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Abstract. We introduce the problem of joint object class sequencing
and trajectory triangulation (JOST), which is defined as the reconstruc-
tion of the motion path of a class of dynamic objects through a scene from
an unordered set of images. We leverage standard object detection tech-
inques to identify object instances within a set of registered images. Each
of these object detections defines a single 2D point with a corresponding
viewing ray. The set of viewing rays attained from the aggregation of all
detections belonging to a common object class is then used to estimate a
motion path denoted as the object class trajectory. Our method jointly
determines the topology of the objects motion path and reconstructs
the 3D object points corresponding to our object detections. We pose
the problem as an optimization over both the unknown 3D points and
the topology of the path, which is approximated by a Generalized Min-
imum Spanning Tree (GMST) on a multipartite graph and then refined
through a continuous optimization over the 3D object points. Experi-
ments on synthetic and real datasets demonstrate the effectiveness of
our method and the feasibility to solve a previously intractable problem.

1 Introduction

Reconstruction from photo collections has attracted significant attention in the
last decade, enabling systems to build 3D models from entire city datasets of
millions of images[14]. Despite these advances, the current state-of-the-art meth-
ods model only static scenes. One reason for this is that in typical datasets there
only exists one view of any dynamic scene object, e.g. a person or car. Hence,
current techniques are not able to determine the 3D position of such objects.
This situation is regarded to have a highly limited potential for reconstruction
as stated by Park et al. [23] and Valmadre et al. [29].

We propose a technique to determine the 3D geometry of common dynamic
object paths from temporally uncorrelated images, i.e. a set of images along a
street with pedestrians walking (see Figure 1(a)). The challenges in this kind
of datasets are that each instance of the object is typically only seen once in
the images. Moreover, there is no temporal consistency between the observa-
tions of the different images and the capture times of the images are typically
unknown. The only constraint available for our reconstruction is the fact that
all observed instances of an object move along a common compact path in the
3D scene, which we call an object class trajectory. To obtain the object class
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(a) (b)

Fig. 1. Left: 3 images of the pedestrian dataset and the output of SFM. Right: The
reconstruction of two pedestrians that are captured in the single image.

trajectory our method needs to simultaneously determine the sequence of the
objects along the 3D path and the 3D positions of the objects on the path.
Accordingly, this can be seen as a joint object class sequencing and trajectory
triangulation, which generalizes the well known sequencing problem [2,3] and
the trajectory triangulation problem [29,39,23] into a common framework. In
fact, our proposed framework handles both of these problems as special cases.
The resulting reconstructed object class trajectory then allows us to solve the
generally ill-posed 3D reconstruction of a dynamic object from a single image
by constraining the reconstruction through the 3D path of the object class. An
example of a single view reconstruction of two pedestrians is shown in Figure
1(b), visualizing a generic person at the correct 3D position in the reconstruction
of the 3D scene.

2 Related Work

The joint object class sequencing and trajectory triangulation is closely related to
3D reconstruction from single image, which is inherently ambiguous and difficult
without further assumptions. Saxena et al. [25] propose a method for reconstruc-
tion from a single image. They compute reasonable depthmaps from a single still
image by using a hierarchical multi-scale Markov Random Field (MRF) that in-
corporates several features. The parameters of the MRF model are trained using
ground truth depth. In man-made scenes with mainly orthogonal facades (called
a Manhattan world [6]), 3D reconstruction from a single image can be simplified
to finding 3D lines and planes within the scene. Delage et al. [9] use a MRF
model to identify the different planes and edges in the scene, as well as their
orientations. Then, an iterative optimization algorithm is applied to infer the
planes’ positions. Ramalingam et al. [24] reconstruct the 3D lines in a Manhat-
tan scene from an image using linear programming that identifies a sufficient
minimal set of least-violated line connectivity constraints. In contrast, our joint
object class sequencing and trajectory triangulation targets the reconstruction
of the dynamic scene parts, in particular the object class trajectory, from a set
of images.
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Non-rigid structure frommotion (NRSFM) methods are another class of meth-
ods related to our joint object class sequencing and trajectory triangulation.
They aim to recover a deforming object’s structure as well as camera motion
given corresponding 2D points in a sequence of images. Tomasi and Kanade [28]
propose to do rigid structure from motion through matrix factorization under an
affine camera assumption. As an important extension of the well-known Tomasi-
Kanade factorization, the work by Bregler et al. [5] tackles the NRSFM problem
by assuming an object can be represented by a linear combination of low-order
shape bases. Due to the fact that the shape bases are not unique, Xiao et al.
[35] proves that using only rotation constraints results in ambiguous and invalid
solutions. To solve this shape ambiguity, most existing works rely on different
prior knowledge specific to the problem at hand. Not until very recently, Dai et
al. [7] solved the problem by introducing a prior-free method. All these meth-
ods require a certain amount of points to be available for each frame to form
a shape, as their approaches require the shape to be present. In contrast, our
method only requires a single point per object class instance to infer the object
class trajectory and does not have any assumption about the object shape. As
a dual method, Akhter et al. [1] proposed that the smooth trajectory of each
point can be restricted to a low-dimensional subspace and represented by a linear
combination of Discrete Cosine Transform (DCT) bases. In contrast to [7] which
requires no temporal information, [1] fails completely if frames are randomly
shuffled. Whereas our proposed joint object class sequencing and trajectory tri-
angulation does not require any temporal frame information or ordering.

Park et al. [23] reconstruct the 3D trajectory from a monocular image se-
quence using SFM for camera registration. They represent the trajectory by a
number of low-order DCT bases, similar to Akhter et al. [1]. Their method recov-
ers accurate 3D trajectory, but with two major flaws as pointed in [29]: (1) The
user needs to manually determine the number of bases for each image sequence,
and (2) the accuracy of 3D trajectory reconstruction is fundamentally limited by
the correlation between the trajectory of 3D points and the motions of camera
centers. This high correlation of object and camera motion is commonly occur-
ring in real captures and degrades the reconstruction results. Valmadre et al. [29]
recover the trajectory by minimizing the response of the trajectory to a set of
high pass filters. Their method, in contrast to Park et al. [23], requires no basis
size but still suffers under the correlation between object and camera motion.
Zhu et al. [39] first estimate the 3D coordinates of a few keyframes in the video
sequence, and then use those key frames to constrain the 3D trajectory. All of
these methods require smooth trajectories and a given temporal order of the
captured frames, while our method does not need to know the temporal order
in order to successfully recover the object class trajectory.

Recently Basha et al. [2,3] propose two methods that determine the temporal
order photos taken by a set of cameras. In [2], they compute the partial orders
for a subset of the images by analyzing the dynamic features in the subsets 2D
images. The method inherently relies on two images taken from the same static
camera to eliminate the uncertainty in the sequencing. Later Basha et al. [3]
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propose to enforce the constraint of a known order for the images taken by each
camera. Our proposed method does not need any knowledge about the image
order nor does it require multiple images of a static camera.

As another class of reconstruction, 3D articulated object reconstruction given
monocular image sequences has received much attention. Several particle filter
approaches have been developed for 3D human tracking [27,26]. Wei et al. [32]
and Valmadre et al. [31] reconstruct the 3D human poses from a small number of
2D point correspondences obtained from uncalibrated monocular images. Based
on [23], Park et al. [22] reconstruct 3D articulated motion with the constraint
that a trajectory remains at a fixed distance with respect to a parent trajec-
tory. This improves the reconstructibility over their earlier approach [23], but
involves solving an NP-hard quadratic programming problem. Valmadre et al.
[30] develop a dynamic programming approach which scales linearly in the num-
ber of frames to overcome solving the quadratic programming problem. While
the articulated motions require multiple characteristic points observed on the
same object instance, our method successfully recovers the object class trajec-
tory from observing different object instances that each determines only a single
characteristic point.

3 Joint Object Class Sequencing and Trajectory
Triangulation

We now detail our method for joint object class sequencing and trajectory tri-
angulation from uncontrolled image captures, which in particular removes the
constraint of known temporal camera information and known object position.
To perform joint object class sequencing and trajectory triangulation from the
uncontrolled image set, we proceed as follows

1. Spatially register the cameras to a common 3D coordinate system.
2. Detect object instances and estimate motion tangents from input imagery.
3. Leverage the image positions of the object instances to simultaneously

(a) Determine a camera ordering compliant with a continuous motion of the
objects along a trajectory.

(b) Triangulate the geometry of the corresponding motion path.

Our main contribution is an algorithm for tackling challenge 3, while we exploit
known methods to solve for camera registration, object detection and motion
tangents in the images. Next, we introduce the above components in more detail.

3.1 Spatial Registration

The goal of the initial spatial registration in our method is to establish camera
registration in a common coordinate system. Given that in all our datasets a fair
portion of the images contains static background structure, we use the publicly
available structure from motion tool VisualSFM by Wu [34]. It produces the
camera registration and the camera calibration. See Fig. 1(a) for an example.
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The obtained camera registration determines the camera center C̃j of the j-th
camera. Please note, we use bold font letters x to indicate that an entity is a
vector and regular letters x for scalar values. With the known camera calibration
and registration, each pixel in the camera defines a ray direction r in the 3D scene
space. For our object class trajectory we are only interested in the ray directions
ri for the different object i of the desired class (for simplicity we refer in the
paper to them as objects) with i = 1, . . . , N , where N is the number of detected
object class instances over all frames. Hence, we only aim to compute the ray
directions ri for pixels belonging to the different detected objects i. The ray Xi

in the 3D space represents a 1D subspace on which the imaged object has to lie
and is described by:

Xi(ti) = Ci + ti · ri, (1)

where ti ≥ 0 is the positive distance from the camera center Ci along the ray
Xi. In the remaining of the paper, we keep the condition ti ≥ 0 implicit for
the purpose of concise formulation. We denote the camera centers as Ci with
Ci = C̃j , where Ci is the center of the camera j in which the object instance
i is detected. Please note that if more than one object is detected in camera j,
there will be multiple Ci with identical positions. The unknown true distance of
the object instance i along ray Xi is denoted as t̂i. Once obtained, it determines
the 3D object position X̂i.

3.2 Object Detection and Motion Tangent Estimation

Our proposed joint object class sequencing and trajectory triangulation leverages
the motion tangent of the object instances, which is defined as the moving di-
rection of the dynamic object in the 3D space, so both the objects detection and
motion tangents estimation are performed based on a single image. For trajec-
tory triangulation this has historically been solved by using videos for estimating
the motion tangents [37], but for our proposed joint object class sequencing and
trajectory triangulation problem, temporal coherence or temporal proximity of
the images cannot be assumed. Hence only motion tangent estimation based on
a single image is applied. The particular choice of object and motion tangent
estimation method depends on the specific object class and the scenes. We dis-
cuss our particular choices in Section 4, and for now we assume available the
positions on each image defining the rays Xi and a coarse estimate of the motion
tangent di of object i. We determine the image positions of each detected object
i = 1, . . . , N by the center of the bounding box. These object detections provide
us a ray Xi(ti) for each object observed in a camera, with the ray describing the
one-dimensional subspace in which the detected object can be placed in the 3D
scene space.

3.3 Object Class Trajectory Estimation Problem

Assuming known rays Xi(ti) and the motion tangents di, we will now define the
object class trajectory estimation problem before delving into our data repre-
sentation and our estimation framework. For the ease of description, we directly
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leverage the rays Xi(ti) of the detected objects i and do not use the camera
registration directly as the latter is implicitly present in the ray.

Intuitively, an object class trajectory describes the motion along a path taken
by the observed objects of the desired class through the 3D scene. A path can
in general be any continuous curve in the 3D scene space. Since we only have
a finite number of observations of objects along the path, we only sample a
discrete set of 3D points on the path. The samples along the path are the 3D
object positions X̂i. Here, we represent the path as a combination of piecewise
linear functions in between the sampled object positions X̂i. The desired object
class trajectory is the path of minimal length and it can be determined through
a minimization of the cost function:

min
p

∑

(i,j)∈p

‖X̂i − X̂j‖22 (2)

with p representing the adjacency of the points defining the topology of the path,
which is list of adjacency relationships between all the points X̂i, i = 1, . . . , N .
While the trajectory above is based on the observed 3D object positions X̂i, we
can only observe the rays Xi(ti). To determine the object class trajectory, we
also need to determine the position of each object i along its viewing ray Xi(ti),
which defines the 3D position of the object X̂i. We propose to find the adjacency
relation by optimizing over variables t = [t1, . . . , tN ] and p jointly as follows,

min
p,t

∑

(i,j)∈p

‖Xi(ti)−Xj(tj)‖22. (3)

Given the motion tangents di estimated from the images, we can further con-
strain the trajectory, obtaining an optimization problem:

min
p,t

∑

(i,j)∈p

‖di,j × (Xi(ti)−Xj(tj))‖22 + λ‖Xi(ti)−Xj(tj)‖22, (4)

where the operator × is the cross product, λ is a positive weight (discussed at
length in Sec. 3.6). The direction di,j is selected from di and dj , as the motion
tangent that is closest to the 3D motion direction Xi(ti)−Xj(tj). In Eq. (4), the
penalty of the first term increases if the direction of the vector Xi(ti)−Xj(tj)
deviates from di,j . The optimization procedure simultaneously determines both
the adjacency p of the rays and the positions of the objects through t.

Traditionally, these problems have been treated separately as either a sequenc-
ing problem, where the 3D points are given and only the sequence of traversal
needs to be estimated, or as a trajectory triangulation problem [23,29], where
the sequence of observations for the trajectory is given and the 3D points along
the trajectory need to be determined. Our proposed method generalizes these
problems into a common framework to allow the simultaneous estimation of the
adjacency of observations and the 3D position of the observations. In order to
optimize Eq. (4), we propose a new discrete-continuous optimization strategy
through the Generalized Minimum Spanning Tree (GMST).
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(b) Multi-partite graph instance (c) Estimated 3D trajectory(a) Discretization of viewing ray

Fig. 2. Illustration of GMST. See the text for more details

3.4 Generalized Trajectory Graph

To determine the object class trajectory, we conceptually have to choose for each
ray Xi(ti) the 3D point, and simultaneously determine the adjacency p repre-
senting the adjacency relations of the rays Xi(ti), which defines the topology of
the object class trajectory. Our discrete-continuous optimization strategy first
uses a Generalized Minimum Spanning Tree (GMST) to find adjacency p, and
followed by a convex optimization over t with p being fixed.

In the discrete optimization step, we map the continuous problem of finding
the 3D point along each ray to a discrete problem of selecting a 3D point out
of a set of discrete 3D points. Then we determine one 3D point along each ray
and the adjacency p by computing the (GMST) on an undirected multipartite
graph G(V , E) [20]. This allows us to simultaneously determine the topology and
the discrete 3D object position.

An undirected multipartite graph is a graph whose vertices are partitioned into
N partite sets {V1, . . . , VN} with |Vi| = k, while fulfilling V = V1 ∪ V2 ∪ · · · ∪ VN

and Vo ∩ Vp = ∅, ∀o �= p, with o, p ∈ {1, . . . , N}. The multipartite graph G(V , E)
has only edges between the different partite sets of vertices Vo, and all edge cost
are non-negative. Now we will detail on how we define the graph G(V , E) for our
object class trajectory estimation problem.

Each ray Xi(t) defines a one dimensional constraint on the 3D position of
the object. We discretize the ray to obtain a discrete set of potential depth
estimates. This leads to a finite set of possible 3D positions along the ray (see
Figure 2(a) for an illustration), defining a finite set of 3D point hypotheses
{X̂o

i |o = 1, . . . , k}, where k is the number of the discrete hypotheses along the
ray. In our representation, each 3D point X̂o

i establishes node Vo,i in the graph.
The set of nodes {Vo,i|i = 1, . . . , N} related to the ray Xi(t) of object i defines
a partite set of nodes Vo in the graph G(V , E). Given that no nodes within a
group have any connecting edges, it enforces that traversing the graph to obtain
an object class trajectory, the path cannot move along a ray. This is consistent
with the understanding of moving between the different instances of the object
class in the scene to determine the object class trajectory.
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Fig. 3. In Fig. 3(a), the black nodes shows the real positions of dynamic objects. The
red vector represents the direction associated with each object. In the shown example,
di,j equals di.

We now define the edge cost of the multipartite graph based on Eq. (4). The
multipartite graph only has edges between the nodes from different partite sets.
We define the edge direction di,j between any two nodes Vo,i and Vp,j in the
partite set i and partite set j respectively, as the consistency of the 3D motion
with the motion tangents di and dj (see Sec. 3.2). This definition comes from the
intuition that the edge direction should be compliant with the motion tangent
observed in the images. Given the motion of two objects i and j and their
respective motion tangents di and dj , it is clear that the motion between the
points Xo

i and Xp
j (associated with the nodes Vo,i and Vp,j) should be close in

direction to at least one of the motion tangents di and dj . Therefore, we define
the edge cost e(Vo,i, Vp,j) of the edge between the nodes Vo,i and Vp,j as

e(Vo,i, Vp,j) = min(‖di× (Xo
i −Xp

j )‖22, ‖dj × (Xo
i −Xp

j )‖22)+λ‖Xo
i −Xp

j‖22. (5)

If only considering the first term in Eq. (5), edges with 3D motion directions
that are approximately parallel to di or dj have lower edge cost than 3D motion
directions that are at an angle to both di and dj . For instance, Edge 1 and Edge
3 in Fig. 3(b) have a relatively lower cost than Edge 2 because Edge 1 is parallel
to dj and Edge 3 is parallel to di.

3.5 GMST

A Generalized Minimum Spanning Tree (GMST) on the graph G(V , E) is a tree
of minimal cost that spans exactly one node from each partite set Vi. For our
proposed graph, it means a GMST includes exactly one 3D point from each ray.
Furthermore, GMST prefers the edge ((o, i), (p, j)) that has small ‖Xo

i −Xp
j‖2

and is compliant with the motion tangents in the images, as those edges have
lower edge cost. Accordingly, a GMST is our desired solution for estimating the
object class trajectory. Notice that if we sample infinite number of 3d points
along each viewing ray, the GMST problem is equivalent to the original cost
function Eq. (4).
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The multipartite graph defined above contains a large amount of edges, which
increases the complexity of computing the GMST. We use a deterministic way
introduced by Ferreira et al. [13] to remove those edges that are guaranteed not
to be included in the GMST. Here we use a specific toy example in Fig. 3(c) to
illustrate the method. If the cost of edge (u, v) is larger than any cost of the 6
edges (u, nl) and (v, nl), l = 1, 2, 3, the edge (u, v) is safe to be removed. A simple
proof is that if edge (u, v) exists in the computed GMST, we could remove edge
(u, v) and replace it by one of the 6 edges to obtain a new GMST with lower cost.
Therefore, edge (u, v) can not be present in the GMST. Moreover, it is plausible
to explore other ways to remove edges based on given prior information. For
instance, if it is known the pairwise neighboring 3D objects are close in 3D space,
we can safely remove the edges that connects two farther point hypotheses by
applying a threshold.

The GMST problem was first introduced by Myung et al. [20] and was ex-
tensively studied in the past two decades [12,20,21,13,10] due to its wide ap-
plications in telecommunications, agriculture watering, and facility distribution
design [20,10]. Unlike the minimum spanning tree (MST) problem, which can
be solved in polynomial time, finding the GMST is proved to be NP-hard [20].
Myung et al. [20] and Feremans et al. [12] propose several integer programming
formulations for the GMST problem. However, those provide no guarantee of ef-
ficiency, especially when the problem scale is large. The computational challenge
of the GMST problem has led to the development of metaheuristics [21,13] that
search the hypothesis space, and are empirically shown to be effective.

We exploit the state-of-the-art GRASP-based approach proposed by Ferreira
et al. [13]. GRASP (Greedy Randomized Adaptive Search Procedure) is a meta-
heuristic that consists of iterations made up two phases: 1) solution construction
and 2) solution improvement through local search. Ferreira et al. [13] proposed
the method considering several solution construction algorithms, a local search
procedure, and two additional mechanisms: path-relinking and iterative local
search. We refer readers to their paper [13] for more details.

The output of GMST computation is the estimation of the 3D points X̂ and
the adjacency topology of the object class trajectory. Then di,j equals one of di

and dj that has smaller angle to the vector X̂i − X̂j ,

di,j = argmax
d∈{di,dj}

(|d · (X̂i − X̂j)|). (6)

We fix the adjacency p given by the GMST, and add a final continuous refine-
ment step for the 3D object position X̂i, through a convex program optimization
over variable t

min
t

∑

(i,j)∈p

‖di,j × (Xi −Xj)‖22 + λ‖Xi −Xj‖22 (7)

3.6 Reconstructability Analysis

Now we analyze the reconstructability of the proposed method, i. e. determining
under which conditions the solution of Eq. (4) generates accurate 3D points.
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The direct analysis of Eq (4) is difficult, as it needs to determine in which
situation the adjacency p with minimum cost, out of NN−2 possible adjacencies
([33]), corresponds to the object class trajectory. We find that having the motion
tangent constraint reduces the possibility of finding the wrong adjacency p.
Hence, we focus on the reconstructability of the continuous method Eq. (7)
given the adjacency p.

Assume we already know the ground truth 3D point X∗
i of object i, i =

1, . . . , N . Given that X∗
i is present on the viewing ray Xi, we move the camera

center Ci to X∗
i along the ray Xi(t) in direction ri. Then any point on the

line that passes through X∗
i and has ray direction ri can be represented as

Xi(si) = X∗
i + si · ri, where si is the signed distance (not the positive distance

as defined by the ti). Then Eq. (7) can be reformulated as:

min
s

∑

(i,j)∈p

‖di,j × (Xi(si)−Xj(sj))‖22 + λ‖Xi(si)−Xj(sj)‖22, (8)

where s = [s1, . . . , sN ]. Though si is signed distance and ti is positive distance,
minimizing Eq. (7) and Eq. (8) still output the same 3D point positions, as long
as the computed 3D points in Eq. (8) are in front of the camera centers. We
will see that this is normally true, because the computed 3D points are typically
close to their ground truth position if the system is well-conditioned.

We denote the solution of Eq. (8) as sopt. The true 3D points are ideally recon-
structed if sopt = 0, since Xi(0) equals to X∗

i given sopt = 0. More specifically,
sopt equals the signed Euclidean distance between the 3D points produced by
Eq. (7) and the ground truth X∗

i . Therefore, ‖sopt‖ is the error of the estimated
3D points by Eq. 7. In the remaining of this section, we further analyze when
‖sopt‖ is small to understand the quality of the estimated 3D points.

The minimum value of Eq. (8) is achieved at the point where the first deriva-
tive relative to s equals 0. This produces a linear equation system Asopt = b,
where the ith row and jth column of matrix A is

Aij =

⎧
⎪⎨

⎪⎩

[(ri · di,j)di,j − (1 + λ)ri] · rj if i �= j and (i, j) ∈ p

0, if i �= j and (i, j) /∈ p∑
(i,k)∈p [1 + λ− (ri · di,k)

2] if i = j

(9)

The ith element of vector b is

bi =
∑

(i,k)∈p
(X∗

k −X∗
i ) · [(1 + λ)ri − (ri · di,k)di,k] (10)

Eq. (9) and Eq. (10) have the following interesting properties:

1. If b is 0, sopt equals 0, which means the solution of Eq. (7) recovers the
true 3D points. There are a few situations b equal 0. (1) In the case of a
static object X∗

i = X∗
k, b equals 0 based on Eq. (10). (2) Careful observation

reveals that if λ is set to 0, in Eq. (10) the vector (1 + λ)ri − (di,k · ri)di,k

is perpendicular to vector X∗
i −X∗

k (Fig. 4(a)), hence bi = 0. However, we
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Fig. 4. Left two: Plot of Eq. (10) with λ = 0 and λ > 0. Right: κ(A) given different λ.

will show that with λ = 0, the linear system As = b is unstable due to the
high condition number of A. (3) As shown in Fig. 4(b), as λ increases from
0, the two vectors slowly deviate from being perpendicular. Therefore, bi is
likely to be small if λ is close to 0.

2. Since we can not control 3D positions and there are typically small measure-
ment errors in dij , b does not exactly equal to 0. This can be regarded as a
small disturbance of b around 0. For the linear system Asopt = b, one can
think of the condition number κ(A) as being (roughly) the rate at which the
solution, sopt, will change with respect to a change in b. κ(A) is available as
it solely depends on ri, di,j and λ, but not on the ground truth 3D points
X∗. Therefore, we can roughly estimate the reliability of the reconstructed
3D points by computing κ(A). Moreover, we empirically found that the con-
dition number of matrix A is inversely related to λ. The condition number
shown in Fig. 4(c) is computed using 100 random cameras, and averaged over
200 trials. We can see κ(A) is large if λ is close to 0 and drop dramatically
with small λ. Then κ(A) decreases monotonically and slowly as λ increases.
In our experiments, we choose λ = 1

15 as a balance of having good chance of
small b and the stability of the linear system.

In conclusion, if the adjacency p is correctly found, the reconstructabililty of the
object class trajectory mainly depends on the condition number of the linear
system. Given the well-conditioned system and correct motion tangent di,j , we
are able to reconstruct the 3D positions close to the ground truth.

4 Object Detector and Motion Tangent Estimation

Before presenting our experimental evaluation, we first briefly describe the par-
ticular object detectors we use in our experiments. Single image based object
detection is a well studied problem in computer vision with a wide variety of
method readily available [36,8,11]. Similarly, there is a large number of motion
tangent estimation methods in the literature [4,16,17,19]. We opt for leveraging
the method that jointly determines the face position and its motion tangent
direction [38]. In our experiments, the detection threshold is set to −0.35 to
avoid false detections, as the false alarm may disturb our algorithm. Our chosen
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Fig. 5. Detected objects and estimated motion tangents using different detectors
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Fig. 6. Example results for line path, T-junction path, half circle and crossed paths

detectors provide a motion tangent of object i that is quantized every θ = 15◦

in the range of −90◦ and 90◦.
For cars and pedestrians with small faces in the image, we default to the

deformable parts detector [11,15]. We used the pre-trained model with detection
threshold 0.35. The moving directions of the pedestrians and cars are estimated
using the 3D point cloud (output of VisualSFM) of the background wall by
assuming the dynamic objects move parallel to the wall. This is normally true
for the Manhattan Scene. Some of the detection results are shown in Fig. 5.

5 Experiments

We evaluate our algorithm on both synthetic and real datasets. The GMST
algorithm used in our method [13] searches the hypothesis space, which stops
either the GMST cost is under a preset value or the run time reaches a preset
limit. For all experiments, we use the time limit to stop searching, given the lack
of an adequate a priori approximation of the true GMST cost for each dataset.

Table 1. The table shows the average errors. The subscript represents camera setup.
The absence of asterisk represents the GMST algorithm output, and the asterisk is the
refined output of Eq. (7). Notice that in ground truth 3D points, the average distance
between every pair of nearest points equals 1.

single line T junction double lines half circle sine wave cross

errorA 0.5963 1.9688 1.5169 2.3751 2.3705 3.4111

error∗A 0.4263 1.9148 1.4982 2.3340 2.3516 3.4030

errorB 0.2151 0.2126 0.7824 0.2281 0.2578 0.2251

error∗B 0.0287 0.0944 0.7692 0.1074 0.2305 0.1308
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Synthetic Datasets.Our first experiment uses synthetic data, with six different
object class trajectory shapes on a plane, including a single line path, a T-
junction path, a path with two parallel lines, a half circle path, sine wave shaped
path, and two crossed path. For each of these shapes, we tested 32 instances, with
each containing 50 randomly chosen object observation at different 3D positions.
For more convenient error estimation during the evaluation, we normalized the
3D points so that the average distance between every pair of nearest points equals
1. The cameras are randomly generated around the 3D object points with two
different configurations. In camera configuration A, all the camera centers stay
in the same plane as the 3D points, which is more difficult since each viewing
ray may intersect the ground truth path several times. In camera configuration
B, the camera centers are set randomly off the plane, with the angle between the
viewing ray and the plane being at most 10◦ and camera distance of 2-3 times
the length of the path. We choose k = 100 uniformly distributed discrete 3D
hypotheses Xo

i along each viewing ray Xi in a range that contains the ground
truth 3D point. The size of the range is set as 1.5 times the length of the path.
Notice that while the ground truth 3D points lie in the range, it is not guaranteed
to be one of the discrete samples Xo

i .
Errors are measured using the Euclidean distance between the estimated 3D

points and the ground truth. The average errors over the 32 instances for each
shape category are listed in Table 1. We report errors of the GMST output, and
the errors after the continuous refinement using Eq. (7). Table 1 shows our con-
tinuous refinement always improves the reconstruction accuracy over the GMST
approximation. The results demonstrate off-plane cameras yield improved results
than in-plane cameras for complex paths (e.g. crossed paths), due to the multi-
plicity of ray-to-path intersections. In these cases the GMST solution has a more
complex search space and yields a sub-optimal solution. However, the condition
number of the linear system does not vary significantly across configurations.
Fig. 6 shows the estimated 3D points overlaid onto the ground truth.

Real Datasets. We evaluated our method on two image datasets registered by
VisualSFM [34]. The detection confidence threshold is set high in order to lower
down the false alarm rate. However, a very small amount of false alarms are
purged manually as it may affect the reconstruction. We sample 100 samples
along the viewing ray in the range [0, far], where far is estimated using the
model scale. The running time for each object class trajectory is set to 3 hours.

The first dataset captures random pedestrians walking on the sidewalk, and
random cars running on a lane. It contains 135 images with 82 valid car de-
tections and 137 valid pedestrian detections. The scene and the reconstructed
object class trajectory are shown in Fig. 7. The second dataset captures several
people who are walking on a T-junction shaped path at the corner of a building.
It contains 47 images with 66 valid detections. Using the camera positions, we
convert the face directions into the global coordinate system to obtain the motion
tangents di of the moving people. For illustration, we construct the background
static scene using CMPMVS [18]. The general 3D human and car mesh models
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cars

Pedestrians

Fig. 7. The left column: an aerial image showing the scene and a figure showing the
cameras and reconstructed cars and pedestrians. The right four columns: four pedes-
trian detections (shown in yellow rectangles) and the poses of the corresponding cam-
eras. These four pedestrians are adjacent in the reconstructed object class trajectory.
Notice that the second and the third images are the same image but with different
detections.

Fig. 8. Two views for each of the reconstructed results

are inserted into each of the estimated 3D positions. We show different views of
the reconstructed results in Fig. 8.

6 Conclusions

We proposed a solution to the novel joint object class sequencing and trajec-
tory triangulation problem, which allows the reconstruction of an object class
trajectory from unordered images for which the capture times are unknown and
there is no requirement of more than one view observing any object instance.
This problem has previously been seen as highly limited in reconstructabililty.
We evaluated our proposed method on synthetic and real world datasets and
show promising results demonstrating the feasibility of the proposed approach
to solve the joint object class sequencing and trajectory triangulation problem
and in fact the first time demonstrating its solvability.
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