
000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

ECCV

#09
ECCV

#09

Augmenting vehicle localization accuracy with
cameras and 3D road infrastructure database

Lijun Wei, Bahman Soheilian, Valérie Gouet-Brunet

Université Paris-Est, IGN, SRIG, MATIS,
73 avenue de Paris, 94160 Saint Mandé, France

Abstract. Accurate and continuous vehicle localization in urban envi-
ronments has been an important research problem in recent years. In
this paper, we propose a landmark based localization method using road
signs and road markings. The principle is to associate the online detec-
tions from onboard cameras with the landmarks in a pre-generated road
infrastructure database, then to adjust the raw vehicle pose predicted by
the inertial sensors. This method was evaluated with data sequences ac-
quired on urban streets. The results prove the contribution of road signs
and road markings for reducing the trajectory drift as absolute control
points.

Keywords: Vehicle localization; road infrastructure database; road signs;
road markings

1 Introduction

To compensate the low performance of GPS receiver in dense urban environ-
ments caused by multi-path or building occlusions, dead-reckoning sensors like
wheel encoder, inertial sensors, or visual odometry method have been integrated
to continuously predict the vehicle movement. A main problem of the dead-
reckoning methods is the pose error accumulation from point to point, thus a
lot of methods have been proposed to alleviate the trajectory drift. Personal
Navigation Devices use classic map matching method [1] to associate the vehicle
location with a digital map of road networks. As the road network map usu-
ally well represent the topological relationship between different road segments,
but lack of geometric accuracy, some other methods proposed to generate an
enhanced digital map with visual landmarks from onboard perception sensors.
Visual landmarks are those static and recognizable objects in the environment.
Several systems treat the reconstructed 3D points as landmarks [2][3][4]: interest
points and descriptors (SIFT, SURF, HoG, etc.) are detected and extracted from
multiple images and reconstructed into 3D point cloud by structure-from-motion
with bundle adjustment. If the image sequence is already geo-referenced by a lo-
calization device, each 3D point in the database is associated with its absolute
3D coordinates, and its 2D locations and visual appearance (descriptors) in the
corresponding 2D images. The on-line localization step is then to associate the
sensor perception with the landmarks in database, and to recover the current
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vehicle pose by n-point Direct Linear Transformation (DLT) minimization with
RANSAC.

Instead of using the 3D points directly, in this work, we propose to use more
semantic and more robust landmarks: a database of 3D road infrastructures, i.e.,
road signs and road markings, is automatically generated from geo-referenced
image sequences, and used to correct the vehicle pose periodically, as shown in
Fig. 1. Compared with image points, the advantage of using road infrastruc-
ture objects is threefold: 1) volume of storage and matching: since the 3D point
cloud contains millions of 3D points and corresponding image features, it re-
quires large space for data storage and long time to access the sub point-clouds
for landmarks association. As there are fewer road infrastructure objects than
the sparse 3D points, it requires less volume for data storage and matching; 2)
precision and robustness of landmarks: as the visual appearance of some image
points might change during the day or in different seasons (e.g., trees), how
to maintain an up-to-date point database is still an ongoing research. Visual
landmarks of road infrastructures are more robust, static and precise in urban
environments than the sparse points, and the road sign and road marking de-
tection/reconstruction algorithms used can achieve sub-decimeter accuracy as
reported in [5] [6]; 3) matching constraint: association of image points is done in
multi-dimensional descriptor space and under multi-view geometric constraint,
while road infrastructures are semantic visual landmarks with known visual ap-
pearance and geometric attributes; the matching step can be based on both
geometric and semantic attributes to make it efficient.

Fig. 1. Projection of 3D road sign and road marking landmarks on an image frame
with raw camera pose (Left bottom: camera’s field of view shown by blue triangle;
middle bottom: zoomed view of the projected 3D road sign on image frame)

The most similar work to our study might be [7], in which a camera is used
to detect the road markings and laser scanners are used to detect all the distinc-
tive objects (traffic signs, trees, etc.). However, the explicit type and elevation
information of the distinctive objects are not known. In [8], a map of curbs and
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road markings is generated from a stereo pair and used for vehicle localization in
rural area. In [9], the authors also mentioned their road object map consisting of
manually labeled and reconstructed static road objects like road crossings and
road signs from a stereo pair. Their stored map objects are used for yielding an
AR system by overlaying the objects on camera images. We use multi-cameras
to automatically detect, recognize and reconstruct both the road markings and
road signs. These map objects are then stored and used to improve the localiza-
tion quality, especially in urban environments where GNSS performance is more
challenging and the road occlusion is more frequent due to pedestrians and other
vehicles. We currently assume that a rough initial vehicle position is provided
by a GPS receiver at the beginning of a sequence.

In the remaining of this paper, we firstly introduce the method for generating
a 3D road infrastructure database in Sec. 2; then, we present the localization
method with 3D road infrastructure landmarks in Sec. 3; finally, some experi-
mental results and discussions are respectively presented in Sec. 4 and Sec. 5.

2 Generation of a 3D road infrastructure database

Road infrastructures include sidewalks, pedestrian crossings, road signs, traf-
fic lights, etc. An accurate and up-to-date 3D database of road infrastruc-
tures is not only useful for infrastructure management and maintenance, it can
also contribute to advanced driver assistance, like vehicle self-localization, lane
keeping/alarming. An infrastructure database is usually manually surveyed and
drawn by engineers with portable GPS, this procedure is time-consuming and
expensive. The process can be largely accelerated by using ground mobile map-
ping system (MMS) [10] [11]. Road infrastructure objects are first automatically
detected and identified from the acquired scene videos, and then triangulated
into 3D with the vehicle poses from a high-precision geo-referencing device.

Fig. 2. (Left) One of the real images used for database generation; (Right) Recon-
structed 3D road signs and road marking strips in the database

In this work, we follow the pipeline of road infrastructure database generation
as in [12]: road markings, i.e. zebra crossings and dashed lines, are automatically
detected and reconstructed from a calibrated front-view stereo pair [5]; and road
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signs are detected, recognized and reconstructed from a multi-camera system
on the roof of the vehicle with a constrained multi-view reconstruction method
as in [6]. The generated sign/marking database (Fig. 2) is composed of a list
of 3D road signs/markings. Each road landmark is encoded with the following
information:

(1) simple geometric shape: a road sign is encoded either as a 3D polygon, a
triangle, or a circle (not discussed in this paper); a road marking strip is
encoded as a parallelogram;

(2) coordinates of road landmark in sub-decimeter accuracy: as the positions of
2D detections are in sub-pixel precision, absolute coordinates (in Easting-
Northing-Elevation format) of the corners of each landmark are in sub-
decimeter accuracy. This database is also consistent with other geographic
maps and environment models.

(3) type of a landmark: a road sign is encoded as “Indication”, “Obligation”,
“Prohibition” or “Warning” type; a road marking strip is encoded as “zebra
crossing”, or dashed lines with specific types (“T2”, “T3”, “T’1” or “T’P”).

(4) corresponding 2D images used for reconstruction are also stored.

Due to the occlusion by obstacles, it is possible that some road markings and
road signs might not be visible in the image sequence. As the road surface of
some urban streets is not covered by any markings, we do not use any model to
fit or “interpolate” the missed road marking strips. Therefore, in this work, we
consider each road marking strip as a strip patch, which well defines the road
marking plane in front of the vehicle.

3 Vehicle localization with road infrastructure database

In this section, we present the vehicle localization method using an IMU and the
aforementioned road infrastructure database. Vehicle pose is firstly predicted by
IMU in Sec. 3.1; then, road markings and signs are respectively detected from
onboard cameras and associated with the database objects in Sec. 3.2; in addition
to the attribute constraint, the Mahalanobis distance between two corresponding
landmarks is discussed in Sec. 3.3.

3.1 Vehicle pose prediction

Like other visual landmarks based localization systems, we assume that all the
sensors are rigidly installed on the experimental vehicle and well calibrated be-
fore the experiments. When initial state of the vehicle is given, the vehicle state
can be continuously predicted by dead-reckoning systems. To facilitate the prop-
agation of uncertainties between different vehicle positions, a pose-graph can be
constructed [13] by considering each vehicle pose as a vertex and the displace-
ment between two consecutive poses as an edge.

We use inertial sensors to provide accelerations and orientations of the vehicle
in this work. Let Xk = [X,Y, Z, Ẋ, Ẏ, Ż]Tk be the vehicle state at time k, where
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(X,Y, Z) are vehicle position and (Ẋ, Ẏ, Ż) are vehicle velocities in navigation
frame (Easting-Northing-Elevation). Assume that the vehicle acceleration ak in
navigation frame is constant between time step (k − 1) and k, the vehicle state
at time k can be predicted by:

Xk = FkXk−1 +Gkak (1)

where Fk =

[
I3 (∆T )3×3

03×3 I3

]
, I3 is a 3× 3 identity matrix, Gk =

[
(∆T

2

2 )3×3

(∆T )3×3

]
,

and ∆T = Tk − Tk−1. ak is the vehicle accelerations in navigation frame given
by:

ak = Rka
b
k = Rk[abx, a

b
y, a

b
z]
T = R(γ)R(β)R(α)[abx, a

b
y, a

b
z]
T (2)

where abk(∈ R3) is the vehicle accelerations in body frame reported by the IMU
sensor, Rk is the vehicle attitude (transformation from vehicle body frame at
time k to the navigation frame) represented by the vehicle Euler angles (roll α,
pitch β and yaw γ) from gyroscope. Assume that the accelerations of vehicle in
body frame are respectively perturbed by independent white noises with variance
δax, δay, δaz, the covariance matrix of abk is written as Ck = diag(δa2x, δa

2
y, δa

2
z).

The covariance Qxk of the vehicle pose at time k can be estimated by lineariza-
tion of Eq. 1:

Qxk = FkQxk−1F
T
k + (GkRk)Ck(GkRk)T (3)

3.2 Matching criteria between two road landmarks

Meanwhile, road markings and signs are respectively detected using the same
algorithm as in map generation stage, except that during the mapping stage,
possible 2D road signs are matched over all image frames, while in localization
stage, only the three front looking images captured at the same instant are used.
The corresponding 2D detections are fed into the the constrained multi-view
reconstruction algorithm as in the mapping stage.

Fig. 3. Vehicle pose correction with visual landmarks (Database landmarks: in red
color; online estimation: in green color)
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For images at time t with multiple 2D detections S, these 2D detections
are first reconstructed into 3D (E) by constrained multi-view reconstruction al-
gorithm, m landmarks can be reconstructed as: E = {E1, ..., Ei, ..., Em}. Since
matching of 2D detections is based on strict geometric and visual appearance
constraints, the reconstruction step can help to remove some possible false pos-
itive detections. Then, with the m reconstructed landmarks E , and n reference
landmarks in the database: F = {F1, ..., Fj , ..., Fn}, we need to find all the hy-
potheses to associate each observation Ei with feature Fji [14]. If there is no
matched landmark for Ei, this reconstruction will not be used.

The data association process of road signs and road markings is based on
facing direction of landmark plane, Mahalanobis distance, landmarks type and
uniqueness constraints, as illustrated in Fig. 3. The Mahalanobis distance is
defined by considering both the noises of 3D reconstruction and pose transition
process (Eq. 3). The association problem might become ambiguous when the
IMU error is very large or the landmarks are densely distributed. If there are
multiple candidate landmarks associations, the vehicle state track is split into
multiple independent tracks, each within an EKF (Extended Kalman Filter) to
correct the vehicle pose. If a GPS measurement is provided, it can be used as a
measurement together with the road sign and road marking objects.

Matching criteria between two 3D signs. A 3D road sign observation Ei
is matched to a sign Fji in the database if the following criteria are satisfied:

1) two objects are identified as road signs in the same category;
2) facing directions of the two road sign planes are less than a threshold (set

to 40o in our experiments);
3) Mahalanobis distance between two corresponding road signs is measured

by their position difference in the camera frame, this distance should be less
than a threshold defined by chi-squared distribution (will be detailed in Sec. 3.3
Eq. 4 to Eq. 6);

4) uniqueness constraint: when multiple road signs are reconstructed from
the same image pair, they cannot be associated with the same landmark in the
database at the same time.

Matching criteria between two road marking objects. In the step of
road sign detection/reconstruction, a 2D road sign detection is kept only if the
whole sign is seen by the camera for the purpose of type identification. For
road markings, this constraint is less strict. Due to the occlusion by obstacles
in front of the vehicle, the camera might detect only a portion of a road strip.
As the detected strip portion might be at any location inside the corresponding
reference strip, a detection uncertainty is added to every strip in the database.

Let the local frame attached to a reference strip is with y axis collinear to
the strip, the center of a marking strip reconstructed online might locate along
the longitudinal axis, and its lateral position might locate along the lateral axis,
as shown in Fig. 4. We set σx and σy respectively as the local uncertainties of
this road strip, σx = width/8 (width is the width of this strip), and σy is set as
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Fig. 4. Matching uncertainty between two strips (blue strip: reference)

1m. The variances of this strip can be transformed into navigation frame with

the strip slope θ, as Ql =

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

]
diag(σ2

x, σ
2
y)

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

]T
.

3.3 Mahalanobis distance between corresponding landmarks

Since our IMU can provide high accurate orientation measurement, vehicle ori-
entation error is not considered in this work and only the noise of acceleration
measurements were taken into account in error propagation. The same as other
landmarks based localization system with EKF, several blocks of the process is
introduced as follows:

1) Measurement: if m landmarks are reconstructed at time k, noted as
Ek = {E1, ..., Ei, ..., Em}, Ei = (∆Xi, ∆Yi, ∆Zi) is the 3D position of the center
of ith road landmark in current vehicle local frame, QEi

is the uncertainty of the
reconstructed landmark.

2) Observation: let R be the attitude of current vehicle state, Fj(x, y, z) be
the center of a landmark in the database, the expected 3D position EMj of the
landmark Fj in current vehicle frame can be calculated with the vehicle position
Xk and vehicle attitude R, as:

EMj = R−1(Fj −Xk) (4)

The Jacobian matrix of EMj with respect to XK is H = [−R−1 03×3].
3) Innovation: the difference between measurement landmark and the ob-

servation is: vcij = Ei − EMj , with covariance:

Sij = HQxk
HT +R−1QFj

R+QEi
(5)

whereQFj is the position covariance of the reference landmarks in the database in
navigation frame, and QEi is the covariance of currently reconstructed landmark
in local vehicle frame.

4) Mahalanobis distance: the Mahalanobis distance between the recon-
structed landmark Ei and reference landmark Fj is written as:

dist(Ei, Fj) = vcTijS
−1
ij vcij < λ (6)
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If dist(Ei, Fj) is less than a threshold λ = χ(0.05, 3) defined by χ2 distribution
table, landmark Fj is considered to be a possible correspondence of Ei. We
might obtain a series of candidate correspondences for each landmark inside the
confidence area.

5) Joint compatibility: when there are multiple landmarks being detected
at the same time, instead of choosing the nearest neighbor of each landmark,
the joint compatibility of all the road landmarks is taken into account. All the
reconstructed landmarks Ei with at least one candidate correspondence are put
into a single observation vector with uniqueness constraint, as:

E = {Ei}T = {(∆Xi, ∆Yi, ∆Zi)}T , i ∈ 1, ...,m (7)

The observations from different corresponding landmarks are also concatenated
as:

EM = {R−1(Fji −Xk)}T (8)

where Fji is the corresponding reference landmark of Ei. The Jacobian matrix of

EM with respect to Xk is H = −
[
R−1, ..., R−1

]T
k

. Difference between the mea-
surement and observation vectors is: vc = E − EM . Covariance S of the vector
vc is calculated the same as in Eq. 5. If the Mahalanobis distance dist(E , F ) is
less than threshold λ = χ(0.05, 3k), k being the number of landmark correspon-
dences under uniqueness constraint, this combination of landmark association
is considered as an acceptable correspondence. All the possible combinations of
correspondences inside the gating area are kept and the matching ambiguities
will be resolved by sequential matching. Then, the vehicle track is split into mul-
tiple tracks to maintain each landmarks association hypothesis with a parallel
filter, as [15].

5) Pose correction: for each validated landmark association, the vehicle
state in each track can be updated in parallel by Kalman gain:
K = track(i).Qxk

HTS−1 and X̄k = Xk + K × vc, and the pose uncertainty is
updated to: Qxk

= (I −KH)Qxk
. For the vehicle positions without any visual

landmarks in view, pose-graph optimization can be used to distribute the final
pose correction to other vehicle positions without LOS (Line of Sight) of the
visual landmarks in a local bundle adjustment in the future.

4 Evaluation

Experiments were conducted to test the proposed pose correction method with
acquired data sequences. As presented in section 2, a ground Mobile Mapping
System was used for data collection (Paris). The vehicle was equipped with a
high-quality geo-referencing device (GPS/INS/odometer) and 12 rigidly installed
cameras on the roof of the vehicle, including a horizontal panoramic system of
8 cameras, 1 forward looking and 1 rear looking stereo pairs.

A data sequence of 2015 positions (about 12km) was used to generate the
landmarks database (orange trajectory in Fig. 5). As seen in Tab. 1 and Fig. 5,
120 road signs (yellow squares with red crosses) and 2116 road marking strips
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were generated with sub-decimeter accuracy. In average, at least one road sign
exists for every 100 meters along the road. During the acquisition stage, the
forward stereo pair can detect at least one road marking strip in front of the
vehicle at about 50% locations. Road signs and road markings were respectively
stored in a file of 351k and 890k. The whole data volume per kilometer was 103k.

Table 1. Statistic data of reference database

Images Vehicle trajectory Number of road signs Number of marking strips

2015 × 12 cameras 12km 120 (351k) 2116 (890k)

We evaluated the contribution of road signs and road markings with another
data sequence acquired by the same vehicle, but at different time. As the test
path did not completely overlap with the reference sequence, we manually chose
two portions of the test sequence which were long enough and the area of the
path had been mapped in the previous stage (shown as cyan lines in Fig. 5).

Fig. 5. Road sign landmarks (yellow squares) and vehicle trajectories overlapped on
Google Earth. The reference data sequence used for generating the landmarks database
is shown in orange; the two test trajectories are shown in cyan

Due to an occasional cable connection problem of the front looking stereo pair
in the map generation stage, no road markings were generated for the area of the
first segment (left bottom), thus this segments was with only road sign reference;
the second segment was with both road signs and road markings. Pose ground-
truth of the two segments were provided by GPS/INS/odometer post-processing
software (though even this “ground-truth” might not be perfect, we will discuss
this problem in the following experiments). Lengths of the two segments were
respectively 1013m and 533m. The localization performance was evaluated using
the number of true positive pose corrections, defined as:
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– True positive (TP): landmarks were detected in images and associated with
the corresponding database landmarks;

– False positive (FP): landmarks were detected in images, but associated with
wrong database landmarks;

– True negative (TN): there was no corresponding landmark of a detection due
to false detection or the incompleteness of the database;

– False negative (FN): landmarks were detected in images but not associated
with the corresponding landmarks in database.

4.1 Localization results of Segment 1

By assuming that the vehicle Euler angles were accurate and the vehicle initial
position and velocity were known by GPS, the vehicle accelerations and rota-
tions exported from the high-precision positioning system (with frequency of
100Hz) were used to predict the vehicle positions at first. Without any absolute
measurements for pose correction, the vehicle trajectory drifts gradually, as seen
in Fig. 6 (first row). Then, if a road sign is detected and associated, it is applied
to adjust the vehicle trajectory, example is illustrated in Fig. 7; if there is no
corresponding road landmark being detected for long period, the error ellipsoid
of the vehicle position continues growing. Average linear distance between two
detected road signs is 156m along the vehicle trajectory. As seen in Fig. 6 (second
row), the position error after incorporating road sign based correction is in the
form of sawtooth, and the average position error is reduced from 30m to 5.5m.

(a) IMU: x-error (b) IMU: y-error (c) IMU: z-error

(d) IMU+road sign: x-error (e) IMU+road sign: y-error (f) IMU+road sign: z-error

Fig. 6. Vehicle position error before (first row) and after (second row) incorporating
road sign based correction. Blue curves: vehicle position error with respect to the
ground truth; red curves: 3-sigma (3 times the standard deviation of the estimated
position error)

Some statistic data of position correction with road landmarks is listed in
Tab. 2. For segment 1, road signs were detected/reconstructed at 21 locations,
10 positions were adjusted by correctly associated road signs with the reference
database, as shown in Fig. 8 (positions linked by red lines). Even with these
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Fig. 7. Segment 1: Left: reference landmark overlapped on image frame with predicted
vehicle pose; right: reference landmark overlapped on image frame after vehicle pose
correction

limited information, the reference road landmarks still provide some useful cor-
rections to the vehicle trajectories. 10 reconstruction were not associated with
any landmarks and marked as true negative due to the incompleteness of refer-
ence database (3 reconstructions in this test as shown in Fig. 8 by yellow lines)
or wrong detection (7 reconstruction in this test as shown in Fig. 8 by green
lines). But in reality, even though a road sign detection/recognition algorithm
works perfect, as the road signs might be occluded by other vehicles along the
street, it is difficult to obtain a complete landmark database by one acquisition.

Fig. 8. Segment 1: landmarks association results (Red line: correct association; green
line: wrong detection; yellow line: landmarks to be added into the database; red circles:
reference road signs)
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Table 2. Statistic data of position correction with road landmarks (Segment 1, with
165 vehicle positions in total; Segment 2: with 80 vehicle positions in total)

Seg. 1 Seg. 2

Landmarks Signs Signs Markings Signs/Markings

Locations with detections 21 15 50 59

TP (Correct association) 10 8 19 29

FP (Wrong association) 0 0 0 0

TN (No correspondence) 10 7 12 5

FN (Not associated with correspondence) 1 0 19 25

4.2 Localization results of Segment 2

For segment 2, we gradually added road signs and road markings for vehicle
pose correction. When we displayed the onboard images of this segment using
the poses provided by the GPS/INS/Odometer post-processing software, we ob-
served that the images were consistent on horizontal dimensions, but did not
overlap well in multiple runs on vertical dimension. Thus we only take use of the
2D positions as ground truth.

The vehicle positions predicted by accelerations were corrected by different
landmarks. The position errors are compared in Fig. 9. As seen in Fig. 9, the av-
erage 2D position error of IMU based prediction was 6m, the error was 4.4musing
IMU and road marking correction, the error was reduced to 2.46m using IMU
and road sign correction. As road markings are more densely distributed in some
area along the street, they can help to re-localize the vehicle more frequently, but
also with more ambiguities especially on longitudinal direction. The distinctive
road signs can help to improve the vehicle position precision on lateral and lon-
gitudinal directions. After incorporating road signs and road marking together,
the error is further reduced to 1.81m. Although we don’t have explicit ground

Fig. 9. Segment 2: Vehicle position error with IMU, IMU+road sign, IMU+road mark-
ing, IMU+road sign+road marking
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truth of vehicle elevation, we noted some examples of elevation correction, like
in Fig. 10, after incorporating the visual landmarks, image frames after vehicle
pose correction are much more coherent with the database landmarks.

(a)

(b) (c)

Fig. 10. Segment 2: a) From above to bottom: image frames predicted by IMU (in white
box), GPS/IMU/Odometer software, IMU+road landmarks; b) Image frame predicted
by GPS /INS /Odometer post-processing software; c) Corrected image frame after
incorporating the road infrastructure objects

4.3 Complexity of the method

The online localization processing is composed of pose prediction, landmarks
(road signs/marking) detection/reconstruction, landmark association and ve-
hicle pose correction steps. With current state-of-art techniques of landmark
detection [16], it is possible to achieve real-time performance in the detection
stage (the techniques of road sign and marking detection we employ can be eas-
ily optimized to be real-time). Because the data volume of the infrastructure
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database is much more smaller than the popularly used point cloud (as in [4]
for example), it is also possible to achieve real-time performance in the stage of
landmark association: typically on the segments tested during this step, match-
ing of road signs/markings involves the comparison of about 20 simple features
at maximum, while point-based approaches would involve the manipulation of
several hundreds of thousands of multidimensional features.

5 Conclusion

In this paper, we presented a road infrastructure database based vehicle pose
correction method. Road signs and road markings were detected from forward-
looking cameras and associated with the corresponding landmarks in the infras-
tructure database to correct the predicted vehicle pose. The experiments results
demonstrated that the detected road signs/markings can be used as absolute con-
trol points to periodically adjust the vehicle positions. Although the proposed
method aims to augment the vehicle localization performance in urban environ-
ments, it might also be applicable on rural roads. As the robustness of the whole
system is affected by: 1) robustness of the road landmark detection/recognition
algorithm; 2) as the same type road landmarks look exactly the same, the ambi-
guity problem might not be solved by only one road visual landmark when the
pose uncertainty is too large. After long period of being lost (without any pose
correction), other global localization methods should be adopted to re-initialize
the vehicle global position, like place recognition method (with ten meters of ac-
curacy as reported in [17]), vehicle trajectory and road network based absolute
localization method, etc. Besides, vehicle positions without road signs in view
might be adjusted by pose-graph optimization or a bundle adjustment. IMU can
be replaced by camera based estimation as the research on visual odometry or
structure-from-motion is more and more mature now.
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