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Abstract. We present a novel algorithm based on “loop constraints” for assem-
bling non-overlapping square-piece jigsaw puzzles where the rotation and the
position of each piece are unknown. Our algorithm finds small loops of puzzle
pieces which form consistent cycles. These small loops are in turn aggregated
into higher order “loops of loops” in a bottom-up fashion. In contrast to pre-
vious puzzle solvers which avoid or ignore puzzle cycles, we specifically seek
out and exploit these loops as a form of outlier rejection. Our algorithm signifi-
cantly outperforms state-of-the-art algorithms in puzzle reconstruction accuracy.
For the most challenging type of image puzzles with unknown piece rotation we
reduce the reconstruction error by up to 70%. We determine an upper bound on
reconstruction accuracy for various data sets and show that, in some cases, our
algorithm nearly matches the upper bound.

Keywords: Square Jigsaw Puzzles, Loop Constraints.

1 Introduction

Puzzle assembly problems have aroused people’s intellectual interests for centuries and
are also vital tasks in fields such as archeology [18]. The most significant physical rem-
nants of numerous past societies are the pots they leave behind, but sometimes meaning-
ful historical information is only accessible when the original complete shape is
reconstructed from scattered pieces. Computational puzzle solvers assist researchers
with not only configuring pots from their fragments [16] but also reconstructing shredded
documents or photographs [21,11]. Puzzle solvers may also prove useful in computer
forensics, where deleted block-based image data (e.g. JPEG) is difficult to recognize
and organize [9]. Puzzle solvers are also used in image synthesis and manipulation by
allowing scenes to be seamlessly rearranged while preserving the original content [3].

This paper proposes a computational puzzle solver for non-overlapping square-piece
jigsaw puzzles. Many prior puzzle assembly algorithms [4,13,19,6,15] assume that the
orientation of each puzzle piece is known and only the location of each piece is un-
known. These are called “Type 1” puzzles. More difficult are “Type 2” puzzles where
the orientation of each piece is also unknown [8]. Our algorithm assembles both Type
1 and Type 2 puzzles with no anchor points and no information about the dimensions
of the puzzles. Our system is also capable of simultaneously reconstructing multiple
puzzles whose pieces are mixed together [18].

The most challenging aspect of puzzle reconstruction is the number of successive
local matching decisions that must be correct to achieve an accurate reconstruction. For
example, given a puzzle with 432 pieces, an algorithm needs to return 431 true positive
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matches with no false positive matches. Even if the pairwise matches can be found with
0.99 precision (rate of true matches in positive matches), the likelihood that a naive al-
gorithm will chain together 431 true matches is only 0.013. Our method focuses not on
a dissimilarity metric between pairs of pieces but on a strategy to recover the complete
shape from fragments given a dissimilarity metric. Thus, our method can be extended
to the various types of puzzle problems without significant modification. The key idea
in our puzzle solver, which stands in contrast to previous strategies, is to explicitly find
all small loops or cycles of pieces and in turn group these small loops into higher order
“loops of loops” in a bottom-up fashion. Our method uses these puzzle loops, specifi-
cally 4-cycles, as a form of outlier rejection whereas previous methods, e.g. Gallagher
[8], treat cycles as a nuisance and avoid them by constructing cycle-free trees of puz-
zle pieces. During the bottom-up assembly, some of the small loops discovered may be
spurious. Our algorithm then proceeds top-down to merge unused loop assemblies onto
the dominant structures if there is no geometric conflict. Otherwise, the loop assemblies
are broken into sub-loops and the merging is attempted again with smaller loops. If the
loops of 4 pieces still geometrically conflict with the dominant structures, we remove
them as an another form of outlier rejection. We test our method with various Type 1
and Type 2 puzzle datasets to verify that our solver outperforms state-of-the-art methods
[4,13,19,6,8,15]. Our contributions are summarized below:

– We propose a conceptually simple bottom-up assembly strategy which operates on
top of any existing metric for piece similarity. Our method requires no random field
formulations with complex inference procedures, no learning, and no tree construc-
tion over a graph of puzzle pieces.

– The proposed square puzzle solver approaches precision 1 (perfect reconstructions)
given dissimilarity metrics used in prior literature. We empirically show that the
precision of pair matches is likely to increase as pieces (or small loops of pieces)
are assembled into higher order loops and reaches 1. Specifically, when our solver
is able to construct loop assemblies of puzzle pieces above a dimension1 of 4 or 5,
the configurations are always correct – piece pair matches in the assemblies are all
true positives. Details are discussed in Section 3.

– Our solver significantly outperforms state-of-the-art methods [4,13,19,6,8,15] with
the standard data sets [4,12,13]. For the more challenging Type 2 puzzle setup,
we reduce the error rate by up to 70% from the most accurate prior work [8]. In
fact, we show that our algorithm is approaching the theoretical upper bound in
reconstruction accuracy on the data set from Cho et al. [4].

– We evaluate the robustness of Type 2 puzzle solving strategies to image noise (iid
Gaussian noise). At high noise levels, the performance gap between our work and
previous methods [8] is even more pronounced.

1.1 Related Work

Initiated by Freeman and Gardner [7], the puzzle solving problem has been addressed
numerous times in the literature. An overview of puzzle tasks and strategies is well de-
scribed in [8]. Our puzzle solver is in a line with recent works [2,4,13,19,6,8,15] which

1 For example, a loop assembly of dimension (order) 2 is a block of 2 by 2 pieces.
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solve non-overlapping square-piece jigsaw puzzles. Even though Demaine et al. [5]
discover that puzzle assembly is an NP-hard problem if the dissimilarity metric is unre-
liable, the literature has seen empirical performance increases in Type 1 puzzles by us-
ing better compatibility metrics and proposing novel assembly strategies such as greedy
methods [13], particle filtering [19], genetic algorithms [15], and Markov Random Field
formulations solved by belief propagation [4]. The most closely related prior work from
Gallagher [8] defines and solves a new type (Type 2) of non-overlapping square-piece
jigsaw puzzle with unknown dimension, unknown piece rotation, and unknown piece
position. Gallagher [8] also proposes a new piece dissimilarity metric based on the Ma-
halanobis distance between RGB gradients on the shared edge. They pose the puzzle
problem as minimum spanning tree problem constrained by geometric consistency such
as a non-overlap between pieces and solve it by modifying Kruskal’s Algorithm [10].
Even though we argue for a puzzle assembly strategy which is effectively opposite to
Gallagher [8], because we try to leverage puzzle cycles early and they try to avoid them,
their proposed distance metric is a huge improvement on the previous works and their
method performs well.

Possibly related to our work at a high level are the “Loop Constraints” widely used
to estimate extrinsic parameters of cameras [17,20]. With prior knowledge that the pose
of cameras forms a loop, these constraints increase accuracy of camera pose estimation
by reducing accumulated error around the loop. Multiple 3D scenes are registered by
optimizing over the graph of neighboring views [14]. They optimize the global cost
function by decomposing the graph into a set of cycle which can be solved in closed
form. The “Best Buddies” strategy [13] that prefers pair matches when each piece in
the pair independently believes that the other is its most likely match can be considered
as a type of loop. Our loop constraints are different from Pomeranz et al. [13] because
we exploit a higher-order fundamental unit of 4 pieces that agree on 4 boundaries rather
than 2 pieces that agree on 1 boundary. This higher ratio of boundaries to pieces gives
us more information to constrain our matching decisions. Our algorithm also proceeds
from coarse to fine, so that higher-order loops can reject spurious smaller loops.

2 Square Jigsaw Puzzle Solver with Loop Constraints

We explain our puzzle assembly strategy in the case of Type 2 puzzles – non-overlapping
square pieces with unknown rotation, position, and unknown puzzle dimensions. Later
we will also quantify performance for the simpler Type 1 case with known piece rota-
tion in Section 4.

The main contribution of our work is a novel, loop-based strategy to reconstruct puz-
zles from the local matching candidates. Using small loops (4-cycles) as the fundamen-
tal unit for reconstruction is advantageous over alternative methods in which candidates
are chained together without considering cycles (or explicitly avoiding cycles) because
the loop constraint is a form of outlier rejection. A loop of potential matches indicates
a consensus among the pairwise distances. While it is easy to find 4 pieces that chain
together across 3 of their edges with low error, it is unlikely that the fourth edge com-
pleting the cycle would also be among the candidate matches by coincidence. In fact,
to build a small loop which is not made of true positive matches, at least two of the
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Fig. 1. We discover small loops of increasing dimension from a collection of pieces. The first
small loops, made from four pieces, are of dimension 2 (SL 2). We then iteratively build higher-
order, larger dimension loops from the lower order loops, e.g. 4 SL 2s are assembled into SL 3s,
and so on. We continue assembling loops of loops in a bottom-up fashion until the algorithm finds
some maximum sized small loop(s) (SL N). The algorithm then proceeds top-down to merge un-
used loop assemblies onto the dominant structures (Details are in Section 2.2). This top-down
merging is more permissive than the bottom-up assembly and has no “loop” constraint. As long
as two small loops share at least two pieces in consistent position they are merged. At a particular
level, remaining loops are considered for merging in order of priority, where priority is deter-
mined by the mean dissimilarity value of all pair matches in that loop. After all possible merges
are done for loops of a particular dimension, the unused loops are broken into their sub-loops
and the merging is attempted again with smaller loops. If the reconstruction is not rectangular,
trimming and filling steps are required.

edge matches must be wrong. While some small loops will contain incorrect matches
that none-the-less lead to a consistent loop, the likelihood of this decreases as higher-
order loops are assembled. A small loop of dimension 3, built from 4 small loops of
dimension 2, reflects the consensus among many pairwise distance measurements. This
is also analyzed further in Section 3.

We use the term “small loop” to emphasize that our method focuses on the short-
est possible cycles of pieces at each stage – loops of length 4. Longer loops could be
considered, but in this study we use only small loops because (1) longer loops are less
likely to be made of entirely true positive pairwise matches and (2) the space of possible
cycles increases exponentially with the length of the cycle. While it is possible for us to
enumerate all 4-cycles built from candidate pairwise matches in a puzzle, this becomes
intractable with longer cycles. (3) Our algorithm is coarse-to-fine, so larger scale cycles
are already discovered by finding higher order assemblies of small loops.
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2.1 Local, Pairwise Matching

Before assembling loops we must consider the pairwise similarity metric which de-
fines piece compatibility and a strategy for finding candidate pair matches. In Type 2
puzzles, two square puzzle pieces can be aligned in 16 different ways. We calculate
dissimilarities between all pairs of pieces for all 16 configurations using the Sum of
Squared Distances (SSD) in LAB color space and Mahalanobis Gradient Compatibility
(MGC) from Cho et al. [4] and Gallagher [8] respectively. Absolute distances between
potential piece matches are not comparable (e.g. sky pieces will always produce smaller
distances), so we follow the lead of Gallagher [8] and use dissimilarity ratios instead.
For each edge of each piece, we divide all distances by the smallest matching distance.
Unless otherwise stated, edge matches with a dissimilarity ratio less than 1.07 are con-
sidered “candidate” matches for further consideration.2 We limit the maximum number
of candidate matches that one side of a piece can have to ζ (typically 10) for computa-
tional efficiency.

2.2 Puzzle Assembly with Loop Constraints

We introduce our representation of Type 2 puzzles and operations. We formulate the two
major steps of our puzzle assembly: bottom-up recovery of multi-order (i.e. arbitrarily
large) small loops in the puzzle and top-down merging of groups of pieces. A visual
overview of the assembly process is described in Figure 1.

Formal Representation of Puzzle and Puzzle Operations. Pieces are represented by
complex numbers where real and imaginary parts are IDs of pieces and their rotation,
respectively. The real parts of the complex numbers range from 1 to the total number
of pieces and have unique numbers. The imaginary parts of the complex numbers are
{0, 1, 2, 3} and represent the counter-clockwise number of rotations, each of 90 degree
for the pieces (For Type 1 puzzles, the pieces have no imaginary component to their
representation). We pose the puzzle problem as arranging 2D sets of complex numbers.
The final result of the puzzle solver is 2D complex-valued matrix. To generally represent
configurations in matrices, we also allow ‘NaN’ which means that no piece occupies the
position. We define a rotational transformation function Rotn(.) where an input is a 2D
complex-valued matrix. The function Rotn(.) geometrically turns the input matrix n
times in a counter-clockwise direction. In other words, the individual pieces are rotated
by 90× n degrees in a counter-clockwise direction and the entire matrix turns counter-
clockwise (See Figure 2).

Relational symbols are defined given complex-valued matrices U and V . If matrices
U and V share at least two of the same ID pieces, they are aligned by one of the shared
pieces. If there is no a geometric conflict, such as a overlap with different complex

2 Using dissimilarity ratios makes edge distances more comparable but it has the downside that
the first-nearest-neighbor distance is exactly 1 for every edge and thus they are no longer
comparable. To alleviate this, the smallest dissimilarity ratio is substituted with the reciprocal
of the second smallest dissimilarity ratio. This is only relevant for experiments where the
candidate threshold is lowered below 1.
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Fig. 2. An example representation of groups of pieces using complex-valued matrices and their
relational operations. The top row shows two matrices U and V which are compatible for a
merge, and the bottom row shows variations of matrices which are instead incompatible. (a) Given
complex-valued matrices U and V , (b) which share multiple pieces with the same IDs (real parts
of the complex numbers), (c) we rotate matrix V (Rot2(V )) to align the shared pieces. (d) If the
shared region is consistent to each matrix, we merge the two matrices. (e) Given complex-valued
matrices W and X , (f) we align them by shared pieces. However, the matrices W and X are
in conflict because the overlapped region includes different complex numbers (different IDs or
rotations). (g,h) The matrices Y and Z also conflict because the non-overlapped regions include
the same ID pieces (real parts of the complex numbers) in both matrices.

numbers (ID or rotation) or an existence of same IDs (real part of a complex number)
in a non-shared region, the matrices U and V are geometrically consistent, represented
by U ∼ V . Otherwise, geometric inconsistency is represented by U⊥V . If the matrices
U and V are geometrically consistent, we can merge the two matrices U ⊕ V (See
Figure 2). If less than two of the same ID pieces are in both matrices, we assume that
they are not related with each other U ||V .3

Recovering Small Loops of Arbitrary Order in the Puzzle. In this step we dis-
cover small loops with candidate pair matches given by the local matching algorithm
described in Section 2.1. In the first iteration, small loops of width 2 (SL 2) are formed
from four candidate matches. Once all consistent loops are discovered, these loops (e.g.
SL 2) are assembled into higher-order 4 cycles (e.g. SL 3) if piece locations are geo-
metrically consistent (piece index and rotation are the same) among all 4 lower-order
loops. The algorithm iteratively recovers SL i loops by assembling SL i-1 elements. The
procedure continues until no higher-order loops can be built and some maximum size
small loop is found (SL N).

3 A single piece correspondence is enough to establish the geometric relationship between two
groups of pieces, but we choose not merge on the basis of singe piece correspondences. Such
correspondences are more likely to be spurious. However, if they are true correspondences it
is likely that as the pieces grow they will eventually have two or more shared pieces and thus
become merge-able by our criteria.
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(a) (b)

(c) (d)

Fig. 3. Recovering small loops of arbitrary order. The match candidates from the local, pairwise
matching step (Section 2.1) are represented in a sparse 3D binary matrixM1 of size K1×K1×16.
(a) If M1 indicates that all the pairs (1-9, 9-5, 5-8 and 8-1) are match candidates, the four pieces
form a small loop. We make a new matrix (2 × 2) with the small loop and save it as an element
of the 2nd-order set Ω2. (b) If one or more pairs are not match candidates (in this case, 10-1),
the four pieces do not form a small loop. (c) For the ith-order set Ωi, matrix Mi indicates the
match candidates between elements of Ωi. Mi is size Ki ×Ki × 16. If Mi indicates that all the
pairs (ωi1 − ωi9, ωi9 − ωi5, ωi5 − ωi8 and ωi8 − ωi1) are match candidates the four groups of
pieces form a ith-order small loop. We make a new matrix ((i + 1) × (i + 1)) by merging the
four groups of pieces and save it as an element of the (i+1)th-order set Ωi+1. (d) If one or more
pairs are not match candidates (in this case, ωi10 − ωi1), the four groups of pieces do not form
the ith-order small loop.

More formally, the input puzzle is represented by a set of complex numbers Ω1 =
{ω11, ω12, . . . ω1K1} where K1 is a total number of pieces. Match candidates from the
local, pairwise matching step (Section 2.1) are stored in a 3D binary matrix M1 of size
K1 × K1 × 16. If M1(x, y, z) is 1, the piece ID x and the piece ID y are a match

candidate with the configuration z. The piece ID y turns �z − 1

4
� + 1 times counter-

clockwise and places above, to the right, below or to the left of the piece ID x according
to (z − 1) mod 4 + 1.

In the same way, we search for all small loops with combinations of 4 pairs of match
candidates given Ω1 and the binary match candidate matrix M1 (See Figure 3). All the
small loops are saved as elements of the 2nd-order set Ω2.

Iteratively, given the i th-order set Ωi = {ωi1, ωi2, . . . ωiKi} where the size of the
each element (ωix) is i× i, we generate a 3D binary matrix Mi of size Ki ×Ki × 16.
Mi stores match candidates between the elements in the i th-order set Ωi. If the size of
the overlap between the elements ωix and ωiy is i × (i − 1) or (i − 1)× i and there is
no geometric conflict (ωix ∼ ωiy), we set Mi(x, y, z) as 1, otherwise it is 0 where the
number z encodes the relative rotation and position of the two matrices. Iteratively, we
find small loops of dimension i+1 from elements in the Ωi with the matrix Mi and save
them as elements of the (i+1) th-order set Ωi+1 (See Figure 3 (b)). We find a maximum-
order of set (ΩN ) until the set is not a null set.
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Algorithm 1: Merge matrices in the set ΩN

Data: ΩN

Result: ΛN

ΛN = ΩN

while Two or more elements are overlapped between two matrices in the set ΛN do
ωNj and ωNk are the overlapped pairs with the highest priority among them.
ΛN = ΛN\{ωNj , ωNk}; ΛN = ΛN ∪ fm(ωNj , ωNk);

end
return ΛN

Merging Groups of Pieces. At this point the algorithm proceeds in a top-down fashion
and merges successively smaller remaining small loops without enforcing loop con-
straints. Merges are performed when two piece assemblies overlap by two or more
pieces in geometrically consistent configuration. If a small loop conflicts geometrically
with a larger assembly, the small loop is broken into its constituent lower order loops.
If two small loops of the same dimension conflict, the loop with the smaller mean value
of dissimilarity among its edge matches is used. If the assembly of pieces is not a rect-
angular shape, the algorithm estimates the dimension of the configuration given the
number of pieces and the current configuration. Based on the estimated dimension, the
method configures the final shape of the puzzle by trimming (so as to break minimum
dimension of small loops in the biggest configuration) and filling.

More formally, we define a merge function given two matrices ωx, ωy below

fm(ωx, ωy) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ωx ⊕ ωy, if ωx ∼ ωy

ωx, if ωx⊥ωy ∧ fp(ωx) ≥ fp(ωy)

ωy, if ωx⊥ωy ∧ fp(ωx) < fp(ωy)

ωx, ωy, if ωx||ωy

(1)

where the priority function fp(ωx, ωy) is defined below

⎧
⎪⎨

⎪⎩

fp(ωx) ≥ fp(ωy), if #(ωx) > #(ωy)

fp(ωx) ≥ fp(ωy), if #(ωx) = #(ωy) ∧ ω̄x < ω̄y

fp(ωx) < fp(ωy), Otherwise

(2)

where #(.) is a number of elements in the matrix (except NaN) and ω̄x is a mean value
of the dissimilarity metrics of all pairs in the group ωx.

Given the sets of sets {Ω1, Ω2, Ω3, . . .ΩN} from the previous step, the method be-
gins with performing the Algorithm 1 to generate a new set ΛN from the ΩN . The ΛN

is a set of matrices which are results of merging the matrices in the ΩN . We performs
the Algorithm 2 iteratively to generate a Λi−1 from the Λi and Ωi−1 until we generate
a Λ2. The Λi−1 is a set of output matrices by merging the matrices in the Λi and Ωi−1.
We generate Λ1 by merging remaining pair matching candidates to the set Λ2.

Elements of a set (Λ1) of 2D matrices are either a complex number or NaN. The 2D
matrices in a set Λ1 are final configurations by loop constraints. Λ1 normally contains
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Algorithm 2: Merge matrices in the sets Λi and Ωi−1

Data: Λi and Ωi−1

Result: Λi−1

Λi−1 = {Λi ∪Ωi−1} = {s1, s2, . . .}
while Two or more elements are overlapped between two matrices in the set Λi−1 do

sj and sk are the overlapped pairs with the highest priority among them.
Λi−1 = Λi−1\{sj , sk}; Λi−1 = Λi−1 ∪ fm(sj , sk);

end
return Λi−1
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Fig. 4. The average precision of pair matches changes as a function of small loop dimension (or-
der of small loops) (a) for different distance metrics (with the MIT dataset), (b) at different local
matching thresholds (with the MIT dataset), (c) at different noise levels (with the MIT dataset),
and (d) with different datasets (with the MGC metric). The leftmost point, SL1, represents the
performance of the local matching by itself with no loop constraints. The noise levels in (c) are
high magnitude because the input images are 16 bit. The patch size is P = 28 for all the experi-
ments.

a single 2D large matrix, which is a main configuration from the puzzle. If Λ1 contains
multiple matrices, we consider a matrix that contains complex numbers maximally as a
main configuration and break the other configurations into pieces4. If the main matrix
(configuration) contains NaN it means that the final configuration of the puzzle is not
rectangular. In this case we estimate most probable dimension of the puzzle given the
current main configuration and the total number of pieces. With the estimated dimension
of the puzzle, the method trims the main configuration so that it cuts minimum order of
small loops in the main configuration. This is because higher order of small loops are
more reliable than smaller one. We fill the NaN with the remaining pieces in the order
of minimum total dissimilarity score across all neighbors.

3 Empirical Verification of Small Loop Strategy

We observe in Figure 4 that as higher-order small loops are built from smaller dimen-
sion loops the precision of pair matches increases significantly even in the presence of
noise with dataset from Cho et al. [4] (MIT dataset). In figure 4 (a), for the MGC and
SSD+LAB distance metrics, the precisions are 0.627 and 0.5 for local, pairwise edge

4 If we search multiple configurations from mixed puzzles, we consider all matrices in Λ1 as
main configurations.
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matches (see order 1 of SL) and jumps dramatically to 0.947 and 0.929 (see order 2
of SL) with our method with the lowest dimension small loop. The precision keeps in-
creasing as order of small loops grows eventually reaching 1 for both metrics (although
the recall has dropped considerably by this point). This tendency of the precision to
reach 1 as higher order small loops are assembled persists even when the threshold
for candidate matches is varied (Figure 4 (b)) and when noise (pixel-wise Gaussian) is
added to the puzzle pieces (Figure 4 (c)). With the various datasets, the precision also
reaches to 1 as the order of small loops increases (Figure 4 (d)). For most of the exper-
iments, precision approaches 1 when the order of small loops is above 4 or 5. Notably,
although the precision of pair matches is below 15% under severe noise (2000 STD), it
increases significantly and reaches to 1 as order of small loops grows.

4 Experiments

We verify our square jigsaw puzzle assembly algorithm with sets of images from Cho
et al. [4] (MIT dataset), Olmos et al. [12] (Mcgill dataset) and Pomeranz et al. [13].
Each paper provides a set of 20 images and Pomeranz et al. [13] additionally presents 2
sets of 3 large images. All the data sets are widely used as a benchmark to measure the
performance of square jigsaw puzzle solvers. For some images, the camera is perfectly
aligned with the horizon line and image edges (e.g. building boundaries) align exactly
with puzzle edges. Some patches contain insufficient information (homogeneous region
such as sky, water and snow) and others present repetitive texture (man-made textures
and windows). As a result, the pairwise dissimilarity metrics return many false positives
and false negatives on these data sets.

We measure performance using metrics from Cho et al. [4] and Gallagher [8]. “Di-
rect Comparison” measures a percentage of pieces that are positioned absolutely cor-
rectly. “Neighbor Comparison” is a percentage of correct neighbor pairs and “Largest
Component” is a percentage of image area occupied by the largest group of correctly
configured pieces. “Perfect Reconstruction” is a binary indicator of whether or not all
pieces are correctly positioned with correct rotation.

For many experiments we also report an “upper bound” on performance. Particular
puzzles may be impossible to unambiguously reconstruct because certain pieces are
identical, as a result of camera saturation. The upper bound we report is the accuracy
achieved by correctly placing every piece that is not completely saturated.

Type 1 Puzzles (known orientation and unknown position): We test on 20 puzzles
of 432 pieces each (K = 432) with the piece size of 28 × 28 pixels (P=28) from
the MIT dataset. We use MGC as a dissimilarity metric for solving Type 1 puzzles.
Table 1 reports our performance for solving Type 1 puzzles. The proposed algorithm
outperforms prior works [4,19,13,6,8,15]. Our improvement is especially noteworthy
because our algorithm recovers the dimension of the puzzles rather than requiring it as
an input as in [4,19,13,6,15]. Our performance is very near the upper bound of the MIT
dataset for Type 1 puzzles.

We also test our method with 20 puzzles (K = 540, P = 28) from the Mcgill
dataset and 26 puzzles (20 (K = 805, P = 28), 3 (K = 2360, P = 28) and 3
(K = 3300, P = 28)) from Pomeranz et al. [13] (See Table 2). Notably, for the puzzles
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Table 1. Reconstruction performance on Type 1 puzzles from the MIT dataset, The number of
pieces is K = 432 and the size of each piece is P = 28 pixels

Direct Nei. Comp. Perfect
Cho et al. [4] 10% 55% - 0
Yang et al. [19] 69.2% 86.2% - -
Pomeranz et al. [13] 94% 95% - 13
Andalo et al. [6] 91.7% 94.3% - -
Gallagher et al. [8] 95.3% 95.1% 95.3% 12
Sholomon et al. [15] 80.6% 95.2% - -
Proposed 95.6% 95.5% 95.5% 13
Upper Bound 96.7% 96.4% 96.6% 15

Table 2. Reconstruction performance on Type 1 puzzles from Olmos et al. [12] and Pomeranz et
al. [13]. The size of each piece is P = 28 pixels.

540Pieces [12] 805Pieces [13] 2360Pieces [13] 3300Pieces [13]
Direct Nei. Direct Nei. Direct Nei. Direct Nei.

Pomeranz [13] 83% 91% 80% 90% 33.4% 84.7% 80.7% 85.0%
Andalo [6] 90.6% 95.3% 82.5% 93.4% - - - -
Sholomon [15] 90.6% 94.7% 92.8% 95.4% 82.7% 87.5% 65.4% 91.9%
Proposed 92.2% 95.2% 93.1% 94.9% 94.4% 96.4% 92.0% 96.4%

with large numbers of pieces (K = 2360,K = 3300), our method improves the recon-
struction performance significantly (more than 10%) under both Direct and Neighbor
Comparison. As the number of puzzle pieces increases, our algorithm has the opportu-
nity to discover even higher order loops of pieces which tend to be high precision.

Type 2 Puzzles (unknown orientation and position): Type 2 puzzles are a challenging
extension of Type 1 puzzles. With K pieces, Type 2 puzzles have 4K times as many
possible configurations as Type 1 puzzles. For small puzzles with K = 432 this means
that Type 2 puzzles have 4432 ≈ 1.23 × 1026 times as many solutions. Due to this
increased complexity, there is still room for improvement in Type 2 puzzles solving
accuracy whereas performance on Type 1 puzzles is nearly saturated by our algorithm
and previous methods.

With Type 2 puzzles (K = 432, P = 28) from the MIT dataset, we examine our
proposed method with the sum of squared distance (SSD) in LAB color space and
MGC as metrics and compare with Gallagher [8] (Table 3). Given the same dissimilarity
metric, our method increases the performance by 12% under the Direct Comparison,
thus reducing the error rate by up to 70%. Because both methods use the same local
distance metric, this difference is entirely due to loop assembly strategy versus the tree-
based algorithm in Gallagher [8] (See visual comparisons of results in Figure 5).

We compare our method with Gallagher [8] with different piece sizes (P=14 and 28)
and numbers of pieces (K = 221, 432 and 1064) on puzzles from the MIT dataset. We
use MGC as a dissimilarity metric from now on unless otherwise stated. In all cases, our
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(a) Type2 (b) [8] 76% (c) Ours 89% (d) Type2 (e) [8] 92% (f) Ours 100%

(g) Type2 (h) [8] 82% (i) Ours 99% (j) Type2 (k) [8] 0% (l) Ours 84%

Fig. 5. Visual comparisons of the results on Type 2 puzzles (P = 28,K = 432). The percentage
numbers indicate Direct Comparisons.

Table 3. Reconstruction performance on Type 2 puzzles (P = 28, K = 432) from the MIT
dataset

Direct Nei. Comp. Perfect
Tree-based+L.SSD [8] 42.3% 68.2% 63.6% 1
S.L.+L.SSD (Proposed) 54.3% 79.7% 66.3% 2
Tree-based+MGC [8] 82.2% 90.4% 88.9% 9
S.L.+MGC (Proposed) 94.7% 94.9% 94.6% 12
Upper Bound 96.7% 96.4% 96.6% 15

method outperforms Gallagher’s algorithm [8] (See Figure 6 (a) and (b)). Notably, we
almost achieve the upper bound of the performance in the case K = 1064, P = 28. Our
method is verified with more puzzles (K = 550, 805, 2260 and 3300) from the Mcgill
dataset and Pomeranz et al. [13] (Figure 6 (c)). Our puzzle solver distinctively outper-
forms Gallagher [8] when the number of puzzle pieces increases (K = 2260, 3300).

Noise Analysis on Type 2 Puzzles: We further analyze the robustness of our puzzle
solver by adding pixel-wise Gaussian noise to the MIT dataset. Experiments are con-
ducted 5 times (P = 28, K = 432) and the performance values are averaged. Figure 7
shows that our method tends to outperform Gallagher [8] as noise increases (26% im-
provement in 2000 STD Gaussian noise under Neighbor Comparison). As pixel-wise
Gaussian noise increases in the pieces, the dissimilarity metrics are no longer reliable.
The constrained Kruskal’s algorithm in [8] has a strong implicit belief in dissimilarity
metrics so performance decreases considerably as noise increases. Our method, how-
ever, is more robust to spurious pairwise comparisons because loops require consensus
between many dissimilarity measurements and thus avoid many false pairwise matches.

Extra Type 2 Puzzles: As opposed to prior works [4,19,13,6,15], our method does not
require the dimension of resulting puzzles as an input. This allows us to solve puzzles
from multiple images with no information except the pieces themselves. Our solver
perfectly assembles 1900 mixed Type 2 puzzle pieces from [1] (See Figure 8).
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(a) Performance comparison with puzzles from the MIT dataset.
Size of patch is P = 14.
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(b) Performance comparison with puzzles from the MIT dataset.
Size of patch is P = 28.
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(c) Performance comparison with puzzles from the Mcgill dataset
and Pomeranz et al. [13]. Size of patch is P = 28.

Fig. 6. Performance comparison between ours and Tree-based MGC [8] on Type 2 with various
cases. A table is presented in a supplemental material.

As observed in the previous experiments, our solver significantly outperforms prior
works especially as a number of puzzle pieces increases in both Type 1 and Type 2
puzzles. This is because the opportunity to recover high order small loops (above 4 or
5 orders) increases. (the precision approaches to 1 if the order of small loops is above 4
or 5.) Big images from [1] are used for more intensive experiments with large numbers
of puzzle pieces. Our solver configures 9801 and 4108 piece Type 2 puzzles perfectly
(See Figure 8). We believe that these are the largest puzzles to date that are perfectly
reconstructed with unknown orientation and position (Type 2).

The complexity for searching all small loops (4-cycles) is O(ζ3 * Np), where ζ is
the maximum number of positive pair matches that one side of a piece can have and
Np is a number of pair matching candidates. ζ is normally from 1 to 3 and maximally
10 in our experiments and each operation is just an indexation of a binary matrix. The
average time for finding all small loops is 0.308 second with the MIT dataset (432-piece
Type 2 puzzles) in Matlab. Most of the time is spent in pairwise matching, unoptimized
merging, trimming and filling steps. Using MGC, our algorithm spends 140 seconds for
432 pieces and 25.6 hours for 9801 pieces (Type 2) on a modern PC.
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Fig. 7. Performance comparison in the presence of noise. Experiments are conducted 5 times
(P = 28,K = 432) and the performance values are averaged. Our method outperforms Gal-
lagher [8], especially as noise increases.

(a) 1900 mixed Type 2 pieces (b) Output 1 (c) Output 2

(d) 4108 Type 2 pieces (e) Output (f) 9801 Type 2 pieces (g) Output

Fig. 8. Reconstructions on mixed Type 2 puzzles and very large Type 2 puzzles (P = 28)

5 Conclusion

We propose a non-overlapping square-piece jigsaw puzzle solver based on loop con-
straints. Our algorithm seeks out and exploits loops as a form of outlier rejection. The
proposed square-piece jigsaw puzzle solver approaches precision 1 given existing dis-
similarity metrics. As a result, our method outperforms the state of the art on standard
benchmarks. The performance is even better when the number of puzzle pieces in-
creases. We perfectly reconstruct what we believe to be the largest Type 2 puzzles to
date (9801 pieces). Our algorithm outperforms prior work even in the presence of con-
siderable image noise.
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