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Abstract. We attack the problem of learning concepts automatically from noisy
Web image search results. The idea is based on discovering common characteris-
tics shared among subsets of images by posing a method that is able to organise
the data while eliminating irrelevant instances. We propose a novel clustering and
outlier detection method, namely Concept Map (CMAP). Given an image collec-
tion returned for a concept query, CMAP provides clusters pruned from outliers.
Each cluster is used to train a model representing a different characteristics of
the concept. The proposed method outperforms the state-of-the-art studies on the
task of learning from noisy web data for low-level attributes, as well as high level
object categories. It is also competitive with the supervised methods in learning
scene concepts. Moreover, results on naming faces support the generalisation ca-
pability of the CMAP framework to different domains. CMAP is capable to work
at large scale with no supervision through exploiting the available sources.

Keywords: Weakly-labelled data, Clustering and outlier detection, Semi-
supervised model learning, ConceptMap, Attributes, Object detection, Scene
classification.

1 Introduction

The need for manually labelled data continues to be one of the most important limita-
tions in large scale recognition. Alternatively, images are available on the Web in huge
amounts. This fact recently attracted many researchers to build (semi-)automatic meth-
ods to learn from web data collected for a given concept. However, there are several
challenges that makes the data collections gathered from web different from the hand
crafted datasets. Images on the web are ”in the wild” inheriting all types of challenges
due to variations and effects. Since usually images are gathered based on the surround-
ing text, the collection is very noisy with several visually irrelevant images as well
as variety of images corresponding to different characteristic properties of the concept
(Figure1).

For the queried data for automatic learning of concepts, we propose a novel method
to obtain a representative groups with irrelevant images removed. Our intuition is that,
given a concept category by a query, although the list of images returned include ir-
relevant ones, there will be common characteristics shared among subset of images.
Our main idea is to obtain visually coherent subsets, that are possibly corresponding to
semantic sub-categories, through clustering and to build models for each sub-category
(see Figure2). The model for each concept category is then a collection of multiple
models, each representing a different aspect.
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Fig. 1. Example Web images collected for query keywords (a) spotted, (b) office, (c) motorbikes,
(d) Angelina Jolie. Even in the relevant images, the concepts are observed in different forms
requiring grouping and irrelevant ones to be eliminated.

To retain only the relevant images that describe the concept category correctly, dur-
ing clustering we need to remove outliers, i.e. irrelevant ones. The outliers may resem-
ble to each other while not being similar to the correct category resulting in a outlier
cluster. Alternatively, outlier images could be mixed with correct category images in-
side salient clusters corresponding to relevant ones. These images, that we refer to as
outlier elements, should also be removed for the quality data for learning.

We propose a novel method Concept Maps (CMAP) for which organises the data
by purifying it not only from outlier clusters but also from outlier elements in salient
clusters. CMAP captures category characteristics through organising the set of given
instances into sub-categories pruned from irrelevant instances. It is a generic method
that could be applied on any type of concept from low-level attributes to high level
object and scene categories as well as faces.

Contributions:

– We attack the problem of building a general framework to learn visual concepts by
only query concept, through exploiting large volumes of weakly labelled data on
the web.

– Unlike most of the recent studies that focus on learning specific types of categories
from noisy images downloaded from web (such as objects [17,33], scenes[55],
attributes[53,18], and faces [2,43,20] ) we propose a general framework which is
applicable to many domains from low level attributes to high level concepts.

– We aim to learn models that have the ability to categorise images and regions across
datasets without being limited to a single source of data.

– As in [33,5] we address three main challenges in learning visual concepts from
noisy web results: (i) Irrelevant images returned by the search engines due to key-
word based queries on the noisy textual content. (ii) Intra-class variations within
a category resulting in multiple groups of relevant images. (iii) Multiple senses of
the concept. (5) We aim to answer not only ”which concept is in the image?”, but
also ”where the concept is?” as in [5] . Local patches are considered as basic units
to solve the localisation as well as to eliminate background regions.

– We use only visual informations extracted from the images gathered for a given
query word, and do not require any other additional knowledge such as surrounding
text, metadata or GPS-tags [48,3,23].

– The collection returned from web is used in its pure form without requiring any
prior supervision (manual or automatic) for organisation of the data [3,48,33].
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Fig. 2. Overview of our framework for concept learning shown on example concept ”Red”. Im-
ages are collected from web for a given keyword. Concept Map (CMAP) organises the data into
clusters which are pruned from outlier elements inside salient clusters and outlier clusters. each
cluster is then used as a sub-model for learning and localising the concept in a given image pos-
sibly from a different collection.

2 Related Work

Our work is related to several studies in the literature from different perspectives. We
try to discuss the most relevant ones by grouping them into three categories. Reviewing
the huge literature on object and scene recognition is far from the scope of this study.

Learning Attributes: The use of attributes has been the focus of many recent stud-
ies [15,29,6]. Most of the methods learn attributes in a supervised way [16,31] with
the goal of describing object categories. Not only semantic attributes, but classemes
[52] and implicit attributes [46] have also been studied. We focus on attribute learning
independent of object categories and learn different intrinsic properties of semantic at-
tributes through models obtained from separate clusters that are ultimately combined in
a single semantics. Learning semantic appearance attributes, such as colour, texture and
shape, on ImageNet dataset is attacked in [47] relying on image level human labels us-
ing AMT for supervised learning. We learn attributes from real world images collected
from web with no additional human effort for labelling. Another study on learning
colour names from web images is proposed in [53] where a pLSA based model is used
for representing the colour names of pixels. Similar to ours, the approach of Ferrari and
Zisserman [18] considers attributes as patterns sharing some characteristic properties
where basic units are the image segments with uniform appearance. We prefer to work
on patch level alternative to pixel level which is not suitable for region level attributes
such as texture; image level which is very noisy; or segment level which is difficult to
obtain clearly.

Learning Object Categories from Noisy Web Data: Several recent studies tackle the
problem of building qualified training sets by using images returned from image search
engines[17,3,1,13,33,48]. Fergus et al. [17] propose a pLSA based method in which the
spatial information is also incorporated in the model. They collected noisy images from
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Google as well as a validation set which consists of top five images collected in differ-
ent languages which was used to pick the best topics. They experimented classification
on subsets of Caltech and Pascal datasets, and re-ranking of Google results. The main
drawback of the method is the dependency to the validation set. Moreover, the results
indicate that the variations in the categories are not handled well. Berg and Forsyth [3]
use visual features and surrounding the text for collecting animal images from web. Vi-
sual exemplars are obtained through clustering text. They require the relevant clusters
to be identified manually, as well as an optional step of eliminating irrelevant images
in clusters. Note that these two steps are automatically performed in our framework. Li
and Fei-Fei [33] presents the OPTIMOL framework for incrementally learning object
categories from web search results. Given a set of seed images a non parametric latent
topic model is applied to categorise collected web images. The model is iteratively up-
dated with the newly categorised images. To prevent over specialised results, a set of
cache images with high diversity are retained at each iteration. While the main focus is
on the analysis of the generated collection, they also compared the learned models on
the classification task on the dataset provided in [17]. The validation set is used to gather
the seed images. The major drawback of the method is the high dependency to the qual-
ity of the seed images and the risk for concept drift during iterations. Schroff et al. [48]
first filters out the abstract images (drawings, cartoons, etc.) from the resulting set of
images collected through text and image search in Google for a given category. Then,
they use text and metadata surrounding the images to re-rank the images. Finally they
train a visual classifier by sampling from the top ranked images as positives and random
images from other categories as negatives. Their method highly depends on the filter-
ing and text-based re-ranking as shown with the lower performances obtained by visual
only based classifier. Berg and Berg [1] find iconic images that are the representatives
of the collection given a query concept. First they select the images with objects are
distinct from background. Then, the high ranked images are clustered using k-medoids
to consider centroid images as iconic. Due to the elimination of several images in the
first step it is likely that helpful variations in the dataset are removed. Moreover, clus-
tering does not handle the images in outlier clusters to be chosen as iconic. NEIL is
the most similar study to ours [5]. Similar to CMAP in NEIL multiple sub-models are
learned automatically for each concept. It works on attributes, objects and scenes as
well and localises objects in the images. CMAP differentiates from NEIL in some as-
pects. We also perform experiments on recognition of faces which was not handled in
NEIL. Unlike NEIL where a single type of representation is used to describe attributes,
objects and scenes, we use different descriptors for each although not specialised and
can be replaced with others. However, this distinction also allows us to consider faces
and possibly the videos in the future. The second difference lies in the organisation of
the data for learning sub-models. High computational power required for NEIL, as well
as the additional knowledge discovered and the iterative process required for learning
makes it difficult to compare.

Learning Face Name Associations: Learning the faces associated with the name has
been studied recently[2,43,19,21,20,42,49]. We focus on the task of learning faces given
a single query name. Unlike [43,19] where a single densest component is sought in the
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similarity graph - which corresponds to the most similar subset of faces-, we seek for
multiple subgroups that represents different characteristics of the people.

Learning Discriminative Patches: Our method is also related to the recently emerged
studies in discovering discriminative patches. [34] [50] [27] [50,9,8,25,10,26,35,7].
In these studies weakly labeled datasets are leveraged for learning visual patches that
are representative and discriminative. We aim to discover the patches or the entire im-
ages representing the collected data in the best way. However, we also want to keep the
variations in the concept for allowing intra-class variations and multiple senses to be
modelled through different sub-groups. We want to learn the characteristics of the con-
cepts independent of other concepts, and don’t consider discriminative characteristics.

3 Concept Maps

We propose CMAP which is inspired from the well-known Self Organizing Maps
(SOM) [28]. In the following, SOM will be revisited briefly, and then CMAP will be
described.

Revisiting Self Organizing Maps (SOM): Intrinsic dynamics of SOM are inspired
from developed animal brain where each part is known to be receptive to different sen-
sory inputs and which has a topographically organized structure[28]. This phenomena,
i.e. ”receptive field” in visual neural systems [24], is simulated with SOM, where neu-
rons are represented by weights calibrated to make neurons sensitive to different type
of inputs. Elicitation of this structure is furnished by competitive learning approach.

Consider input X = {x1, .., xM} with M instances. Let N = {n1, ..., nK} be the
locations of neuron units on the SOM map and W = {w1, ..., wK} be the associated
weights. The neuron whose weight vector is most similar to the input instance xi is
called as the winner and denoted by v̂. Weights of the winner and units in the neigh-
bourhood are adjusted towards the input at each iteration t with delta learning rule.

wt
j = wt−1

j + h(ni, nv̂ : εt, σt)[xi − wt−1
j ] (1)

Update step is scaled by the window function h(ni, nv̂ : εt, σt) for each SOM unit,
inversely proportional to the distance to the winner (Eq.2). Learning rate ε is a grad-
ually decreasing value, resulting in larger updates at the beginning and finer updates
as the algorithm evolves. σt defines the neighbouring effect so with the decreasing σ,
neighbour update steps are getting smaller in each epoch. Note that, there are different
alternatives for update and windows functions in SOM literature.

h(ni, nv̂ : εt, σt) = εt exp
−||nj − nv̂||2

2σt2
(2)

Clustering and Outlier Detection with CMAP: We introduce excitation scores E =
{e1, e2, . . . , eK} where ej , the score for neuron unit j, is updated as in Eq.3.

etj = et−1
j + ρt(βj + zj) (3)
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As in SOM, window function is getting smaller with each iteration. zj is the activation
or win count for the unit j, for one epoch. ρ is learning solidity scalar that represents the
decisiveness of learning with dynamically increasing value, assuming that later stages
of the algorithm has more impact on the definition of salient SOM units. ρ is equal to
the inverse of the learning rate ε. βj is the total measure of the activation of jth unit in
an epoch, caused by all the winners of the epoch but the neuron itself (Eq.4).

βj =
u∑

v̂=1

h(nj , nv̂)zv̂ (4)

At the end of the iterations, normalized ej is a quality value of a unit j. Higher value
of ej indicates that total amount of excitation of the unit j in whole learning period is
high thus it is responsive to the given class of instances and it captures notable amount of
data. Low excitation values indicate the contrary. CMAP is capable of detecting outlier
units via a threshold θ in the range [0, 1].

Let C = {c1, c2, . . . , cK} be the cluster centres corresponding to each unit. cj is
considered to be a salient cluster if ej ≥ θ, and an outlier cluster otherwise.

The excitation scoresE are the measure for saliency of neuron units in CMAP. Given
the data belonging to a category, we expect that data is composed of sub-categories that
share common properties. For instance red images might include tones to be captured
by clusters but they are supposed to share a common characteristics of being red. For
the calculation of the excitation scores we use individual activations of the units as well
as the neighbouring activations. Individual activations measure being a salient cluster
corresponding to a particular sub-category, such as lighter red. Neighbourhood
activations count the saliency in terms of the shared regularity between sub-categories.
If we don’t count the neighbourhood effect, some unrelated clusters would be called
salient, e.g. noisy white background patches in red images.

Outlier instances in salient clusters (outlier elements) should also be detected. After
the detection of outlier neurons, statistics of the distances between neuron weight wi

and its corresponding instance vectors is used as a measure of instance divergence. If
the distance between the instance vector xj and its winner’s weight ŵi is more than the
distances of other instances having the same winner, xj is raised as an outlier element.
We exploit box plot statistics, similar to [39]. If the distance of the instance to its clus-
ter’s weight is more than the upper-quartile value, then it is an outlier. The portion of
the data, covered by the upper whisker is decided by τ .

CMAP provides good basis of cleansing of poor instances whereas computing cost is
relatively smaller since an additional iteration after clustering phase is not required. All
the necessary information (excitation scores, box plot statistics) for outliers is calculated
at runtime of learning. Hence, CMAP is suitable for large scale problems.

CMAP is also able to estimate number of intrinsic clusters of the data. We use PCA
as a simple heuristic for that purpose, with defined variance ν to be retained by the
selected first principle components. Given data, principle components describing the
data with variance ν is used as the number of clusters for the further processing of
CMAP. If we increase ν, CMAP latches more clusters.

Num.Clusters = max
q

(∑q
i=1 λi∑p
j=1 λj

≤ ν
)

(5)
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q is the number of top principle components selected after PCA and p is the dimen-
sion of instance vectors. λ is the eigenvalue of corresponding component.

Discussion of Other Methods on Outlier Detection with SOM: [37,38] utilise the
habitation of the instances. Frequently observed similar instances excites the network
to learn some regularities and divergent instances are observed as outliers. [22] benefits
from weights prototyping the instances in a cluster. Thresholded distance of instances
to the weight vectors are considered as indicator of being outlier. In [56], aim is to have
different mapping of activated neuron for the outlier instances. The algorithm learns
the formation of activated neurons on the network for outlier and inlier items with no
threshold. It suffers from the generality, with its basic assumption of learning from net-
work mapping. LTD-KN [51] performs Kohonen learning rule inversely. An instance
activates only the winning neuron as in the usual SOM, but LTD-KN updates winning
neuron and its learning windows decreasingly.

These algorithms only eliminate outlier instances ignoring outlier clusters unlike
CMAP. Another difference of CMAP is the computation cost. Most of outlier detection
algorithms model the data and iterate over the data again to label outliers. CMAP has
the ability to detect outlier clusters and the items in the learning phase. Thus, there is
no need for a further iteration, it is all done in a single pass in our method.

Algorithm 1. CMAP
1 In the real code we use vectorized implementation whereas we write down iterative pseudo-code for the favour of simplicity.

Input: X, θ, τ , K, T , ν , σinit , εinit

Output: OutlierUnits, Mapping,W
2 set each item zi in Z to 0
3 u← estimateUnitNumber(X, variation)
4 W ← randomInit(u)
5 while t ≤ T do

6 εt ← computeLearningRate(t, εinit )

7 ρt ← 1/εt

8 set each item βi in B to 0

9 select a batch set Xt ⊂ X with K instances
10 for each xi ∈ X do
11 ŵt

i ← findWinner(xi, W )

12 v̂ ← minj(||xi − wj||)
13 increase win count z

ŵt ← z
ŵt

i
+ 1

14 increase win count zv̂ ← zv̂ + 1
15 for each wk ∈ W do
16 βt

k
= βt

k
+ h(nk, nv̂)

17 wk = wk + h(nk, nv̂)||xi − wv̂||
18 end
19 end
20 for each wj ∈ W do

21 etj = e
t−1
j

+ ρt(βt
j + zj)

22 end
23 t ← t + 1

24 end
25 Wout ← thresholding(E, θ)
26 Win ← W \Wout
27 Mapping ← findMapping(Win, X)
28 Whiskers ← findUpperWhiskers(Win,X)
29 Xout ← findOutlierIns(X, Win, Whiskers, τ)
30 return Wout,Xout,Mapping,W

4 Concept Learning with CMAP

We utilise the clusters, that are obtained through CMAP as presented above, for learning
sub-models in concepts. We exploit the proposed framework for learning of attributes,
scenes, objects and faces. Each task requires the collection of data, clustering and outlier
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detection with CMAP, and training of sub-models from the resulting clusters. In the
following, first we will describe the attribute learning, and then describe the differences
in learning other concepts. Implementation details are presented in Section5.

Learning Low-Level Attributes: Most of the methods require learning of visual at-
tributes from labelled data, and cannot eliminate human effort. Here, we describe our
method in learning attributes from web data without any supervision.

We collect web images through querying colour and texture names. The data is
weakly labelled, with the labels given by queries. Hence, there are irrelevant images
in the collection, as well as images with a tiny portion corresponding to the query key-
word.

Each image is densely divided into non-overlapping fixed-size patches to sufficiently
capture the required information. We assume that the large volume of the data itself is
sufficient to provide instances at various scales and illuminations, and therefore we
did not perform any scaling or normalisation. The collection of all patches extracted
from all images for a single attribute is then given to CMAP to obtain clusters which
are likely to capture different characteristics of the attribute as removing the irrelevant
image patches.

Each cluster obtained through CMAP is used to train a separate classifier. Positive
examples are selected as the members of the cluster and negative instances are selected
among the outliers removed by CMAP and also elements from other categories.

Learning Scene Categories: To show CMAP capability on higher level concepts, we
target scene categories. In this case, we use the entire images as instances, and aim to
discover groups of images each representing a different property of the scene, at the
same time by eliminating the images that are either spurious. These clusters are then
used as models similar to the attribute learning.

Learning Object Categories: In the case of objects, we detect salient regions on each
image via [11], to eliminate background noise. Then these salient regions are fed into
CMAP framework for clustering.

Learning Faces: We address the problem of learning faces associated with a name
-which is generally referred to face naming in the literature-, through finding salient
clusters in the set of images collected from web through querying the name. Here, the
clusters are likely to correspond to different poses and possibly different hair and make-
up style differences as well as ageing effects. Note that this task is not the detection of
faces, but recognition of faces for a given name. We detect the faces in the images, and
only use a single face with the highest confidence for each image.

5 Experiments

5.1 Qualitative Evaluation of Clusters

As Figure3 depicts, CMAP captures different characteristics of concepts in separate
salient clusters, while eliminating outlier clusters that group irrelevant images coherent
among themselves, as well as outlier elements wrongly mixed with the elements of
salient clusters . On more difficult tasks of grouping objects and faces, CMAP is again
successful in eliminating outlier elements and outlier clusters as shown in Figure4.
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Fig. 3. For colour and texture attributes brown and vegetation and scene concept bedroom, ran-
domly sampled images detected as (i) elements of salient clusters, (ii) elements of outlier clus-
ters, and (iii) outlier elements in salient clusters. CMAP detects different shades of ”Brown”
and eliminates some superiors elements belonging the different colors. For the ”Vegetation” and
”Bedroom”, CMAP again divides the visuals elements with respect to structural and angular
properties. Especially for ”bedroom”, each cluster is able to capture different view-angle of the
images as it successfully removes outlier instances with some of little mistakes that are belonging
to the label but not representative (circular bed in very shiny room) for the concept part.

5.2 Implementation Details

Parameters of CMAP are tuned on a small held-out set gathered for each concept class
for color, texture, and scene. Best ν is selected by the optimal Mean Squared Error and
threshold parameters are tuned by cross-validation accuracies. Figure5 depicts the effect
of parameters θ, τ and ν. For each parameter the other two are fixed at the optimum
value.

We use LINLINEAR library [14] for L1 norm SVM classifiers. SVM parameters are
selected with 10-fold cross validation.

CMAP implementation is powered by CUDA environment. Matrix operations ob-
served for each iteration is kernelized by CUDA codes. It provides good reduction in
time, especially if the instance vectors are long and the data is able to fit into GPU
memory. Hence, we are able to execute all the optimization in GPU memory. Other-
wise some dispatching overhead is observed between GPU and global memory that
sometimes hinge the efficiency.

5.3 Attribute Learning

Datasets and Representation: We collected images from Google for 11 distinct colours
as in [53] and 13 textures. We included the terms ”colour” and ”texture” in the queries,
such as ”red colour”, or ”wooden texture”. For each attribute, 500 images are
collected. In total we have 12000 web images. Each image is divided into 100x100
non-overlapping patches. Unlike [53], we didn’t apply gamma correction. For colour
concepts we use 10x20x20 bins Lab colour histograms and for texture concepts we use
BoW representation for densely sampled SIFT [36] features with 4000 words. We keep
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Fig. 4. CMAP results for object and face examples. Left columns shows one example of salient
cluster. Middle column shows outlier instances captured from salient clusters. Right column is
the detected outlier clusters.
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Fig. 5. Effect of parameters on average accuracy. For each parameter, the other two are fixed at
their optimal values. θ is outlier cluster threshold, ν is PCA variation used for the estimation of
number of clusters,τ is the upper whisker threshold for the outliers in salient clusters.

the feature dimensions high to utilise from the over-complete representations of the in-
stances with L1 norm linear SVM classifier.

Attribute Recognition on Novel Images: The goal of this task is to label a given
image with a single attribute name. Although there may be multiple attributes in a single
image, for being able to compare our results on benchmark data-sets we consider one
attribute label per image. For this purpose, first we divide the test images into grids
in three levels using spatial pyramiding [32]. Non-overlapping patches (with the same
size of training patches) are extracted from each grid of all three levels. Recall that, we
have multiple classifiers for each attribute trained on different salient clusters. We run
all the classifiers on each grid for all patches. Then, we have a vector of confidence
values for each patch, corresponding to each particular cluster classifier. We sum those
confidence vectors of each patch in the same grid. Each grid at each level is labelled by
the maximum confidence classifier among all the outputs for the patches. All of those
confidence values are then merged with a weighted sum to a label for the entire image.
Di =

∑3
l=1

∑Nl

n=1
1

23−lhie
−(x̂−x)/2σ2

Here, Nl is the grid number for level l and hi

is the confidence value for grid i. We include a Gaussian filter, where x̂ is center of
the image and x is location of the spatial pyramid grid, to give more priority to the
detections around the center of the image for reducing noisy background effect.
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For evaluation we use three different datasets. The first dataset is Bing Search Im-
ages curated by ourselves from the top 35 images returned with the same queries we
used for initial images. This set includes 840 images in total for testing. Second dataset
is Google Colour Images [53] previously used by [53] for learning colour attributes.
Google Colour Images includes 100 images for each color name. We used the whole
data-sets only for testing of our models learned on a possibly different set that we col-
lected from Google, contrary to [53]. The last dataset is sample annotated images from
ImageNet [47] for 25 attributes. To test the results on a human labelled dataset, we use
Ebay dataset provided by [53] which has labels for the pixels in cropped regions. It
includes 40 images for each colour name.

Figure 6 compares the overall accuracy of the proposed method (CMAP) with three
other methods on the task of attribute learning. As the baseline (BL), we use all the
images returned for the concept query to train a single model. As expected, the perfor-
mance is very low suggesting that a single model trained by crude noisy web images
performs poorly and the data should be organised to train at least some qualified mod-
els from coherent clusters in which representative images are grouped. As two other
methods for clustering the data, we used k-means (KM) and original SOM algorithm
(SOM) with optimal cluster number, decided by cross-validation of whole pipeline, and
again train a model for each cluster. The low results support the need for pruning of the
data through outlier elimination. Results show that, CMAP’s clusters are able to de-
tect coherent and clean representative data groups so we train less number of classifiers
by eliminating outlier clusters but those classifiers better in quality and also, on novel
test sets with images having different characteristics than the images used in training,
CMAP can still perform very well on learning of attributes.

Our method is also utilised for retrieving images on EBAY dataset as in [53]. [53]
learns the models from web images and apply the models to another set so both method
study a similar problem. We utilise CMAP with patches obtained from the entire images
(CMAP) as well as from the masks provided by [53] (CMAP-M). As shown in Figure6
Right, even without masks CMAP is comparable to the performance of the PLSA based
method of [53], and with the same setting CMAP outperforms the PLSA based method
with significant performance difference.

On ImageNet dataset, we obtained 37.4% accuracy compared to 36.8% of Rus-
sakovsky and Fei-Fei[47]. It is also significant that, our models trained from different
source of information are better to generalized for some of worse performance classes
(rough, spotted, striped, wood) of [47]. Recall that we globally learn the attribute mod-
els from web images, not from any partition of the ImageNet. Thus, it is encouraging
to observe better results in such a large data-set against [47]’s attribute models trained
by a sufficiently large training subset.

Attribute Based Scene Recognition: While the results on different datasets support
the ability of our approach to be generalised to different datasets, we also perform ex-
periments to understand the effect of the learned attributes on a different task, namely
for classification of scenes using entirely different collections. Experiments are per-
formed on MIT-indoor [45], and Scene-15 [32] datasets. MIT-indoor has 67 different
indoor scene with 15620 images with at least 100 images for each category and we use



450 E. Golge and P. Duygulu

Bing Google [53] ImageNet [47] EBAY [53]

0.2
0.4
0.6
0.8

CMAP SOM KM BL

cars shoes dresses pottery overall

0.92

0.94

0.96

0.98

1

CMAP-M CMAP pLSA-reg [53]

Fig. 6. Left: Attribute recognition performances on novel images compared to other methods.
Right: Equal Error Rates on EBAY dataset for image retrieval using the configuration of [53].
CMAP does not utilise the image masks used in [53], while CMAP-M does.

100 images from each class to test our results. Scene-15 is composed by 15 different
scene categories. We use 200 images from each category for our testing. MIT-indoor is
extended and even harder version of Scene-15 with many additional categories.

We again get the confidence values for each grid in three levels of the spatial pyramid
on the test images. However, rather than using a single value for the maximum classifier
output, we keep the confidence values for all the classifiers for each grid. We concate-
nate these vectors for all grids in all levels to get a single feature vector of size 3xNxK
for the image, which is then used for scene classification. Here N is the number of grids
at each level, and K is the number of different concepts. Note that, while the attributes
are learned in an unsupervised way, in this experiment scene classifiers are trained on
the datasets provided (see next section for automatic scene concept learning).

As shown in Table1, our method for scene recognition with learned attributes
(CMAP-A), performs competitively with [34] while using shorter feature vectors in rel-
atively cheaper environment, and outperforms the others. Comparisons with [45] show
that using the visual information acquired from attributes is more descriptive in the clut-
tered nature of MIT-indoor scenes. For instance, ”bookstore” images has very similar
structural layout to ”clothing store” images, but they are more distinct with colour and
texture information around the scene. Attribute level features do not create this much
difference for Scene-15 data-set since images include some obvious statistical differ-
ences.

5.4 Learning Concepts for Scene Categories

As an alternative to recognising scenes through the learned attributes, we directly learn
higher level concepts for scene categories. We call this method as CMAP-S. Specif-
ically, we perform testing for scene classification for 15 scene categories on [32] and
MIT-indoor [45] data-sets, but learn the scene concepts directly from the images col-
lected from Web through querying for the names of the scene concepts used in these
datasets. That is, we do not use any manually labelled training set (or training subset
of the benchmark data-sets), but directly the crude web images which are pruned and
organised by CMAP, in contrast to comparable fully supervised methods. As shown
in Table1, our method is competitive with the state-of-the-art studies without requiring
any supervised training.

We then made a slight change on our original CMAP-S implementation by using
the hard-negatives of previous iteration as a negative set of next iteration (we refer to
this new method as CMAP-S-HM). We relax the memory needs with less but strong
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Table 1. Comparison of our methods on scene recognition in relation to state-of-the-art studies
on MIT-Indoor [45] and Scene-15 [32] datasets

- CMAP-A CMAP-S CMAP-S+HM Li et al. [34] VQ Pandey et al. [44] Kwitt et al. [30] Lazebnik et al. [32] Singh et al. [50]
MIT-indoor [45] 46.2% 40.8% 41.7% 47.6% 43.1% 44% - 38%
Scene-15 [32] 82.7% 80.7% 81.3% 82.1% - 82.3% 81% 77%

negative instances. As the results in Table1 and Figure7 show, we achieve better perfor-
mances in Scene-15 than the state-of-the-art studies with this simple addition, still with-
out requiring any supervisory input. However, on a harder MIT-indoor dataset, without
using attribute information, low-level features are not very distinctive.

In order to understand the effect of discriminative visual features, which aim to cap-
ture representative and discriminative mid-level features, we also compare our method
with the work of Singh et al. [50]. As seen in Table1, our performances are better than
both their reported results on MIT-indoor, and our implementation on Scene-15.
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1 CMAP [32]

CMAP [17] [33] CMAP [17] [33]
airplane 0.63 0.51 0.76 car 0.97 0.98 0.94

face 0.67 0.52 0.82 guitar 0.89 0.81 0.60
leopard 0.76 0.74 0.89 motorbike 0.98 0.98 0.67
watch 0.55 0.48 0.53 overall 0.78 0.72 0.75

Fig. 7. Left: Comparisons on Scene-15 dataset. Overall accuracy is 81.3% for CMAP-S+HM ,
versus 81% for [32] . Classes ”industrial”, ”insidecity”, ”opencountry” results very noisy set of
web images, hence trained models are not strong enough as might be observed from the chart.
Right: Classification accuracies of our method in relation to [17] and [33].

5.5 Learning Concepts of Object Categories

We learn object concepts from Google web images used in [17] and compare our results
with [17] and [33] (see Figure7 Right). [17] provides a data-set from Google with 7
classes and total 4088 gray scale images, 584 images in average for each class with
many ”junk” images in each class as they indicated. They test their results in a manually
selected subset of Caltech Object data-set. Because of its raw nature of the Google
images and adaptation to the Caltech subset, it is a good experimental ground for our
pipeline.

Salient regions extracted from images are represented with 500 word quantized SIFT
[36] vector with additional 256 dimension LBP [40] vector. In total we aggregated a 756
dimension vector representation for each salient region. At the final stage of learning
with CMAP, we learn L2 norm, linear SVM classifiers for each cluster with negatives
are gathered from other classes and the global outliers. For each learning iteration, we
also apply hard mining to cull highest rank negative instances in the amount 10 times
of salient instances in the cluster. All pipeline hyper-parameters are tuned via the val-
idation set provided by [17]. Given a novel image, learned classifiers are passed over
the image with gradually increasing scales, up to a point where the maximum class
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confidences are stable. Among class confidences, maximum confidence indicates the
final prediction for that image. We observe 6.3 salient clusters in average for all classes
and 69.4 instances for each salient clusters. That is, CMAP eliminates 147 instances for
each class as supposedly outlier instances. Results support that elimination of ”junk”
images gives significant improvements, especially for the noisy classes in [17].

5.6 Learning Faces

We use FAN-large [41] face data-set for testing our method in face recognition problem.
We use Easy and Hard subsets with the names accommodating more than 100 images
(to have fair testing results). Our models are trained over web images queried from Bing
Image search engine for the same names. All the data preprocessing and the feature
extraction flow follow the same line of [41], that is owned from [12]. However, [41]
trains the models and evaluates the results at the same collection.

We retrieve the top 1000 images from Bing results. Face are detected and face with
the highest confidence is extracted from each image to be fed into CMAP. Face in-
stances are clustered and spurious face instances are pruned. Salient clusters are used
for learning SVM models for each cluster in the same settings of the object categories.
For our experiments we used two different face detectors. One is cascade classifier of
[54] implemented in OpenCV library [4] and another is [57] with more precise detection
results, even the OpenCV implementation is very fast relatively. Results are depicted at
Table2 with two different face detection method and baseline result with models trained
on raw Bing images for each person.

Table 2. Face learning results with detecting faces using OpenCV(CMAP-1) and [57](CMAP-2)

Method GBC+CF(half)[41] CMAP-1 CMAP-2 BaseLine
Easy 0.58 0.63 0.66 0.31
Hard 0.32 0.34 0.38 0.18

6 Conclusion

We propose Concept Maps for weakly supervised learning of visual concepts from large
scale noisy web data. Multiple classifiers are built for each concept from clusters pruned
from outliers, to have each classifier sensitive to a different visual variation. Our exper-
iments show that we are able to capture low level attributes on novel images and have
a good basis for higher level recognition tasks like scene recognition with inexpen-
sive setting. We also show that we can directly learn scene concepts with the proposed
framework. Going further, we show that CMAP is able to learn object and face cat-
egories from noisy web data. We are able to learn in an unsupervised way from the
weakly-labeled web results and test on different datasets usually with different char-
acteristics than the web data. Comparisons with the state-of-the-art studies in all tasks
show that our method achieves better or similar results to the other methods which use
the same/similar web data for training or which require supervision. As the future work,
this framework will be extended to learn concepts from videos.
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