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Abstract. A key-pose based gait recognition approach is proposed that
utilizes the depth streams from Kinect. Narrow corridor-like places, such
as the entry/ exit points of a security zone, are best suited for its applica-
tion. Alignment of frontal silhouette sequences is done using coordinate
system transformation, followed by a three dimensional voxel volume
construction, from which an equivalent fronto-parallel silhouette is gen-
erated. A set of fronto-parallel view silhouettes is, henceforth, utilized
in deriving a number of key poses. Next, correspondences between the
frames of an input sequence and the set of derived key poses are de-
termined using a sequence alignment algorithm. Finally, a gait feature
is constructed from each key pose taking into account only those pixels
that undergo significant position variation with respect to the silhouette
center. Extensive evaluation on a test dataset demonstrates the potential
applicability of the proposed method in real-life scenarios.

Keywords: Gait recognition, depth camera, key pose, incomplete cycle
sequences, variance image

1 Introduction

Constant monitoring of subjects and identification of suspects are essential ac-
tivities for providing public security inside crowded security zones. Human recog-
nition using biometric identification mechanisms like finger print detection and
iris scan cannot be employed in these congested places, since these methods re-
quire close interaction with subjects. Face recognition is also not convenient in
such a scenario because highly detailed texture information in face images might
be missing in surveillance videos, as they are usually captured from a distance.
Gait is the only biometric which can possibly be applied to identify suspects in
these congested security areas. Till date, a number of computer vision based gait
recognition algorithms, corresponding to both the fronto-parallel [1–4] as well as
the frontal views [5, 6] have been developed, each of which has been shown to
work effectively with low resolution gait video sequences.

Although it is known that gait video from the fronto-parallel view captures
significant information about an individual’s gait [7], in real-life, it is possible
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to encounter situations where surveillance needs to be carried out in narrow
corridor-like places, such as the entry/ exit points of security zones. Due to the
constricted field of view of a surveillance camera placed within a narrow region,
it might not be able to capture sufficient number of frames of a walking sequence
required for analyzing the gait characteristics of the concerned subject. On the
other hand, a relatively higher percentage of frames can be recorded if the camera
is positioned in a way so as to capture walking videos from the front view.

However, a drawback associated with frontal gait recognition is that, in-
formation about the important fronto-parallel component of gait [7] cannot be
obtained from the silhouettes captured by an RGB camera from the frontal
view. It appears that a substantial fronto-parallel information of the gait of a
silhouette can be extracted even from the frontal view if the knowledge about its
three dimensional pose is available. Gait videos collected using a depth camera
like Microsoft Kinect [8] seems to be beneficial in this aspect. In this paper, we
propose to carry out gait recognition using Kinect as a surveillance camera. The
gait recognition scenario considered here is shown in Fig. 1. With reference to
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Fig. 1. Camera setup for gait recognition in a narrow security zone

the figure, the Kinect (C ), used as a surveillance camera is installed at a certain
height above a narrow pathway. As a subject walks through the pathway along
the direction shown in the figure, C captures the depth information of the gait of
the subject from the front view. This depth information is, henceforth, utilized
in deriving an effective gait feature which preserves significant fronto-parallel
information. Experimental results on an extensive dataset proves the efficacy of
the proposed method in real-life scenarios.

The rest of the paper is organized as follows. Section 2 provides a brief
background study on the recent research trend in frontal gait recognition using
depth information. Construction of the gait feature and human recognition using
the derived feature is explained in Section 3. A detailed description of the dataset
along with experimental results is presented in Section 4. Section 5 concludes
the paper and points out future scope of work.
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2 Literature Survey

Early gait recognition approaches [1–4] use gait videos captured by RGB cam-
eras and focus mostly on the fronto-parallel view of gait. Development of depth
cameras like Kinect [8] has resulted in shifting of focus towards frontal gait recog-
nition using depth information [5, 6, 9–11]. Among the existing depth cameras,
Kinect [8], developed by Microsoft, has gained significant popularity in human
tracking based research, primarily because of the useful human detection and
skeleton tracking application [12] provided by the Kinect SDK. In the recent
past, Kinect has been extensively used in deriving interesting frontal gait fea-
tures that make use of both the skeleton streams [9–11] and the depth streams
[5, 6] obtained from its SDK. Each of these techniques has shown promising re-
sults, but a few assumptions inherent in these methods limit their applicability
in real-life scenarios.

In [9], a gait feature using the skeleton joint coordinates is proposed by
Kumar et al., in which the covariance of each joint trajectory over a complete
gait cycle is used in recognition. Milovanovi et al., in [10], describe a recognition
scheme where skeleton data of a gait cycle is mapped from the spatial domain
to the spatio-temporal domain and content-based image retrieval techniques are
applied for feature construction. Both these methods have been shown to work
satisfactorily in the presence of complete gait cycles, but their performance in
the absence of full cycle information is unclear. Chattopadhyay et al. propose a
frontal gait recognition approach in [11], where a complete gait cycle is divided
into a fixed number of key poses derived from the skeleton structure provided by
Kinect SDK. The gait cycle partitioning scheme, as proposed in this work, has
been shown to outperform [9] as well as a traditional binary silhouette based gait
recognition scheme, namely, the technique using Gait Energy Image (GEI) [1].
Although gait recognition methods using the skeleton streams from Kinect have
significantly fast response time, their effectiveness depends on the accuracy of
the skeleton joints tracked by the SDK. Also, lack of complete silhouette shape/
depth information, because of using only the skeleton streams from Kinect, might
have a negative impact on the accuracy of gait recognition.

Only a few approaches use solely the depth streams from Kinect to derive
frontal gait features [5, 6, 13]. Hofmann et al. describe a gait recognition pro-
cedure in [13], where gradient histograms computed from the depth frames of
a fronto-parallel view gait sequence are averaged over a gait cycle. The results
presented in this work show that the use of depth information helps in achieving
a higher recognition rate than GEI [1]. However, since no significant depth vari-
ation occurs in the fronto-parallel view gait sequences, it is unclear if the use of
depth information has significant benefits for gait recognition from this view. The
work by Sivapalan et al. in [5] provides an effective means of utilizing the depth
streams from Kinect in carrying out gait recognition from the frontal view. The
feature proposed in [5] is termed as Gait Energy Volume (GEV). It is derived
by averaging the voxel volumes constructed from the corresponding point cloud
sequences captured by Kinect over an entire gait cycle. But, as also explained in
[2], such averaged information lacks intrinsic kinematic details about the gait of
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a subject. Hence, GEV fails to perform satisfactorily, if there exist a number of
corrupted/ noisy silhouettes in the sequence, or if the Kinect fails to capture at
least one complete gait cycle of the walking subject.

To overcome the limitations of GEV, a pose based feature termed as Pose
Depth Volume (PDV) was proposed by Chattopadhyay et al. in [6]. Here, noisy
depth silhouettes are initially smoothed by registering each depth frame with
the corresponding RGB frame. PDV helps in preserving the dynamic component
of gait at a higher resolution than GEV because the feature is derived at the
granularity of key poses. However, the expensive voxel level computation in PDV
and also the requirement of at least a complete gait cycle for its satisfactory
performance, make it impractical for use in real-life situations.

It appears from the algorithms proposed in [2] (PEI) and [6] (PDV) that, car-
rying out gait recognition at the granularity of key poses significantly enhances
the efficacy of recognition. This motivates us in proposing a key pose based gait
recognition approach in order to carry out recognition in the scenario considered
in the present paper (refer to Section 1, Fig. 1). In contrast to the existing frontal
gait recognition techniques, the proposed method effectively preserves the im-
portant gait information corresponding to the fronto-parallel view by making
use of the three dimensional depth information of the silhouette points provided
by Kinect. Moreover, recognition from complete gait cycle information as con-
sidered in each of the techniques given in ([1, 2, 5, 6, 9–11]) cannot be regarded
as a practical solution. Such constraint on the minimum length of a gait cycle
is potentially eradicated in the present paper by carrying out subject identifica-
tion using only the available key poses in a given sequence. This adds a higher
degree of pertinency to the proposed approach as compared to the state-of-the-
art gait recognition techniques in application sites similar to Fig. 1. The main
contributions of the paper can be summarized as follows:

– Development of a frontal gait recognition technique when number of train-
ing samples is few and also when unconstrained data are captured with no
restriction on the minimum length of the gait cycle,

– derivation of equivalent fronto-parallel view silhouettes by utilizing the depth
information of the frontal surface of silhouettes recorded by Kinect and ex-
traction of gait features from these silhouettes, thereby, preserving important
gait information, and

– extensive experimental evaluation emphasizing the effectiveness of the pro-
posed approach.

3 Proposed Approach

As described in Section 1, we propose a key pose based frontal gait recognition
approach using Kinect captured datasets. Surveillance cameras inside a security
zone, are usually mounted at a certain height facing downwards. The gait recog-
nition scenario described in Section 1 also takes into account of a similar Kinect
camera setup. Hence, the point cloud of a walking subject as captured by the
Kinect is inclined with respect to the Kinect coordinate system. The recognition
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procedure must be made invariant to the tilt angle since this angle may vary
from one surveillance site to another.

3.1 Alignment of Silhouette Sequence and Construction of Voxel

Volumes

Invariance to the camera tilt angle is achieved by applying a set of geometric
transformation operations on each point cloud and also by aligning it with re-
spect to a fixed coordinate system. The alignment operation is explained with
the help of Fig. 2.

Coordinate System Transformation The objective of this alignment
procedure is to obtain an upright silhouette point cloud that will be perpendic-
ular to the viewing direction. To achieve this, we determine transformed point
cloud coordinates with respect to a different coordinate system (say, X ′, Y ′, Z ′),
such that, the X ′Y ′ plane of this coordinate system is parallel to the direction
of orientation of the point cloud, and the Z ′ axis is along a direction normal to
this plane. Without loss of generality, we consider that the origins of the Kinect
coordinate system and the (X ′, Y ′, Z ′) coordinate system coincide. As seen

(nx, ny, nz)

P2

P1

Y

X
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P

Fig. 2. Coordinate system transformation for silhouette alignment

in Fig. 2, initially linear regression [14] of the set of object points P present in
the Kinect captured point cloud is used in determining a plane P that passes
through the origin of the Kinect coordinate system, and is closely parallel to the
direction of alignment of the point cloud. Corresponding to each object point
Pi with coordinates (Xi,Yi,Zi) (measured in the Kinect coordinate system), we
determine its transformed coordinates P ′

i (X
′
i,Y

′
i ,Z

′
i) with respect to the (X ′, Y ′,

Z ′) coordinate system. Let the unit normal vector to the plane P constructed
from the point set P be given by (nx, ny, nz) (as shown in Fig. 2). If the equa-
tion of this plane is given by Z = AX + BY, the coordinates of P ′

i in the (X ′,
Y ′, Z ′) coordinate system are computed as follows:

Z ′
i =

AXi +BYi − Zi√
A2 +B2 + 1

, X ′
i = Xi − (Z ′

i)(nx), Y ′
i = Yi − (Z ′

i)(ny). (1)
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Thus, the X ′Y ′ plane in the new (X ′Y ′Z ′) coordinate system is actually the
plane P .

Volumetric Reconstruction from Point Cloud The proposed key pose
estimation and gait recognition procedures, as described in Sections 3.2 and 3.3,
respectively, require the point cloud to be mapped to a three dimensional voxel
volume V. This makes it convenient to extract the relevant features by raster
scanning the three dimensional volume along the width, height and depth dimen-
sions. The volume is constructed by mapping the (X ′, Y ′, Z ′) coordinates of each
object point present in the aligned point cloud into appropriate voxel positions
within the volume. Suppose, M, N, P, respectively represent the dimensions of
the voxel volume V along its width, height and depth directions. Also, let Mx

and mx respectively denote the maximum and minimum X ′ coordinates of the
object points present in the aligned point cloud. Similar notations are used to
denote the magnitudes of the maximum and minimum object point coordinates
corresponding to the Y ′ and Z ′ directions of the transformed coordinate system.
The mapped coordinates (X ′

iv
, Yiv

′, Ziv
′) within the volume corresponding to

the ith object point (X ′
i, Yi

′, Zi
′) is then computed as:

Xiv
′=

X ′
i −mx

Mx −mx

(M − 1), Yiv
′=

Y ′
i −my

My −my

(N − 1), Ziv
′=

Z ′
i −mz

Mz −mz

(P − 1).

(2)
Fig. 3(a) shows the plot of a three dimensional voxel volume constructed from
an aligned point cloud.

3.2 Extraction of Key Poses and Mapping of a Gait Sequence into

Key Poses

A sequence of key poses represents a human gait cycle [2, 6, 11] (refer to Fig. 5). A
sufficiently large number of walking sequences would help in accurate estimation
of these key poses. Here, we describe a procedure for deriving a fixed number
(K ) of key poses from the gait sequences of a large number of subjects. The voxel
volume V consists of either object voxels or non-object voxels. Let us suppose
that each of the object voxels has been assigned a value of ‘1 ’, whereas, each
non-object voxel is assigned a value of ‘0 ’. Since, the depth information provided
by Kinect is inherently noisy, V also contains a significant amount of noise, as
seen in Fig. 3(a). Deriving meaningful features for key pose extraction requires
an effective mechanism for smoothing the noisy volume.

Distance transform [15] labels each voxel within a binary volume with the
Euclidean distance to the nearest object pixel. In the present context, for smooth-
ing the volume V, we use a variant of the distance transform operator. Suppose
dmax is the maximum value within the distance transformed volume. Then the
value assigned to a non-object voxel having a distance transformed value of d is
(1- d

dmax
).

On application of the above operation, the value assigned to each non-object
voxel in V lies within the range (0, 1 ), so that a value closer to ‘1 ’ indicates
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a smaller magnitude of d. On the other hand, the same value (i.e., ‘1 ’) is re-
tained corresponding to each of the object voxels. In addition to preserving the
shape information, this step can effectively fill up all the noisy regions/ holes
within the 3D aligned silhouette, thereby smoothing the volume. This helps in
the extraction of robust features for key pose estimation as well as gait recog-
nition, even if incorrect alignment occurs after the application of the alignment
operation described in Section 3.1 due to noisy data. However, if the magnitude
of d is high enough, then the voxel value in V is not altered. Fig. 3(b) shows
the re-assigned values within the voxel volume V after applying the above noise
removal procedure on Fig. 3(a).

(a) (b) (c)

Fig. 3. (a) Aligned point cloud of a silhouette (b) Point cloud after noise removal and
voxel filling (c) Average silhouette of the noise-free point cloud on the Y ′Z′ plane

Since fronto-parallel view of gait contains the most informative gait fea-
tures [7], we construct an equivalent fronto-parallel view silhouette frame using
the depth information of the frontal surface of each silhouette captured by the
Kinect. It is apparent from the above discussion that the Y ′Z ′ plane of the vol-
ume V provides information about the fronto-parallel view of a silhouette. In
the present context, we propose to extract the feature vector for deriving key
poses using a set of two dimensional silhouettes on the Y ′Z ′ plane. Each pixel
within a two dimensional silhouette on the Y ′Z ′ plane is assigned a value equal
to the mean of the values of all the voxel points whose projection on the Y ′Z ′

plane gets mapped to this pixel. Thus, if (X ′
iv
, Y ′

iv
, Z ′

iv
) denotes the coordinates

of a voxel point in the volume V and if IY ′Z′ denotes the projected frame on
the Y ′Z ′ plane, then, the value assigned to the pixel (Y ′

j , Z
′
j) in the projected

frame is given by:

IY ′Z′(Y ′
j , Z

′
j) =

1

M

M
∑

k=1

V (X ′
kv
, Y ′

jk
, Z ′

jk
). (3)

The silhouette thus obtained on the Y ′Z ′ plane after application of the above
averaging operation is termed as the average silhouette. The average silhouette
on the Y ′Z ′ plane derived from the point cloud of Fig. 3(b) is shown in Fig. 3(c).

The cluster centers obtained after clustering the silhouette sequence IY ′Z′

on the Y ′Z ′ plane are termed as the key poses in a gait cycle. In contrast to [2],
where only binary silhouette sequences were used for key pose generation, the
proposed method effectively captures the shape information of the fronto-parallel
view as well as some dimensional information of the body parts corresponding to
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the frontal view. The value of K used in K -Means clustering is next determined
from a rate distortion plot shown in Fig. 4. The plot shows the average distor-
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Fig. 4. Rate distortion curve for determining the appropriate number of key poses

tion of the clustering operation as a function of the number of key poses. The
distortion coefficient is plotted as the sum of the Euclidean distances between
each silhouette sequence vector IY ′Z′ from its nearest cluster center. It is seen
from the figure that the curve attains a minimum value for K = 13 and remains
stable after K = 14. Hence, selecting the value of K as 13 seems to be a good
choice for the estimation of key poses. Fig. 5 shows the thirteen representative
key poses in a gait cycle obtained after the application of constrained K -Means
clustering on the fronto-parallel view silhouettes on the Y ′Z ′ plane. Given an

Fig. 5. Thirteen key poses derived for representing a gait cycle

input silhouette sequence, a local sequence alignment procedure based on dy-
namic programming [16] is used to find correspondences between the frames of
the sequence and the set of derived key poses. As an initial step, the alignment
operation requires determination of a similarity score value [2] between a frame
and each of the derived key poses, which is accomplished by computing the Eu-
clidean distance between these two. The state transition information used in the
alignment procedure can be stated as follows: if a certain frame of a sequence
corresponds to a key pose k, then its succeeding frame must be mapped to either
of key pose k or key pose ((k+1) modulo K ), k = 1, 2, 3, ..., K.



Exploiting Pose Information for Gait Recognition from Depth Streams 9

3.3 Extraction of Gait Feature

Similar to the feature vector construction procedure for determining the key
poses (refer to Section 3.2), extraction of the gait features is again done by con-
sidering the average silhouettes on the Y ′Z ′ plane. It may be noted that all the
pixels belonging to a silhouette on this plane do not convey significant informa-
tion about the gait of a subject. In most of the existing gait recognition literature
[1, 2, 6], principal component analysis is used to reduce the feature vector length
by eliminating redundant feature attributes. But this requires computation of
the eigen silhouettes [2] corresponding to each frame of the sequence, which is
time intensive.

It appears that pre-determination of the set of pixel coordinates carrying
useful gait information can expedite the recognition procedure. This is accom-
plished by making use a variance image constructed from the aligned silhouette
sequences corresponding to a large number of subjects on the Y ′Z ′ plane. The
variance image is derived by computing pixel-wise variances of these sets of
aligned silhouettes and is shown in Fig. 6(a). It is to be noted that the variance
image actually preserves useful information about those pixel locations within
an aligned silhouette frame which undergo significant change during walking.
As seen in this figure, many pixels within the variance image have negligible

(a) (b) (c) (d) (e) (f)
Fig. 6. (a) Variance image computed from the silhouette sequences of a large number
of subjects (b), (c), (d), (e), and (f) Variance image binarization with β = 0, 0.1, 0.2,
0.3, and 0.4, respectively

variance, indicating that the silhouette points corresponding to those locations
do not undergo significant position variation with respect to the silhouette cen-
ter during walking. It is evident that these pixels carry little gait information
and leaving out these pixels during the gait feature vector construction does not
adversely affect the accuracy of recognition. In order to select only a specific set
of pixels with important gait information, we binarize the variance image using
an experimentally determined threshold β, so that only pixels with variances
greater than β are retained in the binarized image. Figs. 6(b), (c), (d), (e) and
(f) show the binary images obtained after thresholding the variance image, where
the β values are set to 0, 0.1, 0.2, 0.3 and 0.4, respectively. From the figure, it
is seen that the silhouette shape information is preserved at a high resolution
corresponding to β values of 0.1 and 0.2, and hence, features derived consider-
ing these values of β are expected to contain significant gait information. A β
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value of 0 provides useful gait information along with redundant information to
a certain degree. However, β values greater than 0.2 misses pixels (or elements)
with significant gait information and should not be considered for gait analysis.
We denote this β thresholded binary image by Iβ .

Given an input silhouette sequence, and the mapping of each of its frames to
the appropriate key poses, we next extract a gait feature vector corresponding to
each of the K key poses. The final gait feature is the concatenation of the feature
vectors derived for each key pose. Consider a total of N subjects in the dataset
and suppose l frames, starting with frame index t up to frame index t + l − 1,
namely, F k

n,t, F
k
n,t+1, F

k
n,t+2, ..., F

k
n,t+l−1, of a gait sequence of the nth subject

are mapped to a key pose k, where n = 1, 2, 3, ..., N , and k = 1, 2, 3, ..., K. Let
Fk

n,t+j denote the vector of the most informative pixel values extracted from the

frame F k
n,j , for each j = 0, 1, 2, ..., l -1. It may be noted that the vector Fk

n,t+j

is constructed using information only from those pixel locations that undergo
significant variation during walking, as depicted in Iβ . Thus, a lower value of β
will cause Fk

n,t+j to have a higher dimension, and vice-versa.

Then, the gait feature vector Gk
n corresponding to the kth pose of the nth

subject is derived as follows:

Gk
n =

1

l

l−1
∑

j=0

Fk
n,t+j , n = 1, 2, 3, ...,N , k = 1, 2, 3, ...,K. (4)

3.4 Recognition of a Test Subject using the Proposed Feature

We denote the N subjects in the training set as S1, S2, S3, ..., and SN . Let
Gk
n,tr denote the feature vector corresponding to the kth pose of the nth training

subject, where n = 1, 2, 3, ..., N and k = 1, 2, 3, ..., K. A similar notation Gk
te is

used to denote the feature vector corresponding to the kth pose of an input test
subject. For each of the N subjects in the training set, a measure of similarity is
next computed which signifies the likelihood of the test subject to belong to the
class of the current training subject. Suppose, out of the total number of K key
poses, only p of them k1, k2, k3, ..., kp, are common for a given combination of
training and test sequences. Initially, the feature vectors derived corresponding
to this set of matching p key poses are concatenated to form a single vector.
Thus, if Gn,tr and Gte, respectively denote these concatenated feature vectors
corresponding to the nth training subject and the given test subject, then:

Gn,tr =















Gk1

n,tr

Gk2

n,tr

Gk3

n,tr

...

Gkp

n,tr















and Gte =













Gk1

te

Gk2

te

Gk3

te

...

Gkp

te













.

It is to be noted that each of Gn,tr and Gte might consist of missing attribute
(null) values corresponding to the key poses those are absent in the training
and the test sequences, respectively. Also reconstruction of the feature vectors
by estimating these null attribute values is difficult because of the availability
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of insufficient number of sequences. Thus, the measure of similarity must be
computed by comparing only the non-null attribute values common to both the
vectors Gn,tr and Gte. Since different pairs of training and test sequences will
have different sets of non-null matching attributes, it is necessary to normalize
the similarity metric to make it independent of the magnitudes of the individual
attributes. The ‘cosine’ similarity metric is beneficial in such cases. The cosine
similarity Dn between the vectors Gn,tr and Gte is computed as:

Dn = 1− cos(α), (5)
where, α is the angle included between the two vectors, given by:

α =
GT
n,trGte

||Gn,tr||||Gte||
. (6)

The test subject is identified as Sr if:
Dr ≤ Dn, ∀n = 1, 2, 3, ...,N . (7)

4 Experimental Evaluation

There is no existing database that provides the depth information of the gait
of subjects using depth cameras like Kinect. Hence, to test the effectiveness of
our approach, we construct a new dataset1. In the following sub-sections, we
provide an elaborate description of the experimental setup, the testing protocol
and, finally, an extensive evaluation of the proposed method using the captured
dataset.

4.1 Dataset Description

A total of 29 subjects have been used in building our database. The experimental
setup for recording both the training and the test sequences is made similar to the
one shown in Fig. 1. A Kinect camera (K ) in combination with the SDK provided
by Microsoft is used for collecting the datasets. The camera is positioned at a
height of 2.5 metres from the ground over a narrow pathway, facing downwards.
The tilt angle of K is set to -23◦. As a subject passes through this zone, the
real-world X, Y and Z coordinates of the points on the frontal surface of the
silhouette of each subject as tracked by K are recorded.

For each subject, we record two distinct sequences T1 and T2, which are
used as training sets in our experiments. Test sets T3 and T4 for each subject
are respectively collected under two different frame rates: 30 fps and 15 fps.
Thus, in total, we have 116 distinct frontal sequences, containing four sequences
corresponding to each subject. Due to a limitation on the maximum depth sens-
ing range of Kinect, which is only 4 metres, many of these recorded sequences
lack complete gait cycle information. Table 1 presents a statistics of the recorded
training and test sets, showing the percentage of sequences that have missed k

out of the K (= 13) key poses, k = 1, 2, 3, ..., 13.

1 Available on request
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Table 1. Percentage of key poses missed by various sequences

Dataset
Key Pose Indices

0 1 2 3 4 5 6 7 8 9 10 11 12 13
T1 17.24 24.14 06.89 03.45 06.89 03.45 13.79 20.70 03.45 00.00 00.00 00.00 00.00 00.00
T2 17.24 00.00 06.89 20.70 06.89 00.00 06.89 20.70 00.00 17.24 00.00 00.00 03.45 00.00
T3 10.34 17.24 06.89 06.89 06.89 03.45 20.70 27.60 00.00 00.00 00.00 00.00 00.00 00.00
T4 10.34 13.79 10.34 06.89 06.89 03.45 20.70 27.60 00.00 00.00 00.00 00.00 00.00 00.00

4.2 Testing Protocol and Results

Experiments are conducted in the context of biometric based identification where
the gait feature derived from a test sequence is compared against a gallery of
features derived from a number of training subjects. Implementation of the pro-
posed algorithm is done in MatLab environment (version R2011a) on a system
having 2.50 GHz Intel Core i5 processor and 4GB RAM.

First, we experimentally determine an optimal value of β required to binarize
the variance image (refer to Fig. 6). For this, we plot cumulative match charac-
teristic (CMC) curves corresponding to β values of 0, 0.1, 0.2, 0.3, 0.4 in Fig.
7(a), using only T1 as the training set. The recorded response times for these
different β values are plotted in Fig. 7(b). From Fig. 7(a), it is seen that the
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Fig. 7. (a) Cumulative match characteristic curves showing variation of recognition
accuracy with rank for different values of β (b) Response times of the algorithm cor-
responding to these β values

proposed method has a high recognition rate for β ≤ 0.2, even in the presence
of incomplete cycle sequences. But as observed from Fig. 7(b), the processing
times required for β = 0 and β = 0.1 are significantly high. On the other hand,
the response time corresponding to β = 0.2 is at most 3 seconds which is rea-
sonably fast. Hence, the choice of the value of β as 0.2 can be considered as an
effective balance between processing time and recognition accuracy. Each of the
subsequent experiments conducted considers β = 0.2.

It is expected that an increased volume of training data will help in achieving
higher accuracy during test cases. This is experimentally verified in Table 2. The
table shows the recognition performance corresponding to the test sets T3 and
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T4, recorded at 30 fps and 15 fps, respectively, and in presence of only T1, only
T2, and both T1 and T2 (T1+T2 ) as training sets. Percentage accuracies in
the table are shown using two different similarity measures: Cosine (D1 ) and
Euclidean (D2 ).

Table 2. Variation of recognition accuracy with frame rate for different training data
set combinations and for Cosine (D1 ) and Euclidean (D2 ) similarity measures

Training Set
T3 T4

D1 D2 D1 D2

T1 72.41 31.03 72.41 27.59
T2 55.17 13.79 51.72 13.79

T1+T2 86.21 41.38 79.31 37.93

The advantage of using a normalized similarity measure, such as the Cosine
metric, in comparing feature vectors with missing attributes is evident from
the table. Moreover, from Tables 1 and 2, it is seen that there is no significant
variation in recognition performance with reduction in frame rate, as long as
the available key poses corresponding to the two frame rates closely match each
other. In general, recognition rate is not remarkably high when only T2 is chosen
as the training set. This is primarily because the gait sequences present in T2

contain a higher percentage of missing key poses (refer to Table 1).

To evaluate the effectiveness of an algorithm, it is often required to determine
if its performance is satisfactory for a sufficiently small value of rank. A test
subject is said to be perfectly classified at a given rank r, if the correct class of
this subject is one of the top r predictions of the algorithm. We plot a rank-
wise improvement in classification performance of the proposed method in Fig.
8 corresponding to each of the training sets T1, T2 and T1+T2. It is seen from

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
50

60

70

80

90

100

Rank

R
ec

og
ni

ti
on

 A
cc

ur
ac

y 
(%

)

 

 

Training Set T1
Training Set T2
Training Set T1+T2

Fig. 8. CMC curves showing improve-
ment in recognition rate with rank for
the different training sets

7 9 11 13 15 17 19
65

66

67

68

69

70

71

72

73

Number of Key Poses

R
ec

og
ni

ti
on

 A
cc

ur
ac

y 
(%

)

Fig. 9. Variation of recognition accu-
racy with number of key poses using
T1 as the training set

the figure that using both T1 and T2 as training sets, a recognition rate greater
than 90% is achieved within a rank of 4, which highlights the efficacy of the
proposed method in gait recognition setups similar to that shown in Fig. 1.
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In each of the previous experiments, the value of K has been set to 13 (de-
termined from the rate distortion plot of Fig. 4). However, a reader might be
interested in studying the effect of change of the number of key poses (K ) on
the recognition rate. Hence, we plot the variation in percentage accuracy corre-
sponding to K values of 7, 9, 11, 13, 15, 17, and 19 in Fig. 9. Training set for this
experiment consists of only T1. It is seen from the figure that the curve initially
has a non-decreasing trend for values of K ≥ 7. It attains a peak value at K =
13 and again decreases for values of K > 15. Thus, the choice of the value of K
as 13 in each of the previous experiments is rightly justified. The reduction in
recognition rate corresponding to K ≥ 7 is due to the higher number of missing
key poses in the gait sequences.

Finally a comparative performance analysis of the proposed method is made
with existing work on frontal gait recognition using Kinect, namely, GEV [5],
PDV [6], skeleton-covariance feature [9] and a pose based skeleton feature [11].
The effectiveness of the use of depth data in gait recognition is studied by com-
paring our approach with some of the traditional gait recognition methods which
use RGB cameras for data collection, namely, GEI [1] and PEI [2]. Results
are shown in Table 3 using only T1 as the training set. It can be seen that

Table 3. Comparative performance of the proposed method with the existing literature

Gait Recognition Algorithms Accuracy (%) Time (in secs)
GEV [5] 27.59 2.58
PDV [6] 51.72 15.62

Skeleton Co-Variance Feature [9] 34.48 1.08
Skeleton Pose Based Feature [11] 51.72 2.23

GEI [1] 31.03 0.42
PEI [2] 44.83 1.34

Proposed feature 72.41 2.87

the proposed approach outperforms each of the state-of-the-art gait recognition
techniques by more than 20%, which is remarkable. The slightly higher response
time of our algorithm as compared to [1, 2, 5, 9, 11] can be sacrificed for achieving
the significant improved recognition rate. This superior recognition performance
together with a fast response time indicate the potentiality of this method in
performing gait recognition from incomplete cycle sequences.

5 Conclusion and Future Scope

From the extensive set of experiments described in Section 4.2, it can be con-
cluded that the proposed gait recognition procedure can be potentially applied
in surveillance sites similar to Fig. 1. The pose based approach helps in preserv-
ing kinematic details in recognizing the gait of a subject from a given sequence.
Evaluating the performance of the proposed algorithm in presence of a larger
number of subjects and combining both back and front view sequences in the
recognition procedure would be a direction for future research.
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