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Abstract. This paper is concerned with nature conservation by auto-
matically monitoring animal distribution and animal abundance. Typi-
cally, such conservation tasks are performed manually on foot or after
an aerial recording from a manned aircraft. Such manual approaches are
expensive, slow and labor intensive. In this paper, we investigate the
combination of small unmanned aerial vehicles (UAVs or “drones”) with
automatic object recognition techniques as a viable solution to manual
animal surveying. Since no controlled data is available, we record our
own animal conservation dataset with a quadcopter drone. We evaluate
two nature conservation tasks: i) animal detection ii) animal counting
using three object recognition methods that are particularly well-suited
for on-board detection. Results show that object detection techniques
for human-scale photographs do not directly translate to a drone per-
spective, but that light-weight automatic object detection techniques are
promising for nature conservation tasks.

Keywords: Nature Conservation; micro UAVs; Object Detection.

1 Introduction

A key ingredient to successful conservation is accurate monitoring of the distri-
bution and abundance of animal species over time [3, 4]. In addition to the need
for abundance-data of animals, successful nature conservation also requires data
on possible threats to animals. Such threats can be largely divided into habitat
loss, poaching, and disease. For some iconic species like the rhino, the elephant,
and the tiger, poaching has reached proportions that places them at a high risk
for local extinctions or, for some (sub)species total extinction, for example in
the case of elephants [2, 31].

Animal monitoring approaches typically involve both direct animal counts
and indirect counting of animal signs such as nests, dung, and calls. Conven-
tional ground surveys can be time-consuming, costly, and nearly impossible to



2 J. van Gemert, C.R. Verschoor, P. Mettes, K. Epema, L.P. Koh and S. Wich.

Fig. 1. Animal conservation images taken from a drone. From left to right: an elephant,
an orangutan nest, and a rhino.

achieve in remote areas. For example, ground surveys of orangutan populations
(Pongo spp.) in Sumatra, Indonesia can cost up to $250,000 for a three-year
survey cycle. Due to this high cost, surveys are not conducted at the frequency
required for proper statistical analysis of population trends. Furthermore, there
remain many remote forested areas that have never been surveyed. Aerial sur-
veys can overcome some of these constraints, although they have their own set
of limitations, including the high cost of buying or renting small planes or he-
licopters, the lack of availability in remote areas, and the risks involved with
flying low over landscapes in which landing is difficult, such as forests. There is
thus a need for alternative methods for animal surveys.

Conservation workers have started using small unmanned aerial vehicles
(UAVs, or “conservation drones”) both for determining animal abundance and
to obtain data on their threats [17, 19]. Conservation drones are relatively inex-
pensive and easy to build, which makes drones accessible and affordable for many
research teams in developing countries. These drones can fly fully autonomous
missions to obtain high-resolution still images and videos. Recent studies have
shown that the images from such drones can be used to detect not only large an-
imal species (e.g. orangutans, elephants, rhinos, whales) and animal tracks (e.g.
orang-utan nests, chimpanzee nests, turtle tracks), but also threats to animals
(e.g. signs of human activity [15, 20, 25, 34]). See Figure 1 for some examples of
conservation images taken from a drone. Currently, most drone systems record
data on board, which are then downloaded for visual inspection once the drone
has landed. For animal abundance surveys, such data quickly lead to thousands
of photos and hundreds of hours of video. Manually sieving through these data
in search of animals is labour-intensive and inherently slow. There is therefore a
strong need to automate the detection of relevant objects on the still or video im-
ages. Recent efforts combining human labeling and automatic recognition seem
promising [5], but this field is still in its infancy.

Another need for automated detection of objects comes from anti-poaching
efforts. Ideally, drones would do on-board object detection and then only send
the relevant images (i.e. those with a high probability of a positive identification
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of the object of interest, e.g. human, rhino, fire, down to the ground station for
a manual visual inspection by the rangers in order to take appropriate actions.
This paper examines automatic object detection algorithms as a solution towards
detecting animals and humans from images obtained from drones. The aim is to
assess the potential for surveys of animal abundance and anti-poaching efforts.

The field of computer vision has matured enough to automatically find ob-
jects in images with reasonable accuracy. Such methods are typically designed
for and evaluated on general purpose objects by employing photographs from the
Internet [21]. Thus, such methods are tuned towards human photographs, taken
from a height of 1-2 meters with human-scale objects. Such objects can safely
be assumed to consist of observable parts [10] or to be found by object-saliency
methods (so called “object proposals”), tuned to human scale [14, 30]. Yet, for
drone imagery, taken in a high altitude (10-100m), the objects of interest are
relatively small, questioning the suitability of current methods that use individ-
ual parts or object-saliency. Moreover, drone images are taken from above which
results in a skewed vantage point when compared to normal human pictures. It
can therefore not be taken for granted that current object detection methods for
human-centered imagery find a one-to-one application in conservation drones.

In this paper we evaluate how current object detection techniques as devel-
oped for human-centered imagery scale to drone-centered nature conservation
tasks. Because current object recognition methods make heavy use of object
proposals, we first evaluate whether such proposals are capable of detecting an-
imals in drone imagery. Next, we evaluate three light-weight object detection
methods on two nature conservation tasks: i) animal detection in single images;
ii) animal counting in video. We evaluate these two tasks on a novel fully an-
notated animal dataset recorded with a drone. The dataset consists of 18,356
frames containing 30 distinct animals. This work stems from a collaboration
between conservation biologists, aerospace engineers and computer vision re-
searchers. To facilitate a structured and repeatable evaluation we will make the
dataset, annotations, code, and all our results publicly available.

2 Related Work

2.1 Drones for nature conservation

Drones are air vehicles that do not carry a pilot on board and are capable of flying
autonomously. These vehicles follow flightplans based on GPS coordinates. These
plans are usually programmed before flight, but can also be changed during the
flight. There are many types of drones, ranging in weight from a few grams to
thousands of kilograms, varying in size from a few millimeters to tenths of meters
with configurations according to normal aircrafts, helicopters, multi rotors and
flapping wings. The uses of these drones vary from the military to consumers.
The type of drones that are specifically useful for conservation are the modified
model aircraft and multi rotor. They are both affordable and easily converted
into a drone with highly affordable open source autopilots like Ardupilot [19] or
Paparazzi [12]. The model aircrafts yield long flying times and larger forward



4 J. van Gemert, C.R. Verschoor, P. Mettes, K. Epema, L.P. Koh and S. Wich.

speed to cover more ground. In contrast, multi rotor drones yield great control
of the position and orientation of the camera as well as vertical take off and
landing capabilities. Combine this with the birds eye view for the camera and
these drones are perfect for conservation. Here we focus on the rotor-type drone.

Drones are already used for conservation [19] for terrain mapping and clas-
sification of forest types [17, 15, 20, 34, 13]. These are examples of uses where
no real time data analysis is needed [5]. For the protection of animals against
poaching, real-time analysis is critical. This is recognized by the Wildlife Con-
servation UAV Challenge [37], which focuses on the on-board processing of data
to find rhinos and humans. This is an international challenge (with almost 90
teams from all over the world) to create a cheap drone to help protect the rhino.
The techniques to find animals and humans in real-time with limited computing
power are not ready to implement yet, validating research on this topic.

2.2 Automatic object detection

The current state-of-the-art in automatic object detection is based on large con-
volutional neural networks [14, 28]. Such “deep-learning” networks discrimina-
tively learn image features from the bottom-up and proved hugely successful on
global image classification [21]. The success of convolutional networks on full
images spills over to the related task of object detection where in addition to
the object class name, a detection bounding box around the object is required.
The bounding box is obtained by elegant object-saliency methods that output
a small set of several thousand bounding boxes that have a high likelihood to
contain any type of object [1, 30]. Such class-independent object-proposals serve
as input to the convolutional network, yielding state-of-the-art accuracy. Such
accuracy, however, is relies heavily on modern computer hardware such as top
of the line CPUs and massively parallel GPU implementations. The recogni-
tion times using modern hardware are reported as 53 sec/image by R-CNN [14]
on a CPU and 13 sec/image on the GPU whereas OverFeat [28] operates at 2
sec/image on an heavy-weight GPU. These hardware requirements are not feasi-
ble in a light-weight drone, where every gram of weight reduces flight times. Since
fast response time is essential for animal protection, convolutional networks are
computationally too demanding for timely results on a drone.

Next to convolutional networks, other competitive object detection methods
are based on the bag-of-words (BOW) model [30, 32, 33] or its Fisher vector
incarnation [6, 27]. Such methods start with a limited set of object-proposals
to reduce the search space. Each proposal is represented with a histogram of
prototype counts of local features, e.g. sampled from interest points [8]. Larger
prototype vocabularies typically yield best results, resulting in a features size of
over 170,000 [30] for BOW or over 300,000 for the Fisher vector [27] per bounding
box. On a mobile drone the internal memory is limited making the large memory
requirements of the BOW variants prohibitive.

Both the bag-of-words methods and the convolutional neural networks heav-
ily rely on high quality object proposals. These proposals are tuned to a human
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Fig. 2. Conservation evaluation pipeline. Animals are recorded on video or individual
images. The animals are automatically detected, yielding a bounding box per animal
per image. Individual detections are stitched together by tracking shared features to
obtain an automatic estimate on the number of animals.

scale, and we will first evaluate the suitability of these proposals for drone im-
agery. Successful low-memory and CPU-friendly object detection methods do not
use object proposals but simple and fast image features combined with a classi-
fier cascade. Such a cascade rejects obvious non-matching candidates early on;
only allotting more computation time to promising candidates. An example of
such an successful approach is the seminal Viola and Jones boosting method [35]
used in embedded face detection algorithms for consumer cameras, phones and
tablets. A classifier cascade has been applied to a range of object detection meth-
ods with impressive speed-up results. The popular Deformable Part-based Model
(DPM) of Felzenswalb [10] models an object as a constellation of parts and a
classifier cascade in combination with a coarse-to-fine search has successfully re-
duced computation time to 0.2 sec/image [9, 26]. Similarly, the examplar SVM
approach for object detection [24] can be sped up to 0.9 sec/image [22]. Cascade
approaches are fast while retaining a reasonable accuracy and are therefore most
suitable for on a drone. Therefore we will focus our evaluation on the DPM and
exemplar-based SVM methods.

3 Evaluating Nature Conservation

We evaluate two tasks for automatic nature conservation drones. i) animal de-
tection and ii) animal counting. Automatically detecting animals gives insight
in animal locations, which over time will reveal herd patterns and popular gath-
ering places. Knowledge about the animal location will give the conservation
worker valuable information about where to take anti-poaching measures. The
second task, counting animals, will give abundance data over time, coupled to
detection regions. This data gives the conservator a sense of the health of the
animal population, and where and how many animals disappear, which warrants
further investigation. The pipeline for the two evaluation tasks is visualized in
Figure 2.

3.1 Recorded dataset

Wildlife is notoriously hard to record in a controlled setting. To approximate a
realistic conservation task, we used a quadcopter drone to record a dataset of
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(a) (b) (c)

Fig. 3. Recording the dataset. (a): the Pelican quadcoptor drone used to record the
dataset (b): an example image from the train-set (c): an example image from the test-
set. Note the slanted vantage point and tiny animals.

domesticated farm animals. In figure 3(b,c) we show examples of the recordings.
While the exact type of animal (cow), the lack of camouflage in the open fields
and the presence of man-made structures is not common in the wild, this record-
ing retains important properties that match a realistic conservation scenario. A
quadcopter drone is often used in the wild because of its maneuverable and its
ability to take off from dense areas. Moreover, this type of drone gives us the
opportunity to record under a wide variation of positions, heights, and orien-
tations of the camera. This recording setup matches closely as experienced in
the wild. Furthermore, the animals are smaller or of a similar size and build as
many conservation animals like the rhino or the elephant. The dataset provides
an excellent first opportunity to evaluate nature conservation drone algorithms.

The dataset was recorded by the Ascending Technologies Pelican (quad-
copter) with a mounted GoPro HERO 3: Black Edition action camera. In Fig-
ure 3(a) we show the drone in action. We manufactured a 3D printed custom-
made mount to attach the camera to the drone. The mount is filled with foam
to counter vibration of the camera during flight. The camera recorded videos
at a quality of 1080p (1920 x 1080 pixels) having a medium field of view (55◦

vertical and 94.4◦ horizontal) with 60 frames per second.
We manually annotated all animals in the dataset with vatic [36]. We removed

large portions of the videos that do not contain any animals, which resulted in
6 videos obtaind from two seperate flights. We use the first 4 videos from the
first flight for training, and the latter 2 videos from the second flight for testing.
In total there are 12,673 frames in the training set and 5,683 frames in the test
set. There are 30 unique animals present in the dataset. In figure 4 we visualize
the appearance and disappearance of animals during the flight.

4 Object detection methods suitable for drones

4.1 Deformable part-based model

The deformable part-based model (DPM) of Felzenszwalb et al. [10] is a popular
and successful object detection instantiation of the pictorial structure represen-
tation [11] where an object is modeled as a flexible constellation of parts. In
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Fig. 4. Number of animals per frame in each video, the green line shows the number
of unique animals per frame, the blue line the cumulative total. The 2 left columns
represent the training videos, the right column the test videos.

addition to the gray-valued DPM, we also evaluate the color-DPM [18], where
color information is added to the features.

In the DPM [10], an object consists of a collection of parts connected in a
star-structure to a coarse root node. The parts and root node are represented by
HOG features and the quality of a star model is the score of the root features at
a given location plus the sum of the maximum over the part placements minus
a deformation cost based on the deviation of the parts from its ideal location.

The DPM is trained on bounding box annotations around the whole object;
where object-part locations are not labeled. To discriminatively train models
in such a semi-supervised setup a latent SVM is used. From labeled bounding
boxes {x1, x2, . . . , xn} where each box has a class label yi being either +1 or
−1 a latent SVM allows training when the part-locations are unknown. A latent
SVM scores an example x as

fβ(x) = max
z∈Z(x)

β · Φ(x, z), (1)

where Φ(x, z) is a feature vector and the set Z(x) has all possible latent vari-
ables (object configurations) and β is a vector of model parameters trained by
minimizing the SVM hinge loss

L(β) =
1

2
||β||2 + C

n∑
i=1

max(0, 1− yifβ(xi)), (2)

where C is the regularization parameter. See [10] for details.
A significant speed-up for the DPM can be obtained by a part-based cas-

cade [9]. This cascade is based on an ordering of the parts hypotheses and



8 J. van Gemert, C.R. Verschoor, P. Mettes, K. Epema, L.P. Koh and S. Wich.

prunes low scoring hypotheses, allowing the bulk of the computation time to
be spent on promising candidates. Besides the cascade, another speed-up can
be obtained by a hierarchical coarse-to-fine feature matching approach [26]. The
speed-up is based on the observation that the computational cost of the DPM is
dominated by the cost of matching each part to the image. The number of part
matches can be significantly reduced by using a coarse-to-fine inference strat-
egy. The combination of the cascade and the coarse-to-fine matching yields a
speed-up of one up to two orders of magnitude resulting in detection rates of 0.2
sec/image [26]. Such speeds are acceptable for nature conservation applications
on low-cost drone hardware.

4.2 Exemplar SVM

The ensemble of exemplar SVM object detection approach by Malisiewicz et al.
[24] trains a parametric SVM for each positive exemplar in the dataset. This
reaps the benefits of a non-parametric nearest neighbor search with training a
parametric model. The parametric SVM can effectively deal with negative sam-
ples whereas the non-parametric approach retains the link between positively
labeled training exemplars which allows knowledge transfer such as pose, geom-
etry or layout from an exemplar to a new object. This approach is conceptually
simple and yields good performance.

An exemplar SVM aims to separate each training example xE from other
examples in the set NE that do not containing the object class by learning a
weight vector wE by optimizing

||w||2 + C1h(wTxE + b) + C2

∑
x∈NE

h(−wTx− b), (3)

where h(x) = max(0, 1 − x) is the hinge loss and C1 and C2 are regulariza-
tion parameters. Each individual exemplar SVM is trained on a unique set of
negative examples which makes the output scores of the SVM’s not necessarily
comparable. To calibrate each SVM, a sigmoid function is fitted on hold-out
data, resulting in comparable SVM output between 0 and 1. All exemplar mod-
els are applied on a test image by means of a sliding window, where exemplar
co-occurences are used to obtain a detection.

To speed-up exemplar SVMs, Li et al. [22] use each exemplar as a weak clas-
sifier in a boosting approach. Boosting builds a strong classifier with a linear
combination of weak classifiers. These weak classifiers are iteratively selected
to optimize the mis-classification rate. The iterative approach of boosting per-
forms feature selection, using only the best T weak classifiers. Feature selection
drastically reduces the number of used exemplars where [22] need only 500 exem-
plars for state of the art performance. In addition to the feature selection, Li et
al. [22] propose efficient feature-sharing across image pyramid scales resulting in
a detection speed of 0.9 sec/image, which is similarly acceptable for on a drone.
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5 Animal Counting

For counting animals, the algorithm needs to keep track of each unique animal
to make sure a single animal is only counted once. This is a challenging task
for several reasons. The animal detection algorithm may fail missing the animal
completely or only in some frames in a video. It is also possible that the detection
algorithm detects an animal where there is none which will inflate the amount of
counted animals. Furthermore, because of the maneuverability of drone and pos-
sible pre-programmed flying paths, the same animal may appear and disappear
from the drone camera completely. Such problems make the animal counting
task an interesting challenge for the community.

The drone-suitable detection algorithms output a possible detection at every
frame. Thus, to determine if two detections in subsequent frames belong to the
same unique animal, the object detections have to be stitched together over
time. Even when one or a few detections are is missing, we need to track over
multiple frames. Thus, instead of tracking all detections, we track salient points
through a video. Such point tracks are more stable and faster to compute than
full object tracking methods. For point tracking we use the KLT tracker [23]
which uses optical flow to track sparse interest points for L frames, where L is
a parameter. To determine whether two subsequent detection bounding boxes
A and B belong to the same unique animal we use the intersection over union
measure A∩B

A∪B > 0.5 of the set of point tracks through A and through B [7].

Its worth noting that animal counting is different from a spatio-temporal
localization task, as e.g. proposed in [29, 16]. In a localization task the objective
is to carefully and completely identify what, when and where each object is in
a video. In animal counting, the exact position is not the correct evaluation
measure. The conservation worker is interested in how many unique animals are
correctly found. For example, it is allowed to miss an animal for a few seconds,
as long as it is found somewhere in the video. As the evaluation measure we use
precision-recall curves, albeit with special considerations towards the counting
task. The recall is defined as all unique animals. The precision is computed based
on the correctness of a stiched group of detections. For counting, we consider a
count correct only if: i) there are no multiple animals within a single track; ii)
all individual detections are animals and iii) the found animal is unique and has
not been counted before. These strict criteria allow us to draw a precision-recall
curve, by which we evaluate our automatic animal counting performance.

6 Experiments

Within the experimental evaluation, we perform three experiments. First, we
evaluate the use of object proposals for object detction on drone images. Second,
we perform the animal detection task for the three algorithm. Third, we perform
the animal counting task.
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6.1 Experiment 1: Evaluating proposal quality

In the first experiment, we evaluate the quality of object proposals for drone
imagery. Object proposals significantly reduce the object detection search space
by locating a modest collection of bounding boxes that with a high likelihood
contain any type of object. Because of its high-quality proposals, we evaluate
the selective search algorithm of Uijlings et al. [30]. With the selective search
algorithm, it is possible to generate object proposals by merging superpixels
using a wide range of color spaces, similarity measures, and superpixel sizes.
Here, both the fast and quality settings of selective search, as proposed in their
own work [30], are evaluated.

Setting ABO Recall Proposals / frame Time / frame

Sel. search fast 0.635 0.873 ca. 18.369 ca. 31 sec.
Sel. search quality 0.740 0.976 ca. 64.547 ca. 140 sec.

Table 1. Overview of the proposal statistics for [30]. See text for details.

In Table 1 we show an overview of the results achieved on a set of sampled
video frames. As can clearly be seen in the Table above, the average best overlap
scores and recall scores yielded on the dataset of this work do not meet the results
reported in [30]. For the fast setting of selective search, only 87% of the cows
can be found in the set of proposals, while the average best overlap (ABO) is
a mere 63.5%. In contrast, on the Pascal VOC 2007, the same setting yields a
mean ABO of 80.4%, while nearly all the objects can be found in the proposals.
Similarly, the quality setting only yields an average best overlap of 74%. Besides
a low detection and overlap rate, there is also a strong increase in the number
of generated object proposals and the evaluation time per frame. This is most
dominantly shown for the selective search quality setting, where it takes nearly
two and a half minutes per frame to generate proposals, while over 64 thousand
proposals need to be subsequently classified.

As we are interested in lightweight and quick solutions for drone imagery, the
evaluation time of the selective search algorithm poses serious practical problems.
Not only will it take over two minutes to generate a set of proposals with an
acceptable recall rate, after that, features need to be extracted and roughly
64 thousand classifications need to be performed. Thus, the proposals do not
significantly reduce the search space. Based on these results, it is concluded
here that object proposal-based detection systems are from a computational
standpoint not suited for the problem at hand.

6.2 Experiment 2: Sliding window animal detection

For the second experiment, the three sliding window methods: DPM, color-DPM
and exemplar SVM are evaluated on our dataset. In order to generate a final
model for a specific object class, all three methods use a hard negative mining



Conservation Drones for Automatic Localization and Counting of Animals 11

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Recall

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ec

is
io

n

DPM
Exemplar SVM
Color DPM

Fig. 5. Precision-recall curves for all three methods on the test images of the dataset.

procedure. As such, a diverse set of negatives is required. To meet this require-
ment, the set-up of the Pascal VOC challenge is mimicked. More specifically,
the images of the cow class in the challenge are replaced by randomly sampled
images from the train and test video for resp. the train and test set.

In this setup, the train images from the other 19 classes can be used for
discriminative learning. These classes include people, animals (cats, dogs, horses,
sheep), vehicles (aeroplanes, bikes, boats, busses, cars, motorbikes, trains), and
indoor objects (bottles, chairs, dining tables, potted plants, sofa’s, tv’s). After
a model has been learned, it is applied to 127 test frames, containing a total
of 1227 ground truth bounding boxes. The result of this evaluation is a list of
bounding box detections, ranked by their respecitve confidence value. This result
is in turn evaluated by examining precision and recall values of the discovered
boxes.

In Figure 5, the precision-recall curves are shown for exemplar SVM, DPM,
and color-DPM. As can be deduced from the Figure, exemplar SVM clearly out-
performs both other methods in terms of precision (after a recall of 0.15) and
recall. This holds similarly for the Average Precision scores; 0.66 for exemplar
SVM, compared to 0.30 for DPM and 0.26 for color-DPM. Compared to results
reported on human scale image datasets, these results are rather surprising.
For example, Khan et al. [18] indicate that color-DPM is prefered over stan-
dard (grayscale) DPM, while DPM in turn reports better results than exemplar
SVM [10].

A particular interesting aspect of the curves in Figure 5 is that both DPM
models reach a final recall of roughly 0.4, while exemplar SVM reaches a final
recall of roughly 0.72. A primary reason for this discrepancy lies in the total
number of detected objects for the methods. While there are in total 1227 posi-
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Fig. 6. Examples of detected bounding boxes for a test frame. The three columns are
results of resp. exemplar SVM, DPM, and color-DPM. The top row show the 10 highest
ranked detections per method, while the bottom row shows all positive detections.

tive instances of the object to be discovered, DPM and color-DPM detect resp.
2,673 and 4,156 bounding boxes. Exemplar SVM on the other hand, report a
total of 40,654 bounding boxes. With such a high number of object detections,
the final recall is bound to be higher.

The high number of object detections do however not explain the relatively
high precision of Exemplar SVM. The answer to this is two-fold. First, the use
of a joint global and part-based model in DPM does not work favorably given
the small scale of the animals in the drone images. As exemplified in Figure 6,
individual animals are generally tiny, due to the high altitude of the drones.
When a cow is then visible e.g. in a window of 25 by 25 pixels, there is not enough
gradient information for reliable global and part-based models. A second reason
for the high results of exemplar SVM lies in the dataset. Since this evaluation
is aimed at detecting cows, there is limited discrepancy between the instances
to discover during training and testing. As we are in a practical scenario also
interested in a limited range of wildlife animals, the use of animal exemplars for
detection is beneficial.

In Figure 6, qualitative detection results are shown for a single test frame. The
three columns indicate the results of resp. exemplar SVM, DPM, and color-DPM.
For the top ranked detections (top row), the results of all methods look rather
promising. When looking at all the positively detected bounding boxes however,
the results become cluttered. For exemplar SVM, it is even unknown what the
promising locations of the cows are. In general, the methods are capable of highly
ranking the correct image locations, but also tend to fire on high contrast corner
areas (such as the white lines or humans in Figure 6) and cluttered locations.
Similar to the results of the first experiment, the results of this experiment
indicate that results yielded on human-scale images might not be similar on
drome imagery.
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Fig. 7. Precision-recall curves for different point track sizes on the ground truth where
bounding boxes are sampled every 5 frames from the annotations.

6.3 Experiment 3: Animal Counting

In the third experiment, we evaluate the quality of the animal counting algorithm
based on frame-based detections in combination with point tracks obtained by a
KLT tracker [23]. Frame-based object detections are either stitched to an existing
group of detections or are seen as a new unique group of detections; where ideally
each group of detections represents a single unique animal. The KLT algorithm
generates point tracks of length L and we chose the values L ∈ {5, 10, 15, 20} as
a range of stable values.

We first evaluate the quality of the tracking algorithm. To this end, we simu-
late a perfect detector by sampling ground truth boxes for every 5 frames in the
video. The average precision is 0.216 and in Figure 7 we show the precision-recall
curve. A track-length of L = 15 is performing best, although the difference is
minimal. Note that a recall of 1.0 is reached, meaning that all animals are counted
at least once.

Next, we evaluate the counting results using the automatically generated
bounding box detection, using an empirically set threshold of -0.8 to discard
false positives. In Figure 8 we show the corresponding precision-recall curves.
Compared to the results of Figure 7, the curves are lower, while also not all
animals are found. Similarly, the average precision score is lower, with a score of
0.193.

Based on the above yielded results, animal counting turns out to be a chal-
lenging problem. Even on ground truth detections, there is plenty of room for
improvement, which requires additional research.
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Fig. 8. Precision-recall curves for different point track sizes on the DPM detections
with a threshold of -0.8.

7 Conclusion

We investigate if current automatic object detection methods as designed for
human-centered objects are suitable for nature conservation a drone, where ob-
jects are typically much smaller and observed from above. We define two task: i)
animal detection and ii) animal counting. These tasks are important for monitor-
ing animal distribution and animal abundance as typically required for successful
nature conservation. To evaluate these tasks, we manually recorded and anno-
tated a new dataset with a drone. The animal detection task is benchmarked
with three efficient object detection algorithms, who have proven a potential
detection speed of less than 1 second per image. We base the animal counting
task on the detection task for which we define a suitable evaluation protocol.
Results on counting show that this task is difficult, and as such an interesting
research question. Results for object detection show that the performance of
object detection methods as measured on human objects does not translate to
drone imagery. According to the literature, the color-DPM should outperform
the standard DPM, which in turn should outperform exemplar SVM. Our re-
sults are the exact opposite of this ordering. Nevertheless, detection results are
promising, showing that automatic animal conservation with drones is a fruitful
combination of biology and computer vision.
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25. Mulero-Pázmány, M., R.S., Essen, L.V., Negro, J.J., Sassen, T.: Remotely piloted
aircraft systems as a rhinoceros anti-poaching tool in africa. PloS one 9 (2014)

26. Pedersoli, M., Vedaldi, A., Gonzalez, J.: A coarse-to-fine approach for fast de-
formable object detection. In: Computer Vision and Pattern Recognition (CVPR)
(2011)

27. van de Sande, K.E.A., Snoek, C.G.M., Smeulders, A.W.M.: Fisher and vlad with
flair. In: Computer Vision and Pattern Recognition (CVPR) (2014)

28. Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., LeCun, Y.: Overfeat:
Integrated recognition, localization and detection using convolutional networks. In:
International Conference on Learning Representations (2014)

29. Tian, Y., Sukthankar, R., Shah, M.: Spatiotemporal deformable part models for
action detection. In: Computer Vision and Pattern Recognition (CVPR). pp. 2642–
2649 (2013)

30. Uijlings, J.R., van de Sande, K.E., Gevers, T., Smeulders, A.W.: Selective search
for object recognition. International journal of computer vision 104(2), 154–171
(2013)

31. UNEP: Elephants in the dust the african elephant crisis. a rapid response as-
sessment. www.grida.no (2013), united Nations Environment Programme, GRID-
Arendal

32. Van Gemert, J.C., Veenman, C.J., Geusebroek, J.M.: Episode-constrained cross-
validation in video concept retrieval. IEEE Transactions on Multimedia 11(4),
780–786 (2009)

33. Vedaldi, A., Gulshan, V., Varma, M., Zisserman, A.: Multiple kernels for object
detection. In: Computer Vision, 2009 IEEE 12th International Conference on. pp.
606–613. IEEE (2009)

34. Vermeulen, C., Lejeune, P., Lisein, J., Sawadogo, P., Bouché, P.: Unmanned aerial
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