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Abstract. Scene classification is an important issue in computer vision
area. However, it is still a challenging problem due to the variability,
ambiguity, and scale change that exist commonly in images. In this pa-
per, we propose a novel hypergraph-based modeling that considers the
higher-order relationship of semantic attributes in a scene and apply
it to scene classification. By searching subnetworks on a hypergraph,
we extract the interaction subnetworks of the semantic attributes that
are optimized for classifying individual scene categories. In addition, we
propose a method to aggregate the expression values of the member se-
mantic attributes which belongs to the explored subnetworks using the
transformation method via likelihood ratio based estimation. Intensive
experiment shows that the discrimination power of the feature vector
generated by the proposed method is better than the existing methods.
Consequently, it is shown that the proposed method outperforms the
conventional methods in the scene classification task.
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1 Introduction

Scene understanding still remains a challenging problem in computer vision field.
Among particular topics in scene understanding, image classification including
scene and object classification has become one of the major issues. Over the past
decade, numerous techniques have been proposed to classify scene images into
appropriate categories.

Most of the existing high-level image classification techniques are performed
in the transformed domain from the original image. Popular approaches em-
ploy the statistics of local feature such as histogram of textons [15] and bag-of-
words (BoW) [6,24]. In the BoW model, local features obtained from an image
are first mapped to a set of predefined visual words, which is done by vector
quantization of the feature descriptors using a clustering technique such as K-
means. The image is then represented by a histogram of visual words occurrence.
The BoW model has demonstrated remarkable performance in challenging im-
age classification tasks when it is combined with the well known classification
techniques such as the support vector machine (SVM) [9,12,28].
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However, the conventional methods using low-level feature have a few limi-
tations. First, although the visual words are more informative than individual
image pixels, they still lack explicit semantic meanings.

Second, the visual words are occasionally polysemous, so it is possible to have
different semantic meanings even though we have the identical visual word [25].

To overcome the limitations, several techniques have been proposed so far.
Bosch et al. utilizes the intermediate-level representation to shows the improved
classification performance [3]. However, the intermediate-level image representa-
tion technique is yet not free from the problem of visual words’ ambiguity, i.e.
polysemy and synonymy [25].

Recently, in order to utilize the higher-level contextual information for scene
classification, semantic attribute is investigated actively. This technique allevi-
ates the effect of the polysemy and synonymy problems if it is combined with the
contextual information correctly [19,22,25]. Note that the semantic attributes in
a scene are intuitive. Usually, they represent individual objects in the scene as
well as the particular parts of them. In general, these semantic attributes show
higher-order relationship between each other, which can be usually observed in
real scenes. For example, a ‘street’ scene can be thought of as a combination
of a ‘building’, ‘road’, and ‘car’. However, the existing techniques using high-
level semantic attributes do not exploit the higher-order relationship adequately
but treat the semantic attributes independently. Furthermore, it is noticeable
that some semantic attributes co-occur frequently while some other semantic
attributes rarely appear together in a certain scene. We can represent the co-
occurrence as the relation of semantic attributes. The interaction (relations) of
semantic attributes provides strong contextual information about a scene. Based
on this idea, we attempt to exploit the higher-order interaction of semantic at-
tributes for the scene classification problem.

Generally, a graph-based modeling technique is can be considered to deal with
the interaction between attributes. However, typical graph-based models use
formulation that involve only single pairwise interactions and are not sufficient to
model the higher-order interaction. To overcome this limitation, we can consider
a hypergraph-based technique to model the higher-order interaction.

A hypergraph is a generalization of the conventional graph structure in which
a set of nodes is defined as hyperedge [26]. Unlike the conventional graph model, a
hypergraph contains the summarized local grouping information represented by
hyperedges. In the hypergraph model, it is possible to construct various combina-
tions of hyperedges using different sets of attributes. These hyperedges co-exist
in a hypergraph and provide complementary information for the target data.
In this context, the hyperedges are regarded as subnetworks of attributes. This
property is beneficial to model the co-occurrence patterns of semantic attributes
in scene images.

In this paper, we propose a hypergraph-based scene modeling and learn-
ing method for scene classification. By employing the hypergraph learning, we
can search important subnetworks on the efficiently from the interaction net-
work of the semantic attributes. Overall process of proposed method for scene
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Fig. 1. Overall process of proposed method. Given training images and an input image,
expression arrays of semantic attributes are calculated from responses of semantic
attributes for each image. Then, for each scene category, category-specific semantic
attribute (CSSA) subnetworks are obtained by proposed hypergraph based method.
New feature vectors are generated by aggregation method from explored subnetworks
and then input image is classified based on the newly generated feature vector with a
SVM based scene classifier.

classification is depicted in Fig. 1. The main contributions of this paper are
summarized as follows.

1. In order to take account the higher-order interaction of semantic attributes in
scene classification, we propose a novel scene classification method based on
the hypergraph model and efficient learning technique to create the category-
specific hypergraph suitable for scene classification problem.

2. We propose another novel method to generate aggregated feature vector
from the hypergraph suitable for discriminative model. The newly gener-
ated feature vector not only reduces the dimension of the feature space, but
also alleviates the measurement noise of semantic attributes expression and
therefore. This enables us to obtain a robust feature vector.

2 Hypergraph-Based Scene Modeling

In order to model a particular scene category using a hypergraph, we use the
co-occurrence pattern of semantic attributes obtained from either the training
sample images in the scene category or the text-based annotation of scene images.
For example, when we build the hypergraph of the ‘coast’ category, we can get
hyperedges from the training sample images I included in the category. Assuming
that the number of training sample images is six, the set of semantic attributes
S is generated for the ‘coast’ category as follows.

S = {s1(‘sky’), s2(‘water’), s3(‘sand’), s4(‘boat’), s5(‘tree’), s6(‘rock’)}. (1)
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Fig. 2. A hypergraph model based on semantic attributes for category-specific scene
modeling. The hypergraph model is optimized by a population-based evolutionary
learning method to obtain CSSA subnetworks for scene classification.

We consider these semantic attributes S as the set of nodes of a graph. The
Hyperedges E can be obtained from the image set I as follows.

E = {e1 = {s1, s2, s3} , e2 = {s2, s4} , e3 = {s1, s2, s4} ,
e4 = {s3, s5, s6} , e5 = {s1, s2} , e6 = {s1, s2, s4, s6}}.

(2)

The hypergraph H = (S,E) consists of the set of nodes S and the set of
hyperedges E. As in the example above, we can build a hypergraph for the
certain scene category by combining the hyperedges obtained from its training
sample images. Due to this characteristic, the hypergraph can be represented
by the population which consists of the hyperedge. Here, each hyperedge is
considered as each individual of the population.

As shown in Eq. (2), a hypergraph can model edges including an arbitrary
number of attributes. Based on this property of a hypergraph, we can model each
scene category by means of a hypergraph. However, even though the hypergraph
model represents a certain scene category very well, it is yet still insufficient for
the scene classification task. This is because the relative distribution between
the desired category to be classified (denoted as ‘positive category’ in Fig. 1)
and other categories (denoted as ‘negative category’ in Fig. 1) is not considered
when building hyperedges of a hypergraph. Therefore, a generation of appro-
priate hypergraph for a scene classification task means that it is a searching
process of suitable hyperedges to represent the characteristics of the target cat-
egory efficiently as well as to consider the discrimination capability from other
categories.

For this reason, a learning process is required to refine the initial hypergraph.
In our approach, we employ the population-based learning model based on [29].
Here, the hypergraph H is re-defined as H = (S,E,W ) where S,E, and W are
a set of vertices (semantic attributes), hyperedges, and weights of each hyper-
edge, respectively. That is, the re-defined hypergraph adds weight terms to the
original hypergraph. Each vertex corresponds to a particular semantic attribute
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while each hyperedge represents the relational combination of more than two
vertices with its own weight. The number of vertices in a hyperedge is called
the cardinality or the order of a hyperedges, in which k-hyperedge denotes a
hyperedge with k vertices.

Since the hypergraph with the weight term can be regarded as a probabilistic
associative memory model to store segments of a given data set D = {x(n)}Nn=1

i.e. x = {x1, x2, ..., xm} as in [29], a hypergraph can retrieve a data sample
after the learning process. When I(x(n), Ei) denotes a function which yields the
combination or concatenation of elements of Ei, then the energy of a hypergrpah
is defined as follows.

ε(x(n);W ) = −
|E|∑

i=1

w
(k)
i I(x(n), Ei)

where I(x(n), Ei) = x
(n)
i1 x

(n)
i2 ...x

(n)
ik .

(3)

In Eq. (3), w
(k)
i is the weight of the i-th hyperedges Ei with k-order, x(n) means

the n-th stored pattern of data, and Ei is {xi1, xi2, ..., xik}. Then, the probability
of the data generated by a hypergraph P (D|W ) is given as a Gibbs distribution
as follows.

P (D|W ) =
N∏

n=1

P (x(n)|W ), (4)

P (x(n)|W ) =
1

Z(W )
exp(−ε(x(n);W )), (5)

where Z(W ) is a partition function, which is formulated as follows.

Z(W ) =
∑

X(m)⊂D

exp

⎧
⎨

⎩

|E|∑

i=1

w
(k)
i I(x(m), Ei)

⎫
⎬

⎭ . (6)

That is, a hypergraph is represented with a probability distribution of the joint
variables with weights as parameters when we consider attributes in data as
random variables.

Considering that learning of a hypergraph is to select hyperedges with a higher
weight, it can be formulated as the process for maximizing log-likelihood. Learn-
ing from data is regarded as maximizing probability of weight parameter of a
hypergraph for given data D. In this context, the probability of a weight set of
hyperedges P (W |D) is defined as follows.

P (W |D) =
P (D|W )P (W )

P (D)
. (7)

According to Eq. (5) and Eq. (7), the likelihood is defined as

N∏

n=1

P (x(n)|W )P (W ) =

(
P (W )

Z(W )

)N

exp

{
−

N∑

n=1

ε(x(n);W )

}
. (8)
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Ignoring P (W ), maximizing the argument of exponential function is equivalent
to obtaining maximum log likelihood as follows.

argmax
W

[
log

{
N∏

n=1

P (x(n)|W )

}]

= argmax
W
{

N∑

n=1

|E|∑

i=1

w
(k)
i I(x(n), Ei)−N logZ(W )}.

(9)

More detail derivation of the log-likelihood are shown in [29]. A likelihood func-
tion can be maximized by exploring different hyperedge compositions which can
reveal the distribution of given data better. Now, the problem is converted to
finding appropriate combination of optimal hyper edges (or feature subsets). In
other words, this is equivalent to exploring a suitable hyperedge-based popula-
tion for a scene classification.

In general, exploring optimal feature subsets from a high-dimensional feature
space is an NP-complete problem since it is impractical to explore the entire
feature space. In this paper, we propose a sub-optimal hypergraph generation
method to maximize the discrimination power from the perspective of Klein-
berg’s stochastic discrimination (SD) [13]. Based on the central limit theorem,
the SD theory proves it theoretically and demonstrated experimentally that it is
possible to generate a strong classifier by producing and combining many weak
classifiers based on randomly sampled feature subsets. However, in order to ap-
proximate the actual distribution of data, it requires repeated random sampling
process for an entire feature space as many as possible. For an efficient search,
we use a heuristic search based on a population-based evolutionary computation
technique as illustrated in Fig. 2. The details will be explained in the following
section.

3 Learning of a Hypergraph for Scene Classification

To learn the hyper graph, we use a population-based evolutionary learning
method. In this method, the variation, evaluation, and selection are performed
iteratively. In the proposed learning method, a hyperedge is weighted by (i) the
amount of higher-order dependency and (ii) the discrimination power between
different categories. As the population changes in the learning procedure, the
hypergraph structure evolves by removing hyperdges with relatively low weight
and by replacing them with new hyperedges with relatively high weight. Filtering
is subsequently performed for each hyperedge to have optimal elements.

In general, features on search space have the equivalent selection probability
under the uniform distribution. However, it is inefficient because features used
in classification do not have equivalent discriminative power. Furthermore, in
the scene classification problem, it has the characteristic that the occurrence
probability of each feature in the entire feature space is very sparse. Therefore,
we need to adjust selection probability of each feature based on the importance
of each feature.
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Algorithm 1. Two-step sub-optimal hypergraph learning algorithm (Step 1)

Input: Expression array A of semantic attributes
Output: Candidate group of attribute subsets g

1: ω(si) ← Weight calculation of each attribute si by Student’s t-test.
2: g ← Generate a fixed number of m semantic attribute subsets randomly

from original semantic attribute space based on the weight ω(si).
3: repeat
4: (a) f(gk) ← Calculate a fitness value of the subset gk.
5: (b) Sort semantic attribute subsets gk in descending order based on fitness

values of f(gk) given by Eq. (10).
6: (c) Remove the bottom 30%, and then replace with newly created subsets.
7: until (Predetermined number of learning.)

Algorithm 2. Two-step sub-optimal hypergraph learning algorithm (Step 2)

Input: Candidate group of semantic attribute subsets g
Output: Sub-optimized subsets ĝ

1: for k = 1 to |g| do : for each subset
2: Sort member attributes si in descending order based on the abs. t-test

score of si.
3: Add the 1st ranked si to empty set ĝk, then calculate the discriminative

power dk.
4: repeat
5: (a) ĝk = ĝk ∪ {si} : Add the next ranked si to subset ĝk.
6: (b) Evaluate the discriminative power dk of ĝk.
7: until (The new dk is less than the previous dk.)
8: end for

To solve this problem, we propose a probabilistic subnetworks search method
that can sample the feature subsets efficiently based on the importance of each
feature. In order to generate subnetworks of semantic attributes for scene clas-
sification using the probabilistic subnetworks search method, first, we need to
measure the importance of each feature. This can be measured by the degree of
association with the target category. In case of continuous data with a small
number of samples, we can consider to use Student’s t-test for two-class prob-
lem [8]. Using the t-test, we can get P -value which is the rejection probability of
the null hypothesis H0 : μp = μn assuming that the mean of each population
belonging to the positive category and negative category is equal. P -value has
high rejection probability of the null hypothesis when its value is close to 0. This
means that the distribution pattern of each class is very different. In other words,
the discriminative power of each feature is strong. In order to accommodate this
to the selection probability of semantic attribute si, we use the value of 1−p(si)
where p(si) is a P -value of si. Strictly speaking, it is not the probability score,
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but it has the property that the selection capability becomes high when it close
to 1 and vice versa.

The subnetworks search process based on the selection probability of semantic
attributes is shown in Algorithm 1. At the beginning of the search, we create the
predefined number of subsets (m=1000), then obtain the fitness values of each
subset. Among various techniques, we use Hotelling’s T 2-test [21] used in multi-
variate test to obtain a robust fitness value with fast speed. Note that Hotelling’s
T 2-test is a generalization of Student’s t-test that is used in multivariate hypoth-
esis testing. It is suitable for assessing the statistically higher-order relationship
of semantic attributes composing the subset, since it can consider the correlation
and interdependence between the component of subset.

Hotelling’s T 2-test score for generated subsets is calculated as follows.

T 2 =
npnn

np + nn
(A

p −A
n
)S−1(A

p −A
n
)�, (10)

where nc is the number of samples belongs to each category c, A
c
is the mean

expression value of semantic attributes spj and snj belongs to each category. S is
the pooled variance-covariance matrix of semantic attributes.

In the probabilistic subnetworks search method, subsets are generated through
the search process as shown in Algorithm 1 using a fitness function based on the
Hotelling’s T 2-test. Then, filtering is performed for each subset to have sub-
optimal member attributes that maximizing discriminative power through the
incremental learning as shown in Algorithm 2. The sub-optimal subsets obtained
from the search process are regarded as subnetworks because its member at-
tributes are likely to interact each other. Finally, these subnetworks are hyper-
edges which build the learned hypergraph.

4 Feature Vector Generation Based on Likelihood Ratio

In order to use the learned hypergraph for scene classification, we employ a dis-
criminative model. When using a discriminative model, the parameter learning
is relatively simpler than a generative model. In addition, it has an advantage of
an ease to utilize well-known classification methods such as support vector ma-
chine (SVM) that are known to show relatively superior classification capability
in many fields.

For using the discriminative model, we need generation of feature vectors
from a learned hypergrpah. Each hyperedge constituting the hypergraph includes
multiple semantic attributes as shown in Fig. 2. Thus, it is impossible to apply
to the classification model directly. For this, we propose a method based on the
likelihood ratio to aggregate the expression values of each member attribute to
make up the hyperedges from the original expression data.
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Given a expression vector sj = (s1j , s
2
j , ..., s

n
j ) which contains the expression

levels of the member semantic attributes, we estimate the aggregate value of
gkj (k-th subnetworks of sample j) as follows.

aggregated value of gkj =
1∣∣gkj
∣∣

n∑

i=1

λi(s
i
j), (11)

where λi(s
i
j) is the likelihood ratio between positive and negative categories for

the semantic attributes. The likelihood ratio λi(s
i
j) is given by

λi(s
i
j) =

fp
i (s

i
j)

fn
i (s

i
j)
, (12)

where fp
i (s) is the conditional probability density function (PDF) of the expres-

sion value of each semantic attribute under positive category, and fn
i (s) is the

conditional PDF under negative category. The ratio λi(s
i
j) is a probabilistic in-

dicator that tells us which category is more likely based on the expression value
sij of the i-th member attribute.

We combine the evidence from all the member attributes to infer the aggre-
gated value of gkj = 1

|gk
j |
∑n

i=1 λi(s
i
j). The proposed approach is similar to the

method of computing the relative support for the two different categories based
on a naive Bayes model.

In order to compute the likelihood ratio value λi(s
i
j) (see Fig. 3), we need to

estimate the PDF f c
i (s) for each category. We assume that the expression level

of semantic attributes under category c follows the Gaussian distribution with
the mean and the standard deviation, μc

i and σc
i , respectively. These parameters

are estimated based on all retrieval images that correspond to the category c.
The estimated PDFs can then be used for computing the likelihood ratio. In
general, we often do not have enough training image set for a reliable estimation
of the PDFs fp

i (s) and fn
i (s). This may make the computation of the likelihood
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ratios sensitive to small changes in the scene images. To alleviate this problem,
we normalize the λi(s

i
j) as follows.

λ̂i(s
i
j) =

λi(s
i
j)− μ(λi)

σ(λi)
, (13)

where μ(λi) and σ(λi) are the mean and standard deviation of λi(s
i
j) across all

images, respectively.

5 Experimental Result

5.1 Dataset

To evaluate the performance of the proposed method, three popular datasets are
tested, i.e., Scene-15 [14], Sun-15 [28], and UIUC-sports dataset [18].

Scene-15 dataset [14] consists of 15 different scene categories. Each category
consists of 200 to 400 grayscale images. The images are collected from the Google
image search, the COREL collection, and personal photographs.

Sun-15 dataset consists of 15 different scene categories as the same with the
Scene-15 dataset. We newly created this dataset from the SUN-397 dataset [28].
The SUN-397 dataset originally contains 397 scene categories. However, in this
paper, we obtained the same categories only with the Scene-15 dataset from the
original dataset.

UIUC-sports dataset [18] consists of 8 sports event categories. Each sports
event category is organized as follows: rowing, badminton, polo, bocce, snow-
boarding, croquet, sailing, and rock climbing. Images are divided into easy and
medium grade according to the human subject judgement.

For a fair comparison, we follow the original experimental setup applied
in [10,14]. In the experiment, 100 images per category are randomly sampled
as training images and remaining images are used as test images. In case of
UIUC-sports dataset, 70 images per category are randomly sampled as train-
ing images, and the remaining images are used as test images. One-versus-all
strategy is used because the scene classification is a multi-class problem and the
evaluated performance is reported as the average classification rate on the all
categories.

5.2 Measuring Expressions of Semantic Attributes

In order to obtain semantic attributes from scene images, we employ two ap-
proaches. First approach is the semantic attribute (SA) proposed in [25]. For
this, four different types of local image features are used in this experiments as
in [25]: SIFT [20], LAB [17], Canny edge [4], and Texton filterbanks [16].

We measure expression values of 67 semantic attributes based on the SA as
in [25] from each scene image : local scene attributes (e.g. building, street, tree),
shape attributes (e.g. box, circle, cone), materials (e.g. plastic, wood, stone), and
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objects (e.g. car, chair, bicycle). We learn a set of independent attribute classi-
fiers using support vector machine (SVM) with Bhattacharyya kernel following
the procedure in [25]. In order to measure the expression of each semantic at-
tributes, non-negative SVM scores, which are obtained from results of a sigmoid
function of the original SVM decision values, are used. The measured expression
of each semantic attribute has a value between 0 and 1.

The other approach is the object bank (OB) proposed in [19]. The OB is
obtained from an object filter response. The object responses are obtained by
running a bunch of object filters across an image at various locations and scales
by using the sliding window approach. Each filter is an object detector trained
from images with similar view point. The models based on deformable part are
applied for the object detector where six parts are used [11,19].

We measure expression values of 177 semantic attributes (objects) based on
the OB as in [19] from each scene image. These 177 semantic attributes are
determined from the popular image dataset such as ESP [1], LabelME [23],
ImageNET [7], and Flickr! web site. After ranking the objects according to their
frequencies in each of these datasets, the intersection set of the most frequent
1000 objects is obtained as the 177 semantic attributes. To train each of the
177 semantic attribute detectors, 100-200 images and their object bounding box
information from the ImageNet dataset are used. In the training, a generalization
of SVM called latent variable SVM (LSVM) is used for the semantic attribute
detector [11]. In order to measure the expression of each semantic attribute, we
follow the same procedure as in the SA case.

5.3 Discriminative Model Based Scene Classification

For scene classification, we use a SVM classifier with exponential chi-square
kernel which is well-known to be suitable for the histogram-based image classi-
fication. The exponential chi-square kernel can be obtained as follows.

kchi−square(x, y) = exp

(
−γ

2

n∑

i=1

(xi − yi)
2

xi + yi

)
, (14)

where γ is a scaling parameter.
The SVM-based scene classifier implemented by using LIBSVM [5]. One-

versus-all strategy is used for a multi-class classification and the evaluated per-
formance is reported as the average classification rate on the all categories. The
final classification performance was obtained by average result of 50 times re-
peated experiments.

5.4 Comparative Results

Fig. 4 shows the performance evaluation results of the proposed methods com-
pared with the existing methods in each semantic attribute approach. (Each se-
mantic attribute approach is referred to as SA and OB, respectively.) As shown in
Fig. 4, the proposed hypergraph-based method with the likelihood-ratio-based
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Fig. 4. Comparison of scene image classification performance with the hypergraph-
based method with likelihood-ratio-based feature vector: (a) Scene-15 dataset (b) Sun-
15 dataset (c) UIUC-Sports dataset

feature vector achieved outstanding performance compared with the existing
methods on Scene-15, Sun-15, and UIUC-sports dataset.

In Scene-15 dataset experiment, the BoW model showed an improved perfor-
mance when combined with spatial pyramid method (SPM) [14]. The methods
marked as SA [25] and OB [19] are semantic-attribute-based scene classification
approach in which each attribute considered individually. In the experiment,
these methods showed better classification performance than the existing BoW
model. However they showed lower classification result than the BoW+SPM
model. On the other hand, the proposed method showed an improved result
more than 4.5% compared to the results of the SA and OB considering each
semantic attribute individually, even though it was not combined with the SPM
unlike those in the original experiments [25,19].

In Sun-15 dataset experiment, the proposed method with the SA showed an
improved result more than 10.6% compared to the result of the BoW+SPM.
Especially, the proposed method with the OB showed a significantly improved
result more than 14.2% compared to the result of the BoW+SPM. We can see
that the method using only the Object Bank method also showed greatly im-
proved result than existing methods. This result means that it is very important
what semantic attributes are used for scene classification and how the semantic
attributes are obtained from scene images.

In UIUC-sports dataset experiment, the proposed method showed an im-
proved result more than 2.98% and 7.51% compared to the results of the HMP [2]
and HIK-CBK [27], respectively. Also, in comparison with the result considering
each semantic attribute individually, the proposed method showed a better re-
sult. Interestingly, unlike the previous experiments, we can see that the results
using the SA-based feature vector showed better performance compared to the
OB-based feature vector. We can analyze the results based on the discriminative
power evaluation of feature vector. As shown in Fig. 5 (c) and Fig. 5 (f), the
discriminative power of the generated feature vector based on the SA is more
powerful than the generated feature vector based on the OB. More detail, the
average discriminative power of top 10 features based on the SA (17.21) is big-
ger than the average discriminative power of top 10 features based on the OB
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Fig. 5. Discriminative power comparison of the generated feature vectors from the SA-
and OB-based semantic attributes subnetworks via the hypergraph-based method with
likelihood ratio: (a) Scene-15 dataset (SA) (b) Sun-15 dataset (SA) (c) UIUC-Sports
dataset (SA) (d) Scene-15 dataset (OB) (e) Sun-15 dataset (OB) (f) UIUC-Sports
dataset (OB)

(15.01). Therefore, we can infer that the discriminative power of the feature
vector may affect the classification performance.

Interestingly, in all experiments, we can see that the existing methods com-
bined with the SPM were improved. We can analyze that it is a result of utilizing
spatial context information. Therefore, we can expect to be able to achieve more
improved performance when the subnetwork employed our method is combined
with the SPM.

Previously, we analyzed that the reason why the proposed method can ob-
tain competitive classification performance is that the discriminative power of
the created feature vector by our method is strong. In order to verify this, we
measured the discriminative power of feature vectors created by each method. In
Fig. 5, the x-axis means rank of feature, y-axis means average absolute t-score
of each feature. The discriminative power was measured using a mean absolute
t-score of the top 10 features.

For a comparison, we also demonstrated a discriminative power of single se-
mantic attribute and a discriminative power of feature vector generated from
randomly selected subsets. (They are marked with single and random, respec-
tively.) Furthermore, we compared experimental results for analyzing any differ-
ence due to the aggregation method of expression values of member attributes
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constituting the subnetwork. These are marked with ‘mean’ and ‘pca’ respec-
tively. And the proposed method is marked with ‘LR’. The ‘mean’ method is
simply averaging the expression values while the ‘pca’ method uses the 1st prin-
cipal component of the expression values.

As shown in Fig. 5, our method not only showed strong discriminative power
compared to single feature and other aggregation methods on all datasets, but
also showed a tendency to maintain the strong discriminative power even in
low-rank. (These results were obtained by averaging the measured results of the
discriminative power of each top ranked feature for the entire category.)

This enhancement of discriminative power is related to improvement of clas-
sification performance. In addition, another advantage of our method is that it
gives significantly improved performance despite the dimension of feature vector
is decreased by aggregating process.

6 Conclusion

In this paper, we proposed amethod of the hypergraph-basedmodeling, which con-
sidered the higher-order interactions of semantic attributes of a scene and applied it
to a scene classification. In order to generate the hypergraph optimized for specific
scene category, we proposed a novel learning method based on a probabilistic sub-
networks searching and also proposed a method to generate a aggregated feature
vector from the expression values of the member semantic attributes that belongs
to the searched subnetworks via likelihood-based estimation.

To verify the competitiveness of the proposed method, we showed that the
discrimination power of the feature vector generated by the proposed method
was better than existing methods through experiments. Also, in scene classifi-
cation experime9nt, the proposed method showed an outstanding classification
performance compared with the conventional methods. Thus, we could regard
that the consider of the higher-order interaction of the semantic attributes may
have an affect on the improvement of the scene classification performance.
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