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Abstract. Crowd tracking generates trajectories of a set of particles
for further analysis of crowd motion patterns. In this paper, we try
to answer the following questions: what are the particles appropriate
for crowd tracking and how to track them robustly through crowd.
Different than existing approaches of computing optical flows, tracking
keypoints or pedestrians, we propose to discover distinctive and stable
mid-level patches and track them jointly with dynamic evolution of group
structures. This is achieved through the integration of low-level keypoint
tracking, mid-level patch tracking, and high-level group evolution. Key-
point tracking guides the generation of patches with stable internal mo-
tions, and also organizes patches into hierarchical groups with collective
motions. Patches are tracked together through occlusions with spatial
constraints imposed by hierarchical tree structures within groups. Co-
herent groups are dynamically updated through merge and split events
guided by keypoint tracking. The dynamically structured patches not
only substantially improve the tracking for themselves, but also can as-
sist the tracking of any other target in the crowd. The effectiveness of
the proposed approach is shown through experiments and comparison
with state-of-the-art trackers.

1 Introduction

Crowd motion analysis has recently drawn many attentions because of its im-
portant applications in crowd video surveillance including recognizing different
crowd events and traffic modes [29, 34–36, 11], detecting abnormal crowd be-
haviours [29, 15], and predicting crowd behaviours [35]. Different than many
conventional surveillance approaches which focus on tracking individuals and
analysing their behaviours, crowd surveillance treats the whole crowd as a union
at the macroscopic level. It does not require extracted motions exactly corre-
sponding to individual objects, as long as they reflect the motion patterns of the
whole crowd. On the other hand, the learned motion patterns can assist tracking
a particular target of interest through the crowd [2, 13, 21, 23]. Existing works
learn crowd motion patterns through computing optical flows [2, 13, 21, 23],
tracking keypoints [34–36] or pedestrians [1, 22, 26].
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Fig. 1. (a) Crowd video. (b) A good mid-level patch for tracking with coherent internal
motions. Since the motions of keypoints and the patch are consistent, tracking the
patch well reflects local motions of the crowd. The patch covers three persons whose
relative positions are stable over time. They form unique visual pattern for tracking.
(c) Multi-scale patches. The red patch covers two small yellow patches. They have
coherent motions. The red patch can assist tracking the yellow patches by adding
spatial constraint at a larger scale. (d) A patch with incoherent internal motions. It is
not suitable for tracking as it cannot keep stable visual pattern. Since its motion differs
from those of keypoints inside, it cannot accurately reflect local motion of the crowd.

We can treat crowd tracking as generating trajectories of different length from
a set of particles (i.e., pixels, keypoints, patches or pedestrians) at different scale
levels. The major challenges of crowd tracking lie in three aspects: (1) partial or
full occlusions caused by frequent interactions among objects; (2) a large number
of individuals with similar appearance; and (3) significant appearance variation
due to the perspective distortion of camera views. Different types of crowd track-
ing provide different amount of information for further motion analysis, and they
also need to balance the risk of tracking errors.

Optical flows are computed at all pixels but their tracking only lasts for one
frame. Keypoint tracking only selects good feature points to track. Those key-
points can be considered as the smallest patches. If they are well tracked over
multiple frames, keypoint tracking can provide accurate information for crowd
motion analysis. However, keypoint tracking is very sensitive to even small occlu-
sions, since a feature point does not contain appearance information from a large
area. Therefore, only short tracklets can be obtained. Tracking with pedestrian
detection is very difficult because of heavy occlusions especially in very dense
crowd and large changes of viewpoints. So far there is no pedestrian detector
working robustly in all kinds of crowd scenes.

The above observations motivate us to find good mid-level patches to track,
which cover larger areas than keypoints and are more robust to occlusions. Patch
tracking can provide us longer trajectories which are useful for crowd motion
analysis. We can even track patches with different sizes (Fig. 1 (c)). Large patches
are more robust and take less risk of drifting. However, motions captured by them
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are less accurate, since they are not sensitive to local movements. Then the key
question is what are good patches for tracking. Different from other tracking
problems, one patch may be placed on multiple objects in crowd as shown in
Fig. 1 (b). Such a patch may not be bad for tracking, as long as the two objects
move coherently with stable relative positions. Moreover, study [18] has shown
that neighbouring pedestrians may form unique visual patterns which make the
patch distinctive for tracking. Since keypoint tracking provides accurate motions
within short periods, it can help to find patches with stable internal structures
and distinctive visual patterns [6, 20, 27]. It is important to detect patches with
coherent internal motions, because such patches keep stable appearance and can
accurately reflect the motions of the crowd as shown in Fig. 1 (b) and (d).

Scientific studies [14, 16] have shown that when a person is placed in crowd, he
or she tends to form collective behaviours with others instead of moving freely.
Thus crowd tends to form groups with coherent motions [34]. The relative posi-
tions of individuals within a group are more stable. Moreover, the collectiveness
of crowd increases as it becomes denser [33]. Therefore, patches within the same
coherent group should be tracked together by modeling their spatial structures.
It will significantly improve the robustness when tracking through occlusions.

We target on automatically detecting distinctive and stable mid-level patches
and jointly tracking them with dynamically evolved group structures. Keypoint
tracking, patch tracking and group evolution are integrated at three different
levels. It is motivated by our insights on the strength and weakness of the three
aspects in crowd tracking. While patch tracking is more robust to partial occlu-
sion and appearance change, keypoint tracking provides more accurate motion
information in short periods. Keypoint tracking can help to detect patches with
stable internal structures, and organize patches into groups with coherent mo-
tions and stable structures. Patches are tracked with a new dynamic hierarchical
tree structure. It models the spatial relationships between patches at different
scales and the evolution of group structures. Since crowd motions change dy-
namically, group structures are updated through merge and split over time.

2 Related Work

Some works [2, 13, 21, 23] have been done on tracking targets through crowd by
learning models of scene structures and long-term motion patterns from optical
flows or trajectories of keypoints. Ali and Shah [2] proposed multiple floor fields
to assist tracking targets through crowd. These floor fields characterize forces
from dominant paths, preferred exit regions, and boundaries of scene structures.
Rodriguez et al. [21] employed the Correlated Topic Model [5] to learn a mixture
of motion patterns for a specific scene and used it as prior to guide tracking. In
[23], they extended this approach such that the learned priors of crowd behaviors
can be transferred across scenes. Kratz and Nishino [13] captured the crowd
motion at each spatio-temporal location with 3D Gaussian distributions and
HMM, and used it as prior to guide tracking. All these models of scene structures
and crowd motion patterns are learned from optical flows with off-line training.
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None of them jointly track multiple targets together. Their focus is on tracking
a particular particle through the crowd instead of tracking the whole crowd with
a set of particles as we do. Our online-tracking approach does not require a
training process to obtain priors of scene structures or motion patterns.

Recently, the social force model [9] has been used to track multiple pedestrians
by modeling their interactions, the influence of destinations and scene structures
with a physical model [19, 24]. This approach requires a lot of prior knowledge
on scene structures and only suitable to top-down views. The parameters of the
physical models need to be manually set or trained for each scene specifically.
The initialization of tracking must rely on a pedestrian detector on “all” the
individuals rather than keypoint or patch detectors (since the social force model
is based on the psychological and physiological interactions of individuals) which
generally does not work well in crowded scene. Manual initialization was used
in [19, 24]. It is not suitable for general crowd tracking.

Many model-free trackers [13, 3, 8, 30] are proposed to track general objects
including patches. They track each target separately without modeling the spa-
tial constraints among targets. Idrees, Warner and Shah [10] tracked the crowd
using neighbourhood motion concurrence. The work most relevant to ours is
the structure preserving multi-object tracking proposed by Zhang and Maaten
[31]. It jointly tracks multiple objects by modeling their spatial constraints. This
work has several major differences with ours. Its patches are manually initialized
and considered as one group during the whole tracking process (i.e. its group
structure and the number of edges connecting patches are fixed), while we au-
tomatically detect patches and dynamic update group structures through merge
and split operations. In [31], all the patches are placed on coherently moving ob-
jects with stable relative positions. However, in crowd tracking, patches may be
on groups moving in different directions, and adding spatial constraints on them
may bias the tracking. In [31], the spatial constraints of patches are modeled at
a single scale, while a hierarchical tree structure at multiple scales is used by us.

3 Our Method

Our crowd tracking framework is shown in Fig. 2. It integrates low-level keypoint
tracking, mid-level patch detection and tracking, and high-level group evolution.
Keypoints are tracked with the KLT tracker [28]. Whenever ambiguity arises
due to occlusions or other factors, keypoint tracking stops. Therefore, keypoint
tracking can provide accurate information on crowd motions within short pe-
riods. Keypoint tracking results are used to detect mid-level patches suitable
for tracking (Section 3.1), and update group structures over time (Section 3.2).
Patches are tracked together with the spatial constraints added by the dynamic
hierarchical tree structures (Section 3.3).

3.1 Patch Detection

Patches good for tracking should satisfy two requirements: (1) the appearance
is distinctive; and (2) points inside the patch have coherent motions. In [25],
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Fig. 2. Our crowd tracking framework integrates low-level keypoint tracking, mid-level
patch detection and tracking, and high-level group evolution. Both group evolution and
patch detection are guided by keypoint tracking. Group structures, which are used to
assist patch tracking, are updated during high-level group evolution.

feature points good for tracking are selected as “Shi-Tomasi Corners” which are
distinctive in local areas. We assume that patches with high density of such cor-
ner points are easy to track as they contain more distinctive textures. In order
to find such patch candidates, we adopt the clustering method proposed in [32]
to find dense clusters of keypoints. In [32], a K-NN graph is built from keypoints
and graph indegrees well reflect the boundaries of keypoint distributions with
different density levels. Outliers with low indegrees are removed and dense clus-
ters with high indegrees are detected through agglomerative clustering. These
dense clusters help to generate patch candidates.

Instead of clustering keypoints directly on K-NN graph, we first measure mo-
tion coherence [34] between neighbouring keypoints. If a keypoint moves co-
herently with others, its neighbour set should keep invariant over time and its
motion correlation with neighbours should be high. To achieve this, starting at
frame t, the invariant neighbours of keypoint i in the successive d+1 frames are
found as Mi

t→d =
⋂t+d

τ=t N i
τ , where N i

τ is the K-NN set of keypoint i in frame τ .
The motion correlation between i and its invariant neighbour j is measured by

Ci,j =

⎧
⎪⎨

⎪⎩

1

d+ 1

∑t+d
τ=t

vi
τ · vj

τ

‖vi
τ‖ · ‖vj

τ‖
, if j ∈ Mi

t→d,

0, otherwise,

(1)

where vi
τ is the velocity of i in frame τ and Ci,j is the (i, j) entry of motion

correlation matrix C. Given motion coherence, a graph is built among keypoints
and it is represented with matrix G which is derived from C with entries

Gi,j =

{
1, if Ci,j > Ch & Cj,i > Ch,

0, otherwise,
(2)

Ch is a predefined threshold set as 0.8 in all our experiments. Gi,j = 1 stands
for an edge between i and j. Edges are only assigned to pairs which are both in
the invariant neighbour set of each other and have high motion correlation.



144 F. Zhu, X. Wang, and N. Yu

0 20 40 60 80 100 120 140 160 180
0

500

1000

1500

2000

Num of Clusters

Q
−v

al
ue

(a) (b)

Fig. 3. (a) A typical curve of Q-value against cluster numbers. (b) Examples of detected
patches, red boxes are layer-2 patches mentioned in Section 3.3.

We cluster these keypoints based on a weighted version Gw of graph G by
integrating accurate spatial information

Gw
i,j =

⎧
⎨

⎩
exp(−dist(i, j)2

σ2
), if Gi,j = 1,

0, otherwise,
(3)

where dist(i, j) is the Euclidean distance between i and j, and σ2 =
∑

i,j

(dist(i, j)2 · Gi,j)/
∑

i,j Gi,j . We apply the graph-based bottom-up clustering
algorithm in [32] to find dense keypoint clusters and determine the number of
clusters using “Q-value” [17]. A typical curve of Q-value against cluster numbers
is in Fig. 3(a). We choose the cluster number with the maximum Q-value.

Patches are estimated from the detected keypoint clusters as follows: x =
1
N

∑N
i=1 xi, y = 1

N

∑N
i=1 yi, w = 2σx, h = 2σy, where (x, y) is the patch center,

w and h are width and height respectively, (xi, yi) is the coordinate of the ith

keypoint, σx and σy are the standard deviation of xi and yi, andN is the number
of keypoints in the cluster.

Some examples of patches detected in videos are shown in Fig. 3(b). Static
keypoints on the background are filtered out by motion correlation in Eq.(1), so
patches locate on moving targets. Since the graph is built with K-NN, the sizes of
clusters/patches increase with K. In the extreme case, a fully connected graph
becomes one cluster. In Section 3.3, patches are generated with two different
scales by choosing K = 10 and K = 20.

3.2 Group Evolution

Pedestrians in crowd interact with each other and form groups with coherent
motions. The relative positions of individuals in the same group are more stable.
So it is profitable to identify groups and track targets in the same group jointly.
However, crowd group structures are also changeable and affected by pedestrian
destinations and scene structures, and therefore need to be updated dynamically.

We derive groups of patches from the results of keypoint tracking, since they
provide more accurate motion information. Within a short period Δ, the whole
crowd is segmented into several coherent motion patterns with the Collective
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Fig. 4. Group evolution and dynamic structures, both group merge and split occurs

Merging algorithm [33]. It results in several groups of keypoints, such that each
group exhibits one collective motion pattern. Grouping information from the
keypoint-level guides the organization of mid-level patches. We assign keypoint
k a unique label yk indicating which collective motion it belongs to and determine
the label for patch i by majority vote of the keypoints covered by i.

Final groups for patches are generated by temporal smoothing. Let lit be the
label of patch i at frame t, then connectivity matrix Lt is defined as

Lt(i, j) =

{
1, if lit = ljt ,

0, otherwise,
(4)

where Lt(i, j) is the (i, j) entry of Lt. We sum up connectivity matrices over time

by Lsum =
∑kc−1

k=0 Lt−kΔ, where kc is the length of temporal buffer (kc = 10 in
all our experiments), and Δ is a short time period for calculating each Lt (Δ = 3
in all our experiments). Then entry (i, j) of Lsum is set to 1 if Lsum(i, j) ≥ κkc
and otherwise 0. The connected components in Lsum are extracted to be final
groups at frame t. κ controls the value of threshold and is set as κ = 0.7 in
all of our experiments. The buffer window makes the group structures change
smoothly and robust to errors of detected collective motions.

By regularly detecting collective motions and grouping patches, we dynami-
cally adjust group structures through merge and split events with the evolution
of crowd (Fig. 4).

3.3 Dynamic Hierarchical Tree Structure

Because of frequent occlusions and neighbours with similar appearance, track-
ers that only utilize appearance features of targets are likely to drift in crowd
scenes. We propose a dynamic hierarchical tree structure which imposes spatial
constraints on patches in a hierarchical manner and update structures dynami-
cally according to the evolution of groups.

As illustrated in Fig. 5, each group of patches constitute a hierarchical struc-
ture which could model more spatial relationships and appearance features than
a single tree structure. Since patches selected in Section 3.1 suggest coherent in-
ternal motions, we generate patches for the second layer using the same method
but with a larger K than the first layer. Then, cross-layer constraints are added
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Fig. 5. Dynamic hierarchical tree structure. Patches of different color in the first layer
indicates different groups which are generated dynamically. Lines connecting patches
stand for spatial relationships.

straightforwardly between layer-2 patches and overlapping layer-1 ones. For each
group, the structure at each layer are initialized as a minimum spanning tree
with respect to spatial locations, so constraints tend to be added between neigh-
bouring patches. When merge or split occurs, the structures will be merged or
split accordingly as shown in Fig. 4. We also re-initialize structures in each group
regularly to make sure that constrains are always imposed on adjacent patches.

For each group, we represent the set of patches at layerm by Pm = { pmi | pmi =
(xm

i , wm
i , hm

i ) , i = 1, . . .Nm}, where (xm
i , wm

i , hm
i ) defines a bounding box for

patch pmi with location xm
i , width wm

i and height hm
i . Edges within each layer

are denoted as Em, and Ec stand for cross-layer edges. In coming new frames,
each group of patches are tracked by maximizing

S(C; I) =
∑

m

∑

Pm

D(I, pmi )−
∑

m

∑

Em

L(pmi , pmj )−
∑

Ec

Lc(p
1
i , p

2
j), (5)

where C is the locations of all patches to be optimized given the new frame I.
The first term D(I, pmi ) is a unary term that measures appearance similarity
between pmi and the corresponding appearance model. L(pmi , pmj ) and Lc(p

1
i , p

2
j)

are pairwise terms that encode spatial constraints between patches. L(pmi , pmj )

stands for intra-layer constraints and Lc(p
1
i , p

2
j) are inter-layer ones.

The appearance score is measured as

D(I, pmi ) = L(wm
i · f(I, pmi )), (6)

where f(I, pmi ) is the HOG feature vector extracted in pmi , wm
i is the linear

weights on HOG features trained for patch pmi using linear SVM. L stand for
logistic function that regularize filter responses to [0, 1]. wm

i is updated using a
passive-aggressive algorithm similarly to [31].

Spatial constraint is defined as

L(pmi , pmj ) = λm
ij ‖(xm

i − xm
j )− emij ‖2, (7)

where emij is the expected relative position between target i and j, parameter
λm
ij (λm

ij = 0.001 in all of our experiments) controls the deformation cost in the
final score S(C; I). Spatial constraint eij between patch i and j is initialized as
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eij = xi − xj , and updated by enewij = 0.5(xnew
i − xnew

j ) + 0.5eoldij . Inter-layer

constraints Lc(p
1
i , p

2
j) are formulated similarly to L(pmi , pmj ).

Though it is hard to perform exact inference on loopy graphs, Eq.(5) can be
maximized efficiently with an iterative approach. First, the optimal configuration
of patches in the first layer regardless of inter-layer constraints is found by

P̂ 1 = max
P 1

∑

P 1

D(I, p1i )−
∑

E1

L(p1i , p
1
j), (8)

where P̂ 1 = {p̂1i |i = 1, . . . , N1} represents the optimal solution. Since the first
layer is tree-structured, exact inference can be performed in Eq.(8) via dynamic
programming. Then, patches in the second layer are located by integrating P̂ 1

as known

P̂ 2 = max
P 2

∑

P 2

D(I, p2i )−
∑

E2

L(p2i , p
2
j)−

∑

Ec

Lc(p̂
1
i , p

2
j), (9)

where the first two terms are similar to Eq.(8), and Lc(p̂
1
i , p

2
j) turns into a

unary term since p̂1i is fixed. So Eq.(9) can also be solved efficiently by dynamic

programming. Then, P̂ 1 can be refined by adding inter-layer term Lc(p
1
i , p̂

2
j) with

fixed p̂2j to Eq.(8) and optimize it again. After several iterations, the overall score
S(C; I) will converge to a stable value, and we stop iterations at the condition
that |Snew(Cnew; I)− Sold(Cold; I)| < ε, where ε is a small constant which we set
as ε = 10−4 in our work. It usually takes 2∼4 iterations before convergence.

4 Experiments

We conduct two sets of experiments for evaluation and comparison. In both
experiments, our tracker automatically detects mid-level patches regularly and
tracks them together with the selected target (which is manually initialized, since
all the other trackers in comparison require manual initialization) by adding
spatial constraints. Automatically detected patches act as “assistant patches”.
Targets and assistant patches are tracked together as described in Section 3.2 and
3.3. Assistant patches in layer 1 are treated equally with targets, while ones in
layer-2 are discarded if their appearance scores defined in Eq.(6) are lower than
a threshold (0.3 in our experiments). Newly detected patches are assigned to
current groups and those leaving the field of view are discarded during tracking.

The task of the first experiment is to track a single target through crowd
videos. In comparison, several state-of-the-art model-free trackers are also used
to track the target. We will show that tracking the crowd as a whole can effec-
tively improve the tracking of any single target in the crowd. In the second exper-
iment, we compare with the structure preserving multi-object tracking (SPOT)
approach [31] by jointly tracking multiple targets manually initialized. SPOT
also models the spatial constraints among targets during tracking. We will show
the advantage of our dynamic hierarchical tree structures during multi-object
tracking compared with keeping static structures unchanged in SPOT.



148 F. Zhu, X. Wang, and N. Yu

Fig. 6. Tracking single target together with assistant patches. Bounding boxes stand for
tracked areas (yellow: the selected target; cyan: layer-1 assistant patches; red: layer-
2 assistant patches) and lines connecting these boxes are spatial constraints (cyan:
constraints in layer 1; red : constraints in layer 2 and cross-layer constrains).

The dataset1 used in our experiments contains six videos of crowd scenes as
shown in Fig. 7. Three of them (i.e., “Traffic”, “Crowds” and “Marathon”) are
downloaded from the Web. The other three (i.e., “Split”, “Merge”, “Cross”) are
captured by us and they exhibit three types of group evolution. The resolutions
of these videos are in the range of 480× 360 to 768× 568.

Due to frequent occlusions, KLT tracker is very unstable and produces highly
fragmented tracklets. The average length of its tracks is 10.03 pixels on this
dataset, while ours is 94.33. We did not compare with crowd tracking methods
relying on priors of “repeated” motion patterns and scene structures [2, 13,
21, 23], since they need offline training to obtain priors. Our videos such as
“Split”, “Merge” and “Cross” do not have such motion priors since events only
happen once. We only compare with model-free trackers as our tracker does
not rely on priors of scene structures or repeated motion patterns. Social force
models [19, 24] are not compared, since they require human detection on “all”
the individuals as initialization. It is impractical in crowd tracking. See details
in Sec. 2.

We set K = 10 and 20 for detecting patches in layer 1 and 2 respectively. 4×4
cells are used for HOG feature extraction. Other parameter settings are explained
in Section 3. Experiments on all the videos share the same settings of parameters.
The tracking speed depends on video resolutions and scene crowdness. With an
unoptimized matlab implementation, our tracking speed is in the range of 7 fps
to 14 fps on this dataset by using Intel Core 2 Duo of CPU 3.0GHz.

4.1 Experiment I: Single-Object Tracking

In this experiment, we manually annotate the tracks of 10 targets through each
video (60 targets in total) to evaluate the tracking performance. Only one target
is tracked in each time with manual initialization. Experiments run for 10 times
on each video. Performance of trackers is evaluated by two metrics: (1) Error:
average distance between the center of hypothesis returned by trackers and that
of the ground truth; and (2) Recall: percentage of successfully tracked frames
(in which the overlap of hypothesis and ground truth is larger than 50%).

Four state-of-the-art model-free trackers are compared: OAB [8], MIL [3],
TLD [12] and CXT [7]. The first 3 trackers concentrate on modeling appear-
ance of tracked targets while the CXT tracker explores context (supporters and
distracters) from background to help tracking.

1 Available from http://home.ustc.edu.cn/~zhufengx/crowdTracking/

http://home.ustc.edu.cn/~zhufengx/crowdTracking/
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Table 1. Error and Recall of Experiment I. Bold font indicates best performance.

Ours TLD [12] MIL [3] OAB [8] CXT [7]
Error Recall Error Recall Error Recall Error Recall Error Recall

Traffic 3.29 97% 85.85 46% 49.86 50% 46.1 67% 47.5 73%
Crowds 4.37 96% 16.52 67% 10.69 71% 9.87 76% 70.4 55%
Marathon 5.57 87% 7.35 41% 26.85 31% 15.75 53% 129.5 20%
Split 3.93 91% 23.91 57% 9.06 64% 21.48 58% 46.8 67%
Merge 5.67 89% 34.36 47% 14.98 58% 15.31 65% 94.9 40%
Cross 4.10 90% 22.33 54% 30.09 37% 37.05 50% 97.6 47%

Fig. 6 shows the selected target, assistant patches and spatial constrains in
our approach. Tracking result frames shown in Fig. 7 and quantitative com-
parisons reported in Table 1 indicate that our tracker significantly outperforms
others in comparison with large margins. It benefits from the assistance of aux-
iliary patches used in crowd tracking and also the fact that our approach can
successfully detect and track these patches. In “Traffic” and “Crowds” videos, oc-
clusions between objects occur frequently. OAB, MIL and TLD do not work well
on such videos as they only model the appearance of targets being tracked with-
out using the motion information from nearby objects. Therefore, these trackers
tend to drift when the target is occluded. By tracking the target jointly with
automatically detected mid-level patches, selected targets can be tracked well
through occlusions. In the “Marathon” video, the targets for tracking are small
and less distinctive as the video is captured from bird-view and humans in the
scene wear similar clothes. By tracking targets jointly with spatial constraints
from neighbouring individuals, targets are less likely to drift among similar ob-
jects. In “Split”, “Merge” and “Cross” videos, pedestrian heads are selected for
tracking. Targets in these videos have large scale variations due to perspective
distortion and all heads are very similar in appearance. Our tracker has drawn
promising results in such videos. Though CXT tracker has also utilized context
information around the target, it can not handle frequent occlusions and too
many similar objects in crowd scenes. In our experiment, CXT tracker tend to
drift when occlusion happens or jump among analogous neighbours, which lead
to the worst performance in all compared trackers.

4.2 Experiment II: Multi-Object Tracking

In this experiment, we compare with the SPOT tracker [31] which has also
utilized spatial constraints for multi-target tracking. While in SPOT, tree struc-
tures at a single scale are initialized in the first frame and remain unchanged
(though relative positions between nodes can be updated) during tracking. We
also compare with the NMC [10] tracker which utilizes neighbourhood motion
concurrence to predict positions of targets in Experiment II.

More targets are annotated to evaluatemulti-object tracking performance, such
that the manually initialized and annotated targets can cover the whole crowd.
The number of annotated targets for the “Traffic”, “Crowds”, “Marathon”,
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Ground Truth Ours TLD MIL OAB

#141 #164 #175 #190 #220

#132 #285 #305 #335 #400

#1 #7 #20 #50 #130

#27 #80 #100 #119 #159

#10 #50 #110 #140 #180

#1 #20 #80 #100 #120

CXT

Fig. 7. Snapshots of test videos and some tracking results in Experiment I. From top
to bottom: “Traffic”, “Crowds”, “Marathon”, “Split”, “Merge”, “Cross”.

“Split”, “Merge”, and “Cross” videos are 31, 18, 17, 19, 22, and 19. We also com-
pare with ourselves by removing some functional parts of our tracker. The track-
ers for evaluation are summarized as (1) DHT+AP: manually selected targets and
multi-scale assistant patches (AP) are jointly tracked with our dynamic hierarchi-
cal tree structure (DHT); (2) DHT: targets are tracked with only layer-2 assistant
patches compared to DHT+AP; (3) TREE: single tree structure connecting all
targets which are initialized in the first frame and stays unchanged during track-
ing (our implementation of SPOT); (4) SPOT; (5) NMC.

Results are presented in Table 2 and 3. Table 2 shows Errors and Recalls which
are defined as before, and CLEAR MOT metrics [4] for multi-object tracking are
reported in Table 3. In CLEAR MOT metrics, we make correspondence between
object and hypothesis if their overlap is larger than 0, so for both MotP (multi-
object tracking precision) and MotA (multi-object tracking accuracy), larger
value indicates better performance. DHT+AP and DHT outperform other track-
ers in both Error/Recall and CLEAR MOT metrics. The NMC tracker predicts
positions of targets using motions of neighbouring individuals without identifying
different groups in crowd, which makes tracking performance drop significantly in
scenes with complex motions (e.g. Traffic, Cross). TREE and SPOT are similar
in algorithm, but differ in some implementation details (e.g., we perform exact
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Table 2. Error and Recall of Experiment II. Bold font indicates best performance.

DHT+AP DHT TREE SPOT [31] NMC [10]
Error Recall Error Recall Error Recall Error Recall Error Recall

Traffic 3.03 99% 3.27 97% 8.93 92% 17.37 81% 35.89 74%
Crowds 8.17 90% 8.94 83% 19.78 71% 15.10 64% 6.64 81%
Marathon 4.57 88% 4.26 92% 11.44 77% 112.68 2% 5.97 70%
Split 5.02 86% 4.50 86% 24.09 59% 68.47 25% 9.77 70%
Merge 8.27 82% 8.41 85% 27.23 62% 48.87 57% 11.57 77%
Cross 5.82 89% 4.61 89% 48.00 51% 90.96 27% 20.62 69%

Table 3. CLEARMOTmetrics of Experiment II. Bold font indicates best performance.

DHT+AP DHT TREE SPOT [31] NMC [10]
MotP MotA MotP MotA MotP MotA MotP MotA MotP MotA

Traffic 0.81 99% 0.82 98% 0.81 84% 0.68 52% 0.72 59%
Crowds 0.72 90% 0.70 87% 0.68 72% 0.61 77% 0.66 99%
Marathon 0.70 91% 0.72 91% 0.69 72% 0.22 -74% 0.62 94%
Split 0.68 86% 0.68 92% 0.60 49% 0.45 -6% 0.65 65%
Merge 0.68 84% 0.71 81% 0.64 50% 0.62 44% 0.69 69%
Cross 0.72 90% 0.71 93% 0.63 18% 0.49 -10% 0.65 74%

inference on tree structures instead of transforming them into star-structured
ones first as in the released code of SPOT). Although performance is improved
by better implementation compared to SPOT, static structures used in TREE
still do not work well in crowd scenes. Spatial constraints could indeed help track
targets which have stable relative positions in crowd, but they may bias tracking
if constraints are imposed between targets moving in different directions. Com-
parisons between DHT and TREE show that our dynamic structure is more
suitable for tracking in crowd scenes than the static structure. There seems to
be no significant difference in performance between DHT+AP and DHT because
we have manually selected sufficient targets for tracking, so finding more mid-
level patches does not help more. In “Split”, “Merge” and “Cross” videos, group
motions change drastically, so that a “good” spatial constraint may turn into a
“bad” one as the group evolves. Our approach can identify these changes, and
adjust group structures through merge and split (Fig. 8(a)). The proposed DHT
tracker even outperforms TREE in videos with stable group structures, e.g. the
“Marathon” sequence shown in Fig. 8(b). Layer-2 patches and hierarchical tree
structure used in DHT model more appearance features and spatial constrains
than the single tree structure, which can help prevent targets from drifting (in
Fig. 8(b), target 15 in the second column, target 17 in the third column, target
10 and 15 in the fourth column).
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#30 #60 #90 #120

#30 #60 #90 #120

#1 #40 #85 #120

#1 #40 #85 #120

(a) Split

(b) Marathon

Fig. 8. Some tracking results in Experiment II. Red dots: centers of ground truth; cyan
boxes: manually selected targets for tracking; dashed red boxes: automatically detected
layer-2 patches in DHT tracker. Row 1 and 3: tracking results of DHT tracker (layer-2
patches are hidden in row 1 for better visualization); Row 2 and 4: tracking results of
TREE tracker. (a): dynamic structure outperforms static structure in crowd scenes;
(b): hierarchical structure could help prevent targets from drifting.

5 Conclusions

We have proposed to detect distinctive and stable patches, and jointly track them
using dynamic hierarchical tree structures in order to capture crowd motions.
We integrate low-level keypoint tracking, mid-level patch tracking and high-level
group evolution into one united framework, in which keypoint tracking provide
accurate motion information in short periods, patch tracking is more robust to
partial occlusion or appearance changes, and group evolution guide the update
of group structures. Experimental results show that our tracker can track targets
more accurately than traditional trackers in crowd videos. The proposed dynamic
hierarchical tree structure outperforms static single-tree structure.
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