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Abstract. The objective of this paper is to show how modern computer
vision methods can be used to aid the art or book historian in analysing
large digital art collections.
We make three contributions: first, we show that simple document pro-
cessing methods in combination with accurate instance based retrieval
methods can be used to automatically obtain all the illustrations from
a collection of illustrated documents. Second, we show that image level
descriptors can be used to automatically cluster collections of images
based on their categories, and thereby represent a collection by its se-
mantic content. Third, we show that instance matching can be used to
identify illustrations from the same source, e.g. printed from the same
woodblock, and thereby represent a collection in a manner suitable for
temporal analysis of the printing process.
These contributions are demonstrated on a collection of illustrated En-
glish Ballad sheets.

1 Introduction

Art and book historians now have huge digital collections available for study [1,
2]. This offers an opportunity and a problem: subtle comparisons can potentially
be carried out over far more data than was ever possible before, however, the
manual analysis methods that have traditionally been used are simply inade-
quate for collections of this scale (or would take many years of effort by an art
historian).

In this paper we show that standard computer vision methods are, fairly
effortlessly, able to re-present images in art collections in a way that are suitable
for manual analysis and to some extent, can automate some of this analysis.
We consider two canonical problems: semantic clustering – re-presenting the
data in clusters that are semantically related. This enables art historians to
carry out longitudinal studies on how the depiction of a particular concept has
changed over time; and instance clustering – re-presenting the data as clusters of
exact copies. Analysis of exact copies is of interest in dating and time ordering
collections.

We exemplify these two representations using a dataset of images of broadside
ballad sheets [3]. These are cheap printed sheets containing lyrics of popular
songs (ballads), and woodblock printed illustrations. The sheets were printed
from the sixteenth until the early twentieth centuries. The dataset, described
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Fig. 1: Woodcut illustrations. The pair of illustrations on the left appear to
be the same at first sight, but are printed from two different woodblocks. The
pair on the right are printed from the same block, but there are small differences
due to wear and tear.

in section 2, contains around 900 ballad sheets with many different ‘concepts’
illustrated (such as ‘the devil’ or ‘death’ or ‘eating and drinking’). There are
identical copies (printed from the same woodblock), near but not exact copies
of woodblocks (so near but not exact illustrations, but semantically related) in
which the differences in the features and the shapes of the illustrations are very
subtle, and also different depictions of the same concept.

The task of matching the woodblocks presents many challenges – the large
quantity of woodblocks and illustrations makes them very difficult to organise
by hand, and a pair of illustrations such as Figures 1a and 1b that look identical
to all but the most trained eye may in fact be from a close copy of a woodblock.
Comparing illustrations from the same woodblock is no easier – small damages to
the woodblock, such as a wormhole in Figure 1d that is not present in Figure 1c,
are again not obvious to the eye. Such differences may be identified under close
inspection when the set consists of a few images, but the task becomes completely
infeasible in a set of thousands.

Paper outline: Section 3 describes how woodblock illustration regions can be
determined automatically by first removing areas of text, based on their char-
acteristic patterns, and then refined and verified by matching and comparing
to regions of similar illustrations on other ballad sheets. Section 4 describes the
semantic clustering where compact descriptors such as VLAD and GIST are
utilised to compute similarities between the illustrations, and thereby cluster
them into semantically similar groupings. Within each cluster of semantically
similar images, further analysis based on exact instance matching (SIFT and
spatial verification) is performed to find illustrations that come from the same
woodblock (section 5). A number of features are generated from the difference
between the images, and a Support Vector Machine (SVM) is trained to distin-
guish prints from the same block from those from a copy. Finally, differences
exist even between prints from the same woodblock, many of which are the re-
sult of damage to the block. These visual damage cues can be used to find a
temporal ordering of the sheets.
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1.1 Related work

The evolution and temporal ordering of illustrations is of great interest to art
historians and bibliographers [4]. Monroy et al. [5] suggests that differences in
the local image features can be used to visualise the temporal order in which the
images were produced – e.g. the more times an illustration is copied, the more
details that might differ from the original. Furthermore, Monroy et al. [6] notes
that even closely traced copies of an artwork contain geometric distortions, and
suggests grouping of deformations to reveal details about the process of copying
the artwork.

For woodcuts, Hedges [7] discusses the correlation between wormholes in the
centuries-old printed art and the history of the prints. The wormholes take a
distinctive shape – small and round holes, around 1.4 to 2.3 mm in diameter –
hence they are easily identifiable as the cues of relative age. The wormholes are
not the only cues that can be used to order the illustrations. Hedges [8] gives
useful insights into the cues one might use to order the woodcut illustrations.

There has been previous work on using instance (specific object) matching
methods for Ballad images. In Bergel et al. [9] an image matching tool was
developed to provide immediate matches of regions of interest within a collection
of Ballad images. This used the standard bag of visual words method of [10, 11].
The paper only considered matching though, and there was no investigation of
automated clustering, which is the goal of this submission.

2 The Ballads dataset

Broadside ballads are cheap printed sheets carrying lyrics, illustrations and the
names of popular tunes. They were sold, displayed, sung and read in the streets
and alehouses of Britain from the 16th until the early 20th centuries [3, 9]. The
dataset used here contains around 900 images of ballad sheets from four different
collections. For some of the images, estimated print dates or date-ranges are
given. No further description is provided with the photographed ballad sheets.

All of the images are photographed in a standard format as shown in Figure 2
– on black background, and with a ruler on one side to show the physical scale.
The images are around 3K pixels on the longest dimension. Most of the ballad
sheets contain around one to five woodcut illustrations. The woodblocks, which
are of particular interest here, come in various sizes – the largest blocks are over
15cm along their longer dimension, whereas the smaller blocks can be around
3cm in width.

3 Automatic cropping of illustrations

In this section we outline the method of identifying and cropping candidate
objects (woodblock illustrations) from images of the ballad sheets. There are two
stages, first putative regions are obtained from areas that are not text on the
sheet, second instance matching with other copies of the woodblock print with
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Fig. 2: Photographs of broadside ballad sheets

the collection is used to refine the regions and separate connected neighbouring
objects into individual prints from different woodblocks.

3.1 Identifying text areas and candidate picture regions

The main objects that appear in the broadside ballad sheets are text and pic-
tures (woodblock illustrations). The vertical spacing of text is fairly regular –
approximately 4 to 6 millimetres (8 to 12 pixels). As a result, if a horizontal
sum of intensity values is taken over an area of text, it is possible to observe a
regular pattern of intensities, as shown in Figure 3.

If a Fourier transform is taken over this signal, a sharp and distinctive peak
is found at a frequency of around 0.1 (unit: per pixel), such as in the example
shown in Figure 3a. However over any other area which does not contain text, no
such peak is observed (Figure 3b). The process is repeated across the page with
a moving window, and all areas showing a strong peak at such frequency are
disregarded. Having removed the text, it is possible to search over the remaining
area for candidate objects, given the known geometric constraints (for example,
the illustrations must be greater than 3 cm in width and cannot lie on the page
margin). The process is illustrated in figure 4.

Evaluation over a random set of 200 sheets shows good performance, with
precision and recall of 98.5% and 99.1% respectively. There are examples where
two neighbouring illustrations are erroneously proposed as one due to the illus-
trations being very close together. This is not considered an error at this point,
and the problem is addressed in the following section.
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(a) An area of text – a distinctive peak is observed

(b) An area of image – no distinctive peak is observed

Fig. 3: Fourier transform of horizontal sum

(a) Regions of text (b) Text removed from the
binary image

(c) Bounding boxes de-
tected

Fig. 4: Text detection and removal, and candidate bounding boxes.

3.2 Separation of connected neighbouring objects

At this point, some illustrations that are in very close proximity (typically within
a few pixels of each other) are often highlighted as one connected component.
In this section we resolve this problem using a local implementation of the stan-
dard BoW retrieval system [10] by searching over all putative regions. (For the
retrieval system in detail, we use affine-Hessian interest points [12], a vocabulary
of 100k vision words obtained using approximate k-means, and spatial re-ranking
of the top 200 tf-idf results using an affine transformation).

Given a query illustration, the BoW system returns a ranked list of simi-
lar images containing the illustration and the estimated positions of the ROIs.
For example, a query is generated from the image bound by the red rectangle
in Figure 5a, which generates the blue rectangles that represent the estimated
positions of similar images.

Now suppose that the queries are generated from many of the similar images
as shown in Figure 5b. Each of the queries will give an estimated position of the
matched image, which can be used as cues to determine the exact location.
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(a) ImageMatch query from a sin-
gle image

(b) ImageMatch query from multiple images

Fig. 5: Estimation of the image boundary using ImageMatch.

(a) Poor overlap (30%) (b) Good overlap (95%)

Fig. 6: Overlap ratios between the original boundary (red) and the ImageMatch
estimate (blue)

Figure 6a shows a subsection of the starred image in Figure 5b. In the figure,
our original estimate of the image boundary is represented by the red rectangle.
The blue rectangle represents an estimate given by an BoW ImageMatch query.
The overlap ratio between the blue and the red rectangles are calculated. (The
overlap ratio between areas A and B is defined as A∩B

A∪B
.) In the example Fig-

ure 6a, the two rectangles show poor overlap (30%). The overlap ratios between
the red rectangle and all of the other estimates are calculated, which mostly give
poor ratios. This suggests a boundary refinement is necessary. However, if we
suppose that the original image boundary is as shown in Figure 6b, the over-
lap ratio between the red rectangle and the BoW ImageMatch estimates would
mostly show good overlap, which indicates that the original boundary is likely
to be accurate.

The queries are generated from all of the illustrations detected in section 3.1,
and the returned coordinates that overlap the ROI in question are noted as
potential boundaries (Figure 7). This information is then used to cluster the
boundaries of illustrations within the original candidate. First, the centre (x and
y) and the size (height h and width w) of all blue boxes are calculated. Then, the
boxes whose x and y values are furthest from the median are iteratively deleted
until the standard deviation of the remaining boxes are within the threshold.
The same is repeated for w and h values of the boxes that are not rejected in the
previous step. The mean of the remaining boxes are taken as the new boundary.
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Fig. 7: Separation of neighbouring illustrations. Blue boxes show all poten-
tial boundaries generated using ImageMatch. Green boxes show final separation
of the illustrations.

Fig. 8: Automatically detected boundaries of woodcut illustrations

Where the resultant boundary does not cover most of the initial object (over
80%), the process is repeated using the remaining, unused ROIs, until the process
returns no more estimates that do not overlap the new objects.

The green rectangles in Figure 7 show the final cropping result on the example
image used throughout this chapter. On a test set of 200 pages, the method
proved to be reliable for all examples where the new boundary is defined by
averaging three or more BoW ImageMatch returns. As this process relies on
majority voting on the cropping data from Section 3.1, it is necessary that a
large majority of the illustrations are already correctly cropped as in the example
Figure 7.

From the full set of 900 broadside ballad sheets, around 2,600 individual
illustrations are detected and cropped. Selected results are shown in Figure 8.

4 Semantically similar illustrations

Having identified the woodblock illustrations in section 3, the main objective
of this section is to automatically find and cluster the illustrations that are
semantically similar to each other. Note, to avoid confusion, we are not trying
to assign illustrations to manually curated classes defined by cataloguers, such
as the Iconclass [13] system.
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Similarity of two illustrations is computed as a weighted sum of consistency
between their aspect ratios and weighted similarities of three different image
descriptors: VLAD, spatially pooled VLAD and GIST; which are described next.

GIST. The GIST [14] image descriptor provides a holistic description of the
scene, capturing coarse image gradients, where local object information is not
taken into account. Similarity of two illustrations is computed as the negative
L2-distance between their GIST descriptors. While providing a good descriptor
for the overall shape of a scene, GIST can be sensitive to cropping [15].

VLAD. The Vector of Locally Aggregated Descriptors (VLAD) [16] summarizes
the distribution of local SIFT [17] descriptors in an image. It has gained pop-
ularity due to good performance in image retrieval tasks [18, 19, 20, 21] while
providing a compact image descriptor. Similarity between two illustrations is
computed as the scalar product between their VLAD encodings.

Spatially pooled VLAD. Since VLAD does not encode any spatial information,
we also compute VLAD for five predefined spatial tiles each spanning a quarter
of the image area. The pooling regions are the four quadrants of the image and
a region of equal size in the centre of the image. The similarity between two
illustrations is computed as the weighted sum of scalar product between the
spatially pooled VLAD’s.

The weights are tuned manually over a small number of clusters and concepts,
and then used for all further comparisons.

4.1 Clustering similar illustrations

Similarity is computed between all pairs of illustrations, which can be done effi-
ciently due to using compact GIST and VLAD descriptors. For larger datasets,
this step can be performed by approximate nearest neighbour search [22] or
fast memory-efficient search by quantizing the descriptors [23]. The pairwise
similarities are thresholded and a graph is formed such that nodes correspond
to illustrations and undirected edges connect nodes of sufficient semantic sim-
ilarity. Clustering is then performed by extracting connected components from
the similarity graph. We then refine clusters with large intra-cluster variability
to alleviate cases where a weak erroneous link between two different clusters
causes undersegmentation. The refinement is performed by identifying clusters
with large variance of intra-cluster similarities, and removing edges by enforcing
a stricter similarity threshold, followed by recomputation of connected compo-
nents. Some of the automatically obtained clusters are shown in figure 9.

5 Identifying illustrations printed from the same

woodblock

The objective of this section is to automatically identify prints generated from
the same woodblock. This is of particular interest to cataloguers and art histo-
rians as tracking the use of a woodblock provides insights into the origin of the
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Fig. 9: Semantically similar images automatically detected and clustered
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(a) Query image (b) Same (c) Similar

(d) Query image (e) Same (f) Similar

Fig. 10: Same vs similar pairs. In each row, the first two illustrations are
printed from the same woodblock. The last illustration appears to be very sim-
ilar, but comes from a different woodblock that is a copy of the original block.

printed material, such as the identity of the printer, the place of printing, or the
sale or loan of a woodblock providing information about relationships between
printers. Moreover, examining the changes in the condition of a woodblock, such
as the development of wormholes, allows for automatic dating of the sheets [7, 8].

Section 4 described a method for mining clusters containing similar illustra-
tions, here we concentrate on finer clustering to only group illustrations printed
from the same woodblock. Therefore, we examine all pairs of illustrations in a
semantic cluster to determine if they come from the same woodblock. This is a
challenging task as it was common practice to closely copy woodblocks therefore
giving rise to sets of very similar illustrations (figure 10).

A linear SVM is trained to distinguish between a pair of same (i.e. printed
from the same woodblock) and similar (i.e. printed from a similar and likely
copied woodblock) illustrations, using features which assess geometric consis-
tency of the illustrations. The use of geometry is motivated by the observation
that, even though two similar illustrations look quite well aligned, it is unlikely
that they are related with a very accurate global rigid transformation as a re-
sult of the geometrical errors accumulated during the copying process [5]. The
geometry-based features are discussed next.

An affine transformation which aligns one illustration with the other is auto-
matically estimated by forming a set of putative correspondences by matching
SIFT [17] descriptors using the second nearest neighbour test [17], and finding
the affine transformation which explains the largest number of the putative cor-
respondences using RANSAC [24]. Features which help determine the quality
of the affine transformation are: i) the number of putative SIFT-based matches
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(a) Inliers in a same pair (b) Inliers in a similar pair

Fig. 11: Spatial distribution of inliers. Lines connect SIFT descriptors con-
sistent with an affine transformation. The blue rectangles show the bounding
boxes of spatially consistent descriptors.

(a) I1,2 (Same) (b) I2,1 (Same) (c) I1,2 (Similar) (d) I2,1 (Similar)

Fig. 12: Difference images for illustrations from same and similar woodblocks

(np); ii) the ratio of number of matches spatially consistent with the best affine
transformation, ns, and np (ns/np); and iii) the density of matches (ns divided
by illustration size).

We also observe that the spatial distribution of spatially consistent features
is informative (figure 11) – a same pair has features matching across the entire
illustration, while a similar pair often has only locally consistent matches. The
spatial spread is measured as the proportion of the illustration area covered by
the bounding box of spatially matched features. The bounding box is computed
as the smallest axis aligned rectangle which contains the central 90% of features;
this procedure ensures robustness by eliminating spurious matches which could
affect the bounding box estimation.

Finally, we also include two features which capture fine level differences be-
tween the two illustrations. Let I1 and I2 be a pair of illustrations such that I2
is automatically registered to I1 using the aforementioned affine transformation,
and both are binarized to 1 and 0 to indicate pixels which contain and don’t
contain ink, respectively. From these, one can compute binary difference images
Ii,j which indicate pixels where image Ii contains ink and image Ij does not. As
can be seen from figure 12, the difference images I1,2 and I2,1 can help discrimi-
nate between same and similar pairs of illustrations. This is because for a same
pair, in an ideal scenario, an Ii,j image will be completely empty (figure 12b)
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Table 1: Performance of same vs similar classification.
Precision Recall Precision Recall

ImageMatch 78% 80% 69% 90%
RANSAC statistics 98% 80% 95% 90%
Our method 100% 80% 100% 90%

signifying that j was printed after i as all ink in Ij is present in Ii, i.e. ink could
have only disappeared from Ii to Ij corresponding to potential damages to the
woodblock (the disappeared ink is visible in image Ij,i, figure 12a). On the other
hand, similar (not same) pairs have much less sparse Ii,j ’s (figures 12c and 12d).

Let |Ii,j | denote the number of ones in the difference image Ii,j , and without
loss of generality let I2,1 be the sparser image (i.e. |I2,1| ≤ |I1,2|). The two
features which summarize the above observations are pmin = |I2,1|/A and pmax =
|I1,2|/A, where A is the illustration area. Therefore, pmin is close to zero for same
pairs (figure 12b) and large for similar pairs (figure 12d), while pmax also contains
useful information as it should be smaller for same pairs compared to similar
ones (figure 12a vs 12c). In practice, we first perform image opening with a small
radius on images Ii,j in order to remove the differences in the thickness of lines
caused by varying amounts of ink on the woodblock.

To summarize, six features are used for classification into same versus similar
illustration pairs – three capturing the counts and relative counts of putative and
spatially consistent descriptor matches, one measuring the spatial distribution of
spatially consistent matches, and two capturing pixel-wise differences in inking.

5.1 Evaluation procedure and results

Benchmark dataset. To evaluate the classification accuracy of the proposed
method, we have manually labelled a random sample of 150 pairs of illustra-
tions obtained from clusters in section 4, such that there is a roughly equal
number of same vs similar pairs. This set was divided into 50% for training, 25%
for validation and 25% for testing.

Baselines. We compare the proposed approach with two baselines. The first is
a classifier based purely on the number of spatially verified matches obtained
from ImageMatch (section 3.2), namely a pair of illustrations is deemed to be a
same match if the number of matches in ImageMatch is larger than a threshold.
The second is an SVM classifier trained only on the first three features of our
method which capture the RANSAC-based statistics, i.e. np, ns/np, and density
of ns.

Results. Table 1 shows the results of our method compared to the two baselines.
It can be seen that ImageMatch is not as good as the other two methods as it
only uses match count as a feature, as well as due to quantizing descriptors into
visual words. The RANSAC statistics performs quite well, but our method which
uses all six features significantly outperforms it, simultaneously achieving higher
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Fig. 13: Clustering example. For the running example images our method
finds two clusters, shown one per row.

recall and precision, namely, our method gets 100% precision at 90% recall while
RANSAC statistics achieves 98% precision at 80% recall, and only 95% precision
and 90% recall.

We pick the operating point which achieves maximal recall for 100% precision
(recall at this point is 90%) and cluster together illustrations which are deemed
to be same matches. The final results on the running example are shown in
figure 13, while figure 14 shows some further examples.

5.2 Application: Temporal ordering of the illustrations

The likely printer of a sheet can be identified if his identity is known for a sheet
which shares an illustration belonging to the same cluster. In similar ways, one
can also determine the place of printing or relationships between printers [25].

One interesting application is to automatically date a sheet – two sheets
which contain an illustration printed from the same woodblock can be ordered
temporally by examining fine-level changes in the impressions. This application
is beyond the scope of this paper, but we give a brief sketch of the method. For
example, from figures 12a and 12b, it is evident that illustration I2 contains less
ink that I1 (as I2,1, figure 12b, is empty) due to degradations of the woodblock
(locations of which are apparent in I1,2, figure 12a). Therefore, in this example it
can be concluded that I2 has been printed later than I1. Using such automatically
discovered temporal constraints1, it is easy to order many sheets in terms of their
printing time. As dates of certain sheets are known, the temporal ordering can
help narrow down the printing date of other sheets. Using this logic, it was
possible to automatically assign dates or date-ranges to over 70 ballad sheets
whose print dates were previously unknown.

1 Actually we have a more robust method than simply measuring the amount of ink
difference in Ii,j , but it is beyond the scope of this paper
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Fig. 14: Illustrations from the same woodblock automatically detected and clus-
tered

6 Discussion

The three contributions of this paper: automatic cropping of illustrations, se-
mantic clustering, and exact clustering (with applications to temporal ordering)
have general applicability. For example, the cropping method could be applied to
any collection that mixes text and repeated illustrations. The two types of clus-
tering can be applied to any collection with some commonality in illustrations,
e.g. those printed from woodblocks, such as medieval incunabula (e.g. ‘The Book
of Hours’), or collections with illustrations printed using engravings or lithog-
raphy. All of these cases have the three aspects of illustrations from the same
source, near copies and different depictions of concepts.
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