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Abstract. The coalesced presence of motion blur and rolling shutter
effect is unavoidable due to the sequential exposure of sensor rows in
CMOS cameras. We address the problem of detecting changes in an im-
age affected by motion blur and rolling shutter artifacts with respect
to a reference image. Our framework bundles modelling of motion blur
in global shutter and rolling shutter cameras into a single entity. We
leverage the sparsity of the camera trajectory in the pose space and the
sparsity of occlusion in spatial domain to propose an optimization prob-
lem that not only registers the reference image to the observed distorted
image but detects occlusions as well, both within a single framework.

1 Introduction

Change detection in images is a highly researched topic in image processing and
computer vision due to its ubiquitous use in a wide range of areas including
surveillance, tracking, driver assistance systems and remote sensing. The goal
of change detection is to identify regions of difference between a pair of images.
Seemingly a straightforward problem at first look, there are many challenges
due to sensor noise, illumination changes, motion, and atmosphere distortions.
A survey of various change detection approaches can be found in Radke et al.
[14]. One of the main problems that arises in change detection is the presence
of motion blur. It is unavoidable due to camera shake during a long exposure
especially when a lowly lit scene is being captured. The same is also true if the
capturing mechanism itself is moving, for example in drone surveillance systems.

In the presence of motion blur, traditional feature-based registration and oc-
clusion detection methods cannot be used due to photometric inconsistencies as
pointed out by Yuan et al. [23]. It is possible to obtain a sharp image from the
blurred observation through many of the available deblurring methods before
sending to the change detection pipeline. Non-uniform deblurring works, which
employ homography-based blur model, include that of Gupta et al. [6], Whyte
et al. [20], Joshi et al. [8], Tai et al. [18] and Hu et al. [7]. Paramanand and Ra-
jagopalan [12] estimate camera motion due to motion blur and the depth map of
static scenes using a blurred/unblurred image pair. Cho et al. [3] estimate homo-
graphies in the motion blur model posed as a set of image registration problems.
A filter flow problem computing a space-variant linear filter that encompasses
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(a) (b)

Fig. 1. (a) Reference image with no camera motion, (b) Distorted image with rolling
shutter and motion blur artifacts

a wide range of tranformations including blur, radial distortion, stereo and op-
tical flow is developed by Seitz and Baker [16]. Wu et al. [22] develop a sparse
approximation framework to solve the target tracking problem in the presence
of blur.

Contemporary CMOS sensors employ an electronic rolling shutter (RS) in
which the horizontal rows of the sensor array are scanned at different times.
This behaviour results in deformations when capturing dynamic scenes and when
imaging from moving cameras. One can observe that the horizontal and vertical
lines in Fig. 1(a) have become curved in Fig. 1(b). The very study of RS cameras
is a growing research area. Ait-Aider et al. [1] compute the instantaneous pose
and velocity of an object captured using an RS camera assuming known 2D-3D
point correspondences. Liang et al. [9] rectify the RS effect between successive
frames in a video by estimating a global motion and then interpolating motion
for every row using a Bézier curve. Cho et al. [4] model the motion as an affine
change with respect to row index. Baker et al. [2] remove the RS wobble from a
video by posing it as a temporal super-resolution problem. Ringaby and Forssén
[15] model the 3D rotation of the camera as a continuous curve to rectify and sta-
bilise video from RS cameras. Grundmann et al. [5] have proposed an algorithm
based on homography mixtures to remove RS effect from streaming uncalibrated
videos. All these papers consider only the presence of RS deformations and the
motion blur is assumed to be negligible. They typically follow a feature-based
approach to rectify the effect between adjacent frames of a video.

In reality, it is apparent that both rolling shutter and motion blur issues will
be present due to non-negligible exposure time. Fig. 1(b) exhibits geometric dis-
tortion due to rolling shutter effect and photometric distortion due to motion
blur. Hence it is imperative to consider both the effects together in the image
formation model. Meilland et al. [11] formulate a unified approach to estimate
both rolling shutter and motion blur, but assume uniform velocity of the cam-
era across the image. They follow a dense approach of minimisation of intensity
errors to estimate camera motion between two consecutive frames of a video. In
this paper, we remove the assumption of uniform camera velocity, and propose a
general model that combines rolling shutter and motion blur effects. In the appli-
cation of change detection, it is customary to rectify the observed image first and
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then to detect the occluded regions. Instead of following this rectify-difference
pipeline, we follow a distort-difference pipeline, in which we first distort the
reference image to register it with the observation followed by change detection.
In the presence of motion blur, this pipeline has been shown to be simple and
effective by Vageeswaran et al. [19] in face recognition and by Punnappurath
et al. [13] for the application of image registration in blur. We assume that the
reference image is free from blur and rolling-shutter artifacts as is often the case
in aerial imagery, where the reference is captured beforehand under conducive
conditions. Throughout this paper, we consider the scene to be sufficiently far
away from the camera so that planarity can be invoked.

Our main contributions in this paper are:

– To the best of our knowledge, the work described in this paper is the first
of its kind to perform registration between a reference image and an image
captured at a later time but distorted with both rolling shutter and motion
blur artifacts, and to also simultaneously detect occlusions in the distorted
image, all within a single framework. We thus efficiently account for both
geometric and photometric distortions under one roof.

– Unlike existing works, we do not assume uniform velocity of camera mo-
tion during image exposure. Instead, we pose an optimisation problem with
sparsity and partial non-negativity constraints to solve simultaneously for
camera motion and occlusion for each row in the image.

2 Motion Blur in RS Cameras

In this section, we first explain the working of rolling shutter mechanism followed
by a description of our combined motion blur and rolling shutter model.

Fig. 2 shows the mechanism by which sensors are exposed in RS and global
shutter (GS) cameras. A GS camera exposes all the pixels at the same time. Fig.
2(a) illustrates this operation by showing same start and end exposure times
for each row of the sensor array. The rows of an RS camera sensor array, on the
other hand, are not exposed simultaneously. Instead, the exposure of consecutive
rows starts sequentially with a delay as shown in Fig. 2(b), where te represents
the exposure time of a single row and td represents the inter-row exposure delay
with td < te. Both these values are same for all rows during image capture. The
sequential capture causes the vertical line in the left of Fig. 1(a) to get displaced
by different amounts in different rows due to camera motion which results in
a curved line in Fig. 1(b). We will ignore the reset and read-out times in this
discussion.

We now explain our combined motion blur and rolling shutter model. Let the
number of rows of the image captured be M . Assuming the exposure starts at
t = 0 for the first row, the ith row of the image is exposed during the time
interval [(i − 1)td, (i − 1)td + te]. The total exposure time of the image Te is
(M − 1)td + te. Thus the camera path observed by each row in their exposure
times is unique. If the camera moves according to p(t) for 0 ≤ t ≤ Te, then the
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Fig. 2. Exposure mechanism of global shutter and rolling shutter cameras

ith row is blinded to the whole time except for (i − 1)td ≤ t ≤ (i − 1)td + te.
Here p(t) is a vector with six degrees of freedom corresponding to 3D camera
translations and 3D camera rotations. Let f and g represent respectively, the
images captured by the RS camera without and with camera motion. We denote
the ith row of any image with a superscript (i). Each row of g is an averaged
version of the corresponding rows in warped versions of f due to the camera
motion in its exposure period. We have

g(i) =
1

te

∫ (i−1)td+te

(i−1)td

f
(i)
p(t) dt, for i = 1 to M, (1)

where f
(i)
p(t) is the ith row of the warped version of f due to the camera pose p(t)

at a particular time t.
We discretise this model of combined rolling shutter and motion blur in (1)

with respect to a finite camera pose space S. We assume that the camera can
undergo only a finite set of poses during the total exposure time, and this is

represented by S = {τ k}|S|
k=1. Hence we write (1) equivalently as,

g(i) =
∑
τk∈S

ω(i)
τk

f (i)τk
(2)

where f
(i)
τk is the ith row of the warped reference image fτk

due to camera pose

τ k. Pose weight ω
(i)
τk denotes the fraction of exposure time te, that the camera

has spent in the pose τ k during the exposure of ith row. Since the pose weights
represent time, we have ωτk

≥ 0 for all τ k. When the exposure times of f (i)

and g(i) are same, then by conservation of energy, we have
∑

τk∈S ω
(i)
τk = 1 for

each i. In this paper, we follow a projective homography model for planar scenes
[6,8,20,7,12]. We denote camera translations and rotations by (Tk,Rk) and the
corresponding motion in the image plane by (tk, rk).

In fact, our model is general enough that it encompasses both GS and RS
camera acquisition mechanisms with and without motion blur (MB) as shown
in Table 1. Here ω(i) is the pose weight vector of the ith row with each of its

elements ω
(i)
τk representing a number between 0 and 1, which is the weight for

the τ kth pose in the ith row. Fig. 3 showcases images with different types of
distortions.
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Table 1. Generalised motion blur model for GS and RS cameras

Type Inter-row delay Pose weight vector (1 ≤ i ≤ M)

GS td = 0
ω

(i)
τk

=

{
1 for k = k0

0 otherwise
where k0 is independent of i

GS+MB td = 0 Same ω(i) for all i

RS td �= 0 ω
(i)
τk

=

{
1 for k = ki

0 otherwise

RS+MB td �= 0 Different ω(i) for each i

GS GS+MB RS RS+MB

Fig. 3. Various types of distortions as listed in Table 1

3 Image Registration and Occlusion Detection

Given the reference image and the distorted image affected by rolling shutter and
motion blur (denoted by RSMB from now on) with occlusions, we simultane-
ously register the reference image with the observed image and detect occlusions
present in the distorted image.

Let us first consider the scenario of registering the reference image to the
RSMB image without occlusions. We can represent the rows of the RSMB image
as linear combinations of elements in a dictionary formed from the reference
image. The relationship between them as matrix-vector multiplication from (2)
is given by

g(i) = F(i)ω(i) i = 1, 2, . . . ,M, (3)

where g(i) ∈ R
N×1 is the ith row of the RSMB image stacked as a column

vector and N is the width of RSMB and reference images. Each column of
F(i) ∈ R

N×|S| contains the ith row of a warped version of the reference image f ,
for a pose τ k ∈ S, where S is the discrete pose space we define, and |S| is the
number of poses in it. Solving for the column vector ω(i) amounts to registering
every row of the reference image with the distorted image.

In the presence of occlusion, the camera observes a distorted image of the
clean scene with occluded objects. We model the occlusion as an additive term

to the observed image g (Wright et al. [21]), as g
(i)
occ = g(i) + χ(i), where g

(i)
occ

is the ith row of the RSMB image with occlusions, χ(i) is the occlusion vector

which contains non-zero values in its elements where there are changes in g
(i)
occ

compared to g(i). Since the occluded pixels can have intensities greater or less
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than the original intensities, χ(i) can take both positive and negative values. We
compactly write this using a combined dictionary B(i) as

g(i)
occ =

[
F(i) IN

] [ω(i)

χ(i)

]
= B(i)ξ(i), i = 1, 2, . . . ,M. (4)

Here IN is an N × N identity matrix, B(i) ∈ R
N×(|S|+N) and ξ(i) ∈ R

(|S|+N).
We can consider the formulation in (4) as a representation of the rows of the
RSMB image in a two-part dictionary, the first part being the set of projective
transformations to account for the motion blur and the second part accounting
for occlusions.

To solve for ω(i) and χ(i) is a data separation problem in the spirit of morpho-
logical component analysis (Starck et al. [17]). To solve the under-determined
system in (4), we impose priors on pose and occlusion weights leveraging their
sparseness. We thus formulate and solve the following optimisation problem to
arrive at the desired solution.

ξ̃
(i)

= argmin
ξ(i)

{
‖g(i)

occ −B(i)ξ(i)‖22 + λ1‖ω(i)‖1 + λ2‖χ(i)‖1
}

(5)

subject to ω(i) � 0

where λ1 and λ2 are non-negative regularisation parameters and � denotes non-
negativity of each element of the vector. �1-constraints impose sparsity on camera
trajectory and occlusion vectors by observing that (i) camera can move only
so much in the whole space of 6D camera poses, and (ii) occlusion is sparse
in all rows in spatial domain. To enforce different sparsity levels on camera
motion and occlusion, we use two �1 regularisation parameters λ1 and λ2 with
different values. We also enforce non-negativity for the pose weight vector ω(i).
Our formulation elegantly imposes non-negativity only on the pose weight vector.

An equivalent formulation of (5) and its illustration is shown in Fig. 4. We
modify the nnLeastR function provided in the SLEP package (Liu et al. [10]) to

account for the partial non-negativity of ξ(i) and solve (5). Observe that when

ξ(i) = ω(i) and B(i) = F(i), (5) reduces to the problem of image registration in
the presence of blur.

In our model, the static occluder is elegantly subsumed in the reference image
f . It is possible to obtain the exact occlusion mask in f (instead of the blurred
occluder region) as a forward problem, by inferring which pixels in f contribute
to the blurred occlusion mask in g, since the pose space weights ω of the camera
motion are known. Our framework is general, and it can detect occluding objects
in the observed image as well as in the reference image (which are missing in the
observed image). Yet another important benefit of adding the occlusion vector
to the observed image is that it enables detection of even independently moving
objects.

3.1 Dynamically Varying Pose Space

Building {F(i)}Mi=1 in (5) is a crucial step in our algorithm. If the size of the
pose space S is too large, then storing this matrix requires considerable memory
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Equivalent formulation of (5):

minξ(i)

{
λ1‖ξ̂(i)‖1

}

subject to

{
‖g(i)

occ − B̂(i)ξ̂
(i)‖22 ≤ ε,

Cξ̂
(i) � 0,

where B̂(i) =
[
F(i) λ1

λ2
IN

]
,

C =

[
I|S| 0
0 0

]
and ξ̂ =

[
ω

λ2
λ1

χ

]
.

Cξ̂
(i) � 0

‖g(i)
χ − B̂(i)ξ̂

(i)‖22 ≤ ε

‖ξ̂(i)‖1 ≤ k

ω(i)

χ(i)

Fig. 4. Illustration of the constraints in our optimisation framework in two dimensions

and solving the optimisation problem becomes computationally expensive. We
also leverage the continuity of camera motion in the pose space. We note the
fact that the camera poses that a row observes during its exposure time will be
in the neighbourhood of that of its previous row, and so we dynamically vary
the search space for every row. While solving (5) for the ith row, we build F(i)

on-the-fly for the restricted pose space which is exclusive to each row.
Let N(τ ,b, s) = {τ + qs : τ − b � τ + qs � τ + b, q ∈ Z} denote the

neighbourhood of poses around a particular 6D pose vector τ , where b is the
bound around the pose vector and s is the step-size vector. We start by solving
(5) for the middle rowM/2. Since there is no prior information about the camera
poses during the time of exposure of the middle row, we assume a large pose space
around the origin (zero translations and rotations), i.e. S(M/2) = N(0,b0, s0)
where b0 and s0 are the bound and the step-size for the middle row, respectively.
We build the matrix F(M/2) based on this pose space. We start with the middle
row since there is a possibility that the first and last rows of the RSMB image
may contain new information and may result in a wrong estimate of the weight
vector. Then we proceed as follows: for any row i < M/2−1, we build the matrix

F(i) only for the neighbourhood N(τ
(i+1)
c ,b, s), and for any row i > M/2 + 1,

we use only the neighbourhood N(τ
(i−1)
c ,b, s) where τ

(i)
c is the centroid pose of

the ith row, which is given by

τ (i)
c =

∑
τk

ω
(i)
τkτ k∑

τk
ω
(i)
τk

. (6)

4 Experimental Results

To evaluate the performance of our technique, we show results for both syn-
thetic and real experiments. For synthetic experiments, we simulate the effect
of RS and MB for a given camera path. We estimate the pose weight vector
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and occlusion vector for each row using the reference and RSMB images. We
also compare the estimated camera motion trajectory with the actual one. Due
to the unavailability of a standard database for images with both RS and MB
effects, and in particular, for the application of change detection, we capture our
own images for the real experiments. We use a hand-held Google Nexus 4 mobile
phone camera to capture the desired images. The RS and MB effects are caused
by intentional hand-shake.

4.1 Synthetic Experiments

The effect of RS and MB is simulated in the following manner. We generate a
discrete path of camera poses of length (M − 1)β+α. To introduce motion blur
in each row, we assign α consecutive poses in this discrete path. We generate the
motion blurred row of the RSMB image by warping and averaging the row of the
reference image according to these poses. Since the row index is synonymous with
time, a generated camera path with continuously changing slope corresponds to
non-uniform velocity of the camera. The RS effect is arrived by using different
sets of α poses for each row along the camera path. For the ith row, we assign α
consecutive poses with index from (i− 1)β + 1 to (i− 1)β + α in the generated
discrete camera path. Thus each row would see a unique set of α poses with β
index delay with respect to the previous row. The centroid of poses corresponding
to each row will act as the actual camera path against which our estimates are
compared.

In the first experiment, we simulate a scenario where RS and MB degrada-
tions happen while imaging from an aerial vehicle. We first add occluders to the
reference image (Compare Figs. 5(a) and (b)). The images have 245 rows and
345 columns. While imaging a geographical region from a drone, RS effect is
unavoidable due to the motion of the vehicle itself. Especially it is difficult to
maintain a straight path while controlling the vehicle. Any drift in the flying
direction results in in-plane rotations in the image. We introduce different sets
of in-plane rotation angles to each row of the image to emulate flight drifts. We
generate a camera motion path with non-uniform camera velocity for in-plane
rotation Rz. We use α = 20 and β = 3 while assigning multiple poses to each
row as discussed earlier. The centroid of Rz poses for each row is shown as a
continuous red line in Fig. 5(d) which is the actual camera path. Geometrical
misalignment between the reference and RSMB images in the flying direction
(vertical axis) is added as a global ty shift which is shown as a dotted red line
in Fig. 5(d). The RSMB image thus generated is shown in Fig. 5(c). Though we
generate a sinusoidal camera path in the experiment, its functional form is not
used in our algorithm.

We need to solve (5) to arrive at the registered reference and occlusion
images. Since there is no prior information about possible camera poses, we
assume a large initial pose space around the origin while solving for the mid-
dle row: x-translation tx = N(0, 10, 1) pixels, y-translation ty = N(0, 10, 1)
pixels, scale tz = N(1, 0.1, 0.1), rotations Rx = N(0, 2, 1)◦, Ry = N(0, 2, 1)◦

and Rz = N(0, 8, 1)◦. The columns of F(M/2) contain the middle rows of the
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Fig. 5. (a) Reference image with no camera motion, (b) Reference image with added
occlusions, (c) RSMB image, (d) Simulated camera path, (e) Estimated Rz camera
path (blue) overlaid on simulated camera path (red), (f) Estimated ty camera path
(blue) overlaid on simulated camera path (red), (g) Registered reference image, (h)
Occlusion image, and (i) Thresholded occlusion image

warps of the reference image f for all these pose combinations. For the remain-
ing rows, the search neighbourhood is chosen around the centroid pose of its
neighbouring row. Since the camera would move only so much between suc-
cessive rows, we choose a relatively smaller neighbourhood: N(tcx, 3, 1) pixels,
N(tcy, 3, 1) pixels, N(tcz, 0.1, 0.1),N(Rcx, 2, 1)

◦, N(Rcy, 2, 1)
◦ andN(Rcz, 2, 1)

◦.
Here [tcx, tcy, tcz, Rcx, Rcy, Rcz] is the centroid pose vector of the neighbouring
row as discussed in Section 3.1. Since we work in [0–255] intensity space, we use
255× IN in place of IN in (4). The camera trajectory experienced by each row is
very sparse in the whole pose space and hence we set a large λ1 value of 5× 103.
We set λ2 = 103 since the occlusion will be comparatively less sparse in each
row, if present. We empirically found out that these values work very well for
most images and different camera motions as well.

On solving (5) for each 1 ≤ i ≤ M , we get the estimated pose weight vectors

{ω̃(i)}Mi=1 and occlusion vectors {χ̃(i)}Mi=1. We form the registered reference im-

age using {F(i)ω̃(i)}Mi=1 and the occlusion image using {255 IN χ̃(i)}Mi=1. These
are shown in Figs. 5(g) and (h), respectively. Fig. 5(i) shows the thresholded bi-
nary image with occlusion regions marked in red. The estimated camera trajec-
tories for Rz and ty are shown in Figs. 5(e) and (f). Note that the trajectories are
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Fig. 6. (a) Reference image with no camera motion, (b) RSMB image, (c) Estimated tx
camera path (blue) overlaid on simulated camera path (red), (d) Registered reference
image, (e) Occlusion image, and (f) Thresholded occlusion image

correctly estimated by our algorithm. The presence of boundary regions in the
occluded image is because of the new information, which are not in the reference
image, coming in due to camera motion.

In the next experiment, we consider a scenario where there is heavy motion
blur along with the RS effect. An image of a synthetic grass-cover with ob-
jects is shown in Fig. 6(a). After adding occluders, we distort the reference
image to create an image which is heavily blurred with zig-zag horizontal
translatory RS effect. The RSMB image is shown in Fig. 6(b). The cam-
era path simulated is shown in Fig. 6(c) in red. The algorithm parameters
are the same as that for the previous experiment. The two output compo-
nents of our algorithm, the registered and occlusion images, are shown respec-
tively in Figs. 6(d) and (e). Boxed regions in the thresholded image in Fig.
6(f) show the effectiveness of our framework. The estimated camera trajec-
tory is shown in blue in Fig. 6(c). More synthetic examples are available at
http://www.ee.iitm.ac.in/ipcvlab/research/changersmb.

4.2 Real Experiments

In the first scenario, the reference image is a scene with horizontal and ver-
tical lines, and static objects as shown in Fig. 7(a). This is captured with a
static camera. We then added an occluder to the scene. With the camera at ap-
proximately the same position, we recorded a video of the scene with free-hand
camera motion. The purpose of capturing a video (instead of an image) is to en-
able comparisons with the state-of-the-art as will become evident subsequently.
From the video, we extracted a frame with high RS and MB artifacts and this
is shown in Fig. 7(b). Our algorithm takes only these two images as input. We
perform geometric and photometric registration, and change detection simulta-
neously by solving (5). To register the middle row, we start with a large pose
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(a) Reference image (b) RSMB image (c) Deblurred image [20]

(d) Registered image (e) Occlusion image (f)Thresholded image

(g) Rectified image [5] (h) Reblurred image (i) Detected changes

(j) Rectified image [15] (k) Reblurred image (l) Detected changes

Fig. 7. (a)-(b): Reference and RSMB images (inputs to our algorithm), (c): RSMB
image deblurred using Whyte et al. [20], (d)-(f): Proposed method using combined
RS and MB model, (g)-(i): Rectify RS effect from video using Grundmann et al. [5],
then estimate the kernel [20] and reblur the reference image, and detect changes, (j)-(l)
Rectify-blur estimation pipeline using Ringaby and Forssén [15]

space: tx, ty = N(0, 8, 1) pixels, tz = N(1, 0.1, 0.1), Rx, Ry = N(0, 6, 1)◦, and
Rz = N(0, 10, 1)◦. The regularization parameters are kept the same as used for
synthetic experiments. The relatively smaller pose space adaptively chosen for
other rows is:N(tcx, 3, 1) pixels, N(tcy, 3, 1) pixels,N(tcz, 0.1, 0.1),N(Rcx, 1, 1)

◦,
N(Rcy, 1, 1)

◦ and N(Rcz, 1, 1)
◦. The registered reference image is shown in Fig.

7(d). The straight lines of the reference image are correctly registered as curved
lines since we are forward warping the reference image by incorporating RS.
The presence of motion blur is also to be noted. This elegantly accounts for
both geometric and photometric distortions during registration. Figs. 7(e) and
(f) show the occlusion image and its thresholded version respectively.

We compare our algorithm with a serial framework which will rectify the RS
effect and account for MB independently. We use the state-of-the-art method of
Whyte et al. [20] for non-uniform motion blur estimation, and recent works of
Grundmann et al. [5] and Ringaby and Forssén [15] for RS rectification. Since
the code of the combined RS and MB approach by Meilland et al. [11] hasn’t
been shared with us, we are unable to compare our algorithm with their method.
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The RSMB image is first deblurred using the method of Whyte et al. The
resulting deblurred image is shown in Fig. 7(c). We can clearly observe that
the deblurring effort itself has been unsuccessful. This is because the traditional
motion blur model considers a single global camera motion trajectory for all the
pixels. But in our case, each row of the RSMB image experiences a different
camera trajectory, and hence there is no surprise that deblurring does not work.

Due to the failure of non-uniform deblurring on the RSMB image, we consider
the task of first rectifying the RS effect followed by MB kernel estimation. Since
the RS rectification methods of Grundmann et al. and Ringaby and Forssén are
meant for videos, to let the comparison be fair, we provide the captured video
with occlusion as input to their algorithms. We thus have in hand now, an RS
rectified version of the video. The rectified frames using these two algorithms
corresponding to the RSMB image we had used in our algorithm are shown in
Figs. 7(g) and (j).

We now estimate the global camera motion of the rectified images using the
non-uniform deblurring method. While performing change detection, to be con-
sistent with our algorithm, we follow the reblur-difference pipeline instead of
the deblur-difference pipeline. We apply the estimated camera motion from the
rectified frame on the reference image, and detect the changes with respect to
the rectified frame. These reblurred images are shown in Figs. 7(h) and (k). Note
that from Figs. 7(i) and (l), the performance of occlusion detection is much worse
than our algorithm. The number of false positives is high as can be observed near
the horizontal edges in Fig. 7(i). Though the RS rectification of Grundmann et
al. works reasonably well to stabilise the video, the rectified video is not equiv-
alent to a global shutter video especially in the presence of motion blur. The
camera motion with non-uniform velocity renders invalid the notion of having a
global non-uniform blur kernel. The RS rectification of Ringaby et al. is worse
than that of Grundmann et al., and hence the change detection suffers heavily
as shown in Fig. 7(l). Hence it is amply evident that the state-of-the-art algo-
rithms cannot handle these two effects together, and that an integrated approach
is indispensable. To further confirm the efficacy of our method, we show more
results.

(a) (b) (c) (d)

Fig. 8. (a) Reference image with no camera motion, (b) RSMB image with prominent
curves due to y-axis camera rotation, (c) Reference image registered to RSMB image,
and (d) Thresholded occlusion image
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(a) (b)

(c) (d)

Fig. 9. (a) Reference image, (b) RSMB image, (c) Registered image, and (d) Thresh-
olded occlusion image

In the next example, we capture an image from atop a tall building looking
down at the road below. The reference image in Fig. 8(a) shows straight painted
lines and straight borders of the road. The RSMB image is captured by rotating
the mobile phone camera prominently around the y-axis (vertical axis). This
renders the straight lines curved as shown in Fig. 8(b). Our algorithm works
quite well to register the reference image with the RSMB image as shown in Fig.
8(c). The occluding objects, both the big vehicles and smaller ones, have been
detected correctly as shown in Fig. 8(d). We do note here that one of the small
white columns along the left edge of the road in the row where the big van runs,
is detected as a false occlusion.

Figs. 9(a) and (b) show respectively, the reference image and the distorted
image with prominent horizontal RS and MB effects. Figs. 9(c) and (d) show
our registered and thresholded occlusion images, respectively. We can observe
that the shear effect due to RS mechanism is duly taken care of in registration
and the occluding objects are also correctly detected. The parapet in the bottom
right of the image violates our planar assumption and hence its corner shows up
wrongly as an occlusion.

4.3 Algorithm Complexity and Run-Time

We use a gradient projection based approach to solve the �1-minimisation prob-
lem (5) using SLEP [10]. It requires a sparse matrix-vector multiplication with
order less than O(N(|S| + N)) and a projection onto a subspace with order
O(|S| +N) in each iteration with convergence rate of O(1/k2) for the kth iter-
ation. Here N is the number of columns and |S| is the cardinality of the pose
space (which is higher for the middle row). Run-times for our algorithm using an
unoptimised MATLAB code without any parallel programming on a 3.4GHz PC
with 16GB RAM are shown in Table 2. We do note here that, since the motion
blur estimation of rows in the top-half and bottom-half are independent, they
can even be run in parallel.
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Table 2. Run-times of our algorithm for Figs. 5 to 9, with ttotal, tmid, tother representing
total time, time for middle row, and average time for other rows respectively. All time
values are in seconds.

Fig. Rows × Cols ttotal tmid tother
5 245 × 345 712 28 2.8
6 256 × 350 746 30 2.8
7 216 × 384 644 29 2.9
8 167 × 175 404 34.5 2.2
9 147 × 337 317 29 2.0

The bounds of the camera pose space and the step sizes of rotations and
translations used here, work well on various real images that we have tested. Step
sizes are chosen such that the displacement of a point light source between two
different warps is at least one pixel. Decreasing the step sizes further increases
the complexity, but provides little improvement for practical scenarios. The large
bounding values for the middle row used suffice for most real cases. However, for
extreme viewpoint changes, those values can be increased further, if necessary.
We have observed that the given regularisation values (λ1 and λ2) work uniformly
well in all our experiments.

5 Conclusions

Increased usage of CMOS cameras forks an important branch of image formation
model, namely the rolling shutter effect. The research challenge is escalated when
the RS effect entwines with the traditional motion blur artifacts that have been
extensively studied in the literature for GS cameras. The combined effect is thus
an important issue to consider in change detection. We proposed an algorithm
to perform change detection between a reference image and an image affected by
rolling shutter as well as motion blur. Our model advances the state-of-the-art
by elegantly subsuming both the effects within a single framework. We proposed
a sparsity-based optimisation framework to arrive at the registered reference
image and the occlusion image simultaneously. The utility of our method was
adequately demonstrated on both synthetic and real data.

As future work, it would be interesting to consider the removal of both motion
blur and rolling shutter artifacts given a single distorted image, along the lines
of classical single image non-uniform motion deblurring algorithms.
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