is 100, and the iterations stop when the relative updates are less than 10−12 in
magnitude. Table 1 summarizes the relevant figures for the tested datasets. The
initial and obtained final objective values for the different approach to robustifi-
cation (called “IRLS”, “Triggs”,

√
ψ, and “lifted” with the weights wk initialized

to one) are illustrated in Fig. 3. With the exception of the “Ladybug” dataset
in full refinement mode, the lifted representation achieves the lowest objectives.
The other methods cluster around similar (usually higher) final objective values
with the square-root approach slightly ahead of the others.

Another interesting statistics is the inlier ratio (i.e. the fraction of residuals
with at most τ = 1 pixels reprojection error), which is depicted in Fig. 4. This
number indicates how many residuals are “active”, i.e. contribute to the overall
gradient for our choice of robust kernel. Interestingly, the inlier ratio is always the
highest for the lifted approach, which may be an advantage in bundle adjustment
instances with large initial drift (such as often induced by loop closure). More
experimental results can be found in the supplementary material.

6 Conclusions

In this work we addressed how robust cost functions can be incorporated into a
nonlinear least-squares framework. We discussed several options how to combine
robust costs with a Gauss-Newton-type solver, including iteratively reweighted
least-squares, the Triggs correction, square rooting the robust kernel, and finally
lifting the kernel. In terms of achieved objective the lifted approach outperforms
the other ones by far in most tested problem instances. Consequently, we believe
that lifting a kernel function is a promising method to incorporate robustness into
an otherwise non-robust objective, especially since lifting comes with negligible
extra computational cost,

One direction of future work is to make the square-root and the lifted approach
accessible in the recently very popular Ceres solver (which currently implements
robust cost functions via the Triggs correction). Source code based on a di-
rect sparse Levenberg-Marquardt implementation for non-linear least squares is
available at http://github.com/chzach/SSBA.
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I would like to thank Sameer Agarwal and the area chairs for pointing out
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