
A two-stage strategy for real-time dense 3D
reconstruction of large-scale scenes

Diego Thomas and Akihiro Sugimoto

National Institute of Informatics, Tokyo, Japan.
{diego thomas,sugimoto}@nii.ac.jp

Abstract. The frame-to-global-model approach is widely used for ac-
curate 3D modeling from sequences of RGB-D images. Because still no
perfect camera tracking system exists, the accumulation of small errors
generated when registering and integrating successive RGB-D images
causes deformations of the 3D model being built up. In particular, the
deformations become significant when the scale of the scene to model is
large. To tackle this problem, we propose a two-stage strategy to build
in details a large-scale 3D model with minimal deformations where the
first stage creates accurate small-scale 3D scenes in real-time from short
subsequences of RGB-D images while the second stage re-organises all
the results from the first stage in a geometrically consistent manner to
reduce deformations as much as possible. By employing planar patches
as the 3D scene representation, our proposed method runs in real-time to
build accurate 3D models with minimal deformations even for large-scale
scenes. Our experiments using real data confirm the effectiveness of our
proposed method.

1 Introduction

The ability to build an accurate 3D model of a large-scale indoor scene from an
RGB-D image sequence is of great interest because of various potential applica-
tions in the industry. Such 3D models can be used for, for example, visualisation
tasks, robot navigation, or space organisation. With the recent advent of con-
sumer RGB-D sensors such as the Microsoft Kinect camera, the task of 3D
scanning in indoor environments became easy and a number of techniques to
map all acquired RGB-D data into a single 3D model have been proposed (e.g .
KinectFusion and extensions ([11], [12], [13], [16]). As a consequence, the quality
of generated 3D models has been remarkably improved for relatively small scenes
(e.g . a space of a few square meters). Nevertheless, handling large-scale scenes
still remains a challenging research area.

While early work such as KinectFusion [11] strives to build detailed small-
scale 3D scenes from noisy RGB-D data in real-time, significant effort ([6], [15],
[17]) has been recently devoted to allow detailed reconstruction of large-scale
scenes by employing more compact yet accurate 3D scene representations. How-
ever, though fine details can be locally obtained, the 3D model as a whole be-
comes deformed because of the accumulation of inevitable drift errors in camera

2 Diego Thomas and Akihiro Sugimoto

pose estimation over a long sequence. To correct such deformations, elastic reg-
istration [19] between fragments of the whole scene can be used at the cost of
significant computational overhead, which prevents from real-time application.
On the other hand, for fast correction of deformations, graph optimisation [6]
can be used where the scene is segmented into several (ideally) undeformed frag-
ments that are connected to keyframes via visibility constraints. Keyframe pose
constraints enforced over different keyframes are also used there. Once a loop is
detected, the graph is optimised to re-position all fragments. Because one frag-
ment is represented by a single vertex in the graph and the geometry of each
fragment need not be modified, this process is executed quickly. By using vis-
ibility and keyframe pose constraints, drift errors are re-distributed uniformly
(when all edges are weighted equally) along the estimated camera path to close
the loop. However, this is not reasonable because the drift errors, in general, do
not uniformly arise (parts of the scene with many features induce small errors
while parts with less features do large errors).

In this paper, we also employ graph optimisation to correct deformations. One
of our main contributions is the introduction to new geometric constraints for
better geometrically consistent redistribution of drift errors. The new geometric
constraints represent (ideally) exact relative positions in the real world between
different objects in the scene. We reason that a 3D model is deformed when
the relative positions between different objects that compose the scene do not
match their exact relative positions. Therefore, to remove deformations from the
3D model, we strive to ensure that the relative positions of all objects in the 3D
scene are as close as possible to their exact ones.

In order to generate such useful geometric constraints, two main difficulties
arise: (a) how to ensure that each object itself is not deformed? And (b) how
to obtain exact relative positions between different objects in the scene? One
solution to reduce possible deformations is that we reconstruct each object in
the scene from a short sequence of RGB-D images (as proposed in [19]). Multiple
instances of a single object may then be generated for a long sequence, and how
and when to merge them becomes crucial (as raised in [6]). We propose not to
merge multiple instances of the same object but rather we introduce identity
constraints that represent their relative positions. This allows more flexibility in
re-positioning all objects in the 3D scene.

Overall, we propose a two-stage strategy for 3D modeling using RGB-D cam-
eras where the 3D scene is represented using planar patches [15] for compact and
structured, yet accurate, 3D modeling. The first stage, called local mapping, aims
at generating, from short-time RGB-D image sequences, accurate small-scale
structured 3D scenes with minimal deformations and geometric constraints in
real-time. We here introduce a new model, called semi-global model, for tracking
the camera pose and merging incoming RGB-D data in real-time with state-of-
the-art accuracy. The second stage1, called global mapping, on the other hand,
aims at organising all the results obtained in the first stage to keep geometric
consistency of the whole scene. To remove deformations from the global model

1 The second stage runs in a parallel process to enable real-time 3D reconstruction.

Two-stage strategy for dense 3D reconstruction 3

as much as possible, we employ fragment registration and graph optimisation.
Namely, we align an input local model to multiple rigid fragments of the global
model, generate identity constraints between different instances of the same ob-
ject and use the graph optimisation framework to satisfy geometric constraints,
identity constraints, keyframe pose constraints and visibility constraints. Our
proposed method enables us to (1) recover fine details of the scene thanks to
employing the frame-to-global-model framework, (2) achieve real-time process-
ing thanks to using our semi-global model for tracking and fusing RGB-D data,
and (3) reconstruct large-scale indoor scenes without deformations thanks to
the capability of re-positioning the different objects in the scene with respect to
their exact relative positions.

2 Related work

In the last few years, much work has been proposed to fuse input RGB-D data
into a common single global 3D model.

Newcombe et al . [11] proposed KinectFusion: a system to build implicit 3D
representations of a scene from an RGB-D camera at an interactive frame-rate.
The implicit representation consists of a Truncated Signed Distance Function
(TSDF) that is discretized into a volume covering the scene to be reconstructed.
The TSDF is recorded into a regular voxel grid, which requires large amount
of memory usage. This limits the practicability of the method for large-scale
scenes. Then, much work has been done on extending the method for large-scale
applications [13], [16]. On the other hand, the use of non-regular volumetric grid
has been studied for compact TSDF representations. Zeng et al . [17] and Chen
et al . [5] proposed an octree-based fusion method. Neibner et al . [10] proposed
to use hash tables to achieve significant compression of the volumetric TSDF.
However, because of the accumulation of errors generated when registering and
integrating incoming RGB-D data, the global volumetric TSDF inevitably be-
comes deformed when applied to a large-scale scene. Moreover, correcting de-
formations in the volumetric TSDF is tedious and, in general, multiple passes
over the whole sequence of RGB-D images are required. This becomes a critical
limitation for large-scale applications.

Zhou et al . [18] proposed to use local volumes around points of interest,
and Henry et al . [6] proposed to segment the scene into planar patches and
to use 3D TSDF volumes around them to represent the 3D scene. In [6], a
pose-graph optimisation for loop closure was proposed where each vertex of the
graph is a planar patch connected to one or multiple keyframe(s). When a loop is
detected, it gives constraints on the relationship between patches and keyframes.
Optimising the graph to meet the constraints reduces deformations. When the
3D scene represented by old patches is deformed due to drift errors, however,
the rigid alignment is not reliable anymore. Moreover, a critical question about
when to merge overlapping patches in a loop is left open. Also, the processing
time drops drastically due to procedures for maintaining planar patches. Thomas
et al . [15], on the other hand, proposed a method that requires only three 2D

4 Diego Thomas and Akihiro Sugimoto

images, called attributes, for each planar patch to model the scene, which allows
more compact representation of the scene. Though they achieved significant
compression of the 3D scene, no discussion was given about how to deal with
deformations that arise when applied to large-scale scenes.

Meilland et al . [9] proposed a method to reconstruct large-scale scenes by us-
ing an image-based keyframe method. Multiple keyframes are recorded along the
camera path and merged together to produce RGB-D images from any viewpoint
along the camera path that can be used for robust camera tracking or visuali-
sation. Once the whole image sequence is processed, a cloud of point or a mesh
is generated by running a voxel-based reconstruction algorithm over the set of
keyframes. Loops may be closed using keyframes, and drifts in the estimated
camera pose can be corrected accordingly. However, uniformly redistributing
drift errors over the camera path is not reasonable at large scale because the
distribution of the errors is, in general, not uniform.

Zhou et al . [19] proposed to break the whole RGB-D image sequence into
short-time subsequences. The KinectFusion algorithm is applied to each short-
time subsequence and then local meshes of the scene are generated. After all sub-
sequences are processed, they run an elastic registration algorithm that combines
rigid alignment and non-rigid optimisation for accurate alignment and drift-error
correction. This method achieves state-of-the-art accuracy in 3D reconstruction.
However, the computational cost is expensive and the elastic registration is a
post-process, which prevents the method from real-time applications.

Differently from the above methods, this paper uses graph optimisation
framework with new geometric constraints built between planar patches rep-
resenting different objects and identity constraints built between planar patches
representing the same object to accurately and efficiently correct deformations
of the global model.

3 Proposed method

We break the whole sequence of RGB-D images into short subsequences (in our
experiments we used subsequences of 100 frames) and take a two-stage strategy
(Fig. 1), local mapping and global mapping, to build a large-scale 3D model.

We use planar patches [15] as the 3D scene representation. As shown in
[15] and [6], however, using sets of planar patches in the frame-to-global-model
framework significantly drops computational speed. In the local mapping, we
thus introduce a new model, called semi-global model, for camera tracking and
data integration. The attributes of all planar patches (i.e. Bump image (that rep-
resents local geometric disparity), Color image and Mask image (that represents
confidence of measurements)) are then built on-line from the semi-global model.
As we will show later, this allows us to keep real-time performance with state-
of-the-art accuracy. Geometric constraints are generated from the first frame
of each short subsequence. This is because the exact relative positions between
different objects in the scene are reliably estimated only from a single image
(deformations usually arise after merging multiple RGB-D images).

Two-stage strategy for dense 3D reconstruction 5

Stage 2

Stage 1

Create
accurate
local 3D
models

Local 3D model
(with constraints)

Local 3D model
(with constraints)

Local 3D model
(with constraints)

Geometrically consistent global 3D model (i.e., no deformations)

Subsequence #1 Subsequence #2 Subsequence #3

Fig. 1: Overview of our proposed strategy. The first stage generates local struc-
tured 3D models with geometric constraints from short subsequences of RGB-D
images. The second stage organises all local 3D models into a single common
global model in a geometrically consistent manner to minimise deformations.

In the global mapping, on the other hand, we build a graph where each vertex
represents either a patch generated from the local mapping or a keyframe, and
edges represent keyframe pose constrains [6], visibility constraints [6], our intro-
duced geometric constraints, or identity constraints of patches over keyframes.
Over the graph, we keep all similar planar patches (i.e. multiple instances of the
same object) without merging, which allows more flexibility in re-positioning
all the planar patches. Moreover, the geometric constraints enable us to redis-
tribute errors more coherently with respect to the 3D geometry of the scene.
This is crucial as in general, drift errors derived from camera tracking do not
uniformly arise.

3.1 Local mapping

To build local 3D models and generate their associated geometric constraints,
two challenges exist: (1) how to build the structured 3D model in real-time
and (2) how to generate ”good” geometric constraints (i.e. constraints that
represent the exact relative positions between all planar patches). We tackle
these challenges with keeping in mind accuracy, real-time processing and minimal
deformations. Fig. 2 illustrates the pipeline of the local mapping.

To tackle the first challenge, the frame-to-global-model framework has proven
to be successful. However, the set of planar patches itself cannot be directly used
as the global model. This is because (1) planar patches representation may not
be as dense as the input RGB-D images (non co-planar parts of the scene are
not represented), and (2) rendering all planar patches at every incoming frame
is time consuming and unwise (as many points on a patch may disappear from
the current viewing frustum and rendering such points is useless). Therefore, we

6 Diego Thomas and Akihiro Sugimoto

RGB-D
sequence

RGB-D and Mask
images

Keyframe #1
Keyframe #3

RGB-D and Mask
images

Planar patch

Planar patch

Bump Mask Color

Bump Mask Color

Structured local 3D model (set of planar patches
with attributes) with geometric constraints
(relative positions between all planar patches).

Align and merge incoming
RGB-D images Semi-global

model

S1 S2 S3

At first
frame of
S1

Geometric constraint

Structured local 3D model (set of planar patches
with attributes) with geometric constraints
(relative positions between all planar patches).

At first frame of S3

Fig. 2: Local mapping. A semi-global model is used for tracking the camera and
merging incoming RGB-D images. Local 3D models are built dynamically by
projecting (at every new incoming frame) the current semi-global model onto
the attributes of different planar patches that are detected from the semi-global
model at the first frame of each subsequence.

need to employ another 3D model to perform accurate, robust and fast camera
tracking and data integration. The standard TSDF volumetric representation is
not good because it requires too much amount of GPU memory to update the
attributes of all planar patches.

Semi-global model. Our semi-global model is defined as a pair of RGB-D
and Mask images. The semi-global model is initialised with the first frame of
the whole RGB-D image sequence. To generate predicted RGB-D and Mask
images, we use OpenGL capability with the natural quadrangulation given by
the organisation of points in the 2D image.

For each pixel (u, v) ∈ [1 : n − 1] × [1 : m − 1], a quad is created if Mask
values of its 4-neighbor pixels are all positive and if the maximum Euclidean
distance between all vertices at these pixels is less than a threshold (we used a
threshold of 5cm in the experiments). We render the mesh three times with (1)
depth information, (2) color information and (3) mask information, to generate
the predicted RGB-D and Mask images. Fig. 3 illustrates how to obtain the
predicted RGB-D and Mask images. The predicted RGB-D image is used to

Two-stage strategy for dense 3D reconstruction 7

0

0

0

0

3

5

4

3

5

1

0

1

0

0

0

3

2

3

1

6

1

2

2

0

1

2

2

3

2

5

0

0

3

0

0

1

1

1

2

5

4

0

4

0

1

2

2

3

5

6

0

0

0

2

2

1

4

0

0

0

0

1

2

3

0

0

0

0

1

0

0

0

0

0

0

3

0

0

0

3

1

0

0

2

0

0

0

0

0

0

0

0

2

4

1

3

1

2

0

0

0

1

1

0

2

2

1

2

0

0

2

0

0

2

3

0

0

3

0

2

1

1

1

0

0

0

0

2

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0

Mask image

0

0

0

0

3

5

4

3

5

1

0

1

0

0

0

3

2

3

1

6

1

2

2

0

1

2

2

3

2

5

0

0

3

0

0

1

1

1

2

5

4

0

4

0

1

2

2

3

5

6

0

0

0

2

2

1

4

0

0

0

0

1

2

3

0

0

0

0

1

0

0

0

0

0

0

3

0

0

0

3

1

0

0

2

0

0

0

0

0

0

0

0

2

4

1

3

1

2

0

0

0

1

1

0

2

2

1

2

0

0

2

0

0

2

3

0

0

3

0

2

1

1

1

0

0

0

0

2

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0

Quadrangulation

RGB-D image

OpenGL
rendering

Predicted RGB-D + Mask image

Current camera
pose 𝑇𝑐𝑢𝑟𝑟

Semi-global model

Fig. 3: Generating of predicted RGB-D and Mask images. We use OpenGL capac-
ities to render RGB-D and mask images corresponding to the estimated current
camera pose.

align the incoming RGB-D image using the technique described in [6], which
combines both geometric and color information. The predicted Mask image is
used to merge aligned data with a running average, as proposed in [15]. The
semi-global model is then renewed to the newly obtained pair of merged RGB-D
and Mask images. For every subsequence, the RGB-D image of the semi-global
model at the first frame of the subsequence is selected as a keyframe and recorded
on the hard drive.

Using the semi-global model enables us to keep real-time and accurate perfor-
mance because it quickly generates high-quality dense predicted RGB-D images.
Our proposed 3D model is semi-global in that all invisible points from the cur-
rent viewing frustum of the camera are lost (but recorded in the set of planar
patches that form the local 3D model).

As for the second challenge, a standard approach would be to incrementally
build the local 3D model by adding new planar patches on the fly as they are be-
ing detected (as done in [15] or [6]) and to generate geometric constraints at the
end of each subsequence by computing their relative positions. The relative po-
sitions (i.e. geometric constraints) between planar patches detected at different
times can be significantly different from the exact relative positions due to drift
errors. Therefore we propose to compute the geometric constraints only from a
single RGB-D image (the first of each subsequence). This is justified by the fact
that a single RGB-D image has few deformations and thus the relative positions
between objects detected in a single image are close to the exact ones. We detect

8 Diego Thomas and Akihiro Sugimoto

the set of planar patches from the first RGB-D image of each subsequence and
fix it over the subsequence.

Local 3D model. For each subsequence, we segment the first predicted RGB-
D image into several planar patches (together with their attributes) that form
our local 3D model. As proposed in [15], for each planar patch we use as its
attributes three 2D images: a Bump image, a Color image and a Mask image.
At every input frame, the attributes of each planar patch are updated using the
semi-global model as follows.

Each point p of the semi-global model is projected into its corresponding
planar patch. The values of Bump, Color and Mask images at the projected
pixel are all replaced by those of p if the mask value of p is higher than that at
the projected pixel (as explained in [15]).

Whenever all the process for a short subsequence of RGB-D images is fin-
ished, we record a generated local 3D model (i.e. the set of planar patches with
their attributes), as well as the current keyframe (i.e. the first predicted RGB-D
image) and geometric constraints on the planar patches.

3.2 Global mapping

The objective of the second stage is to fuse all local 3D models generated in the
first stage into a single geometrically consistent global 3D model with minimal
deformations. The main problem here comes from the accumulation of regis-
tration errors. If the global model becomes deformed, the rigid alignment of
new local 3D models to the (deformed) global model does not work. Moreover,
merging planar patches representing the same object will drastically corrupt the
global model. Even loop closure correction ([6]) does not work anymore, because
planar patches themselves become deformed. Applying non-rigid alignment of lo-
cal 3D models to the global model ([19]) is not good either, because of expensive
computational cost.

Our main ideas for the global mapping are (1) to always align new local 3D
models to undeformed subsets (called fragments) of the global model and (2) to
introduce new constraints (called identity constraints) at each successful rigid
alignment, rather than merging planar patches representing the same object.
This allows more flexibility in re-organising the global model. An identity con-
straint represents the relative position between planar patches representing the
same object in the scene that come from different local 3D models. A graph op-
timisation framework (namely, the g2o framework [4]) is then used to guarantee
geometric consistency of the global model (thus reducing deformations). Note
however that to obtain the final global 3D model in real-time, merging planar
patches is executed separately depending on the object and updated on-line as
the relative positions between all planar patches are being optimised.

Global graph. We organise all planar patches and keyframes into a global
graph that represents all constraints. Each vertex of the global graph represents

Two-stage strategy for dense 3D reconstruction 9

either a planar patch or a keyframe, and each edge represents either a geomet-
ric constraint, an identity constraint, a keyframe pose constraint or a visibility
constraint.

For each ith subsequence Seqi, we denote by Ki the keyframe of Seqi, by
Pseti = {P ij}j∈[1:mi] the set of mi planar patches built with Seqi. For each

planar patch P ij we denote by BBoxij the projected 3D bounding box of the

3D points in P ij into the plane equation (ei,j1 , ei,j2 ,ni,j , di,j) of P ij , where ni,j

is the normal of the plane, di,j the distance of the plane from the origin and
(ei,j1 , ei,j2 ,ni,j) form an orthonormal basis. ptij is the lower left corner of BBoxij .

Each planar patch P ij is represented by a vertex in the graph to which a 3D

transformation matrix V ij is assigned such that:

V ij =

[
ei,j1 ei,j2 ni,j ptij
0 0 0 1

]
.

Each keyframe Ki is represented by a vertex in the graph to which its pose
(matrix) Ti (computed during the local mapping) is assigned.

To each edge e = (a, b) that connects two vertices a and b, with transforma-
tion matrices Ta and Tb (respectively), we assign a 3D transformation matrix
Tedge that defines the following constraint:

TbT
−1
a T−1edge = Id,

where Id is the 4× 4 identity matrix. We detail in the following how to compute
Tedge for each type of edges.

1. Geometric constraints. For each subsequence Seqi we generate edges that
connect all planar patches with each other. For each edge (P ij , P

i
k) we assign

matrix TGeoi,j,k = V ik (V ij)−1 (i.e. the relative position) that defines the geomet-

ric constraint between P ij and P ik.
2. Identity constraints. Identity constraints are defined by the relative posi-

tions between planar patches representing the same object in the scene (by
abuse we will say that the planar patches are identical). Every time a set
of patches Pseti is registered to another set of patches Psetj , we generate
edges that represent identity constraints. We first identify identical planar
patches as follows. Two planar patches P ik and P jl are identical if and only

if ‖di,k − dj,l‖ < τ1, ni,k · nj,l > τ2 and overlap(P ik, P
j
l) > τ3, where · is

the scalar product, overlap(P ik, P
j
l) is a function that counts the number of

overlapping pixels between P ik and P jl and τ1, τ2 and τ3 are three thresholds
(e.g . 10cm, 20◦ and 3000 points respectively in the experiments). For every
pair of identical planar patches (P ik, P

j
l) we generate an edge, and assign to

it matrix T Idi,k,j,l = V il (V jk)−1 that defines the identity constraint.
3. Keyframe pose constraints [6]. For every two successive subsequences
Seqi and Seqi+1, we generate an edge (Ki,Ki+1), and assign to it matrix

TKeyi,i+1 = Ti+1T
−1
i that defines the keyframe pose constraint between Ki and

Ki+1.

10 Diego Thomas and Akihiro Sugimoto

4. Visibility constraints [6]. For each subsequence Seqi we generate edges so
that Ki is connected with any planar patch in Pseti. To each edge (Ki, P

i
j),

we assign to it matrix TV isi,j = V ij T
−1
i that defines the visibility constraint

between P ij and Ki.

On-line update of global graph. The global graph grows every time a local
3D model is generated. Once a local model Pseti comes, we first add vertices
for each planar patch P ij and a vertex for the keyframe Ki. We then add edges
so that Ki and Ki−1 (if i > 1) are connected, Ki and any entry in Pseti are
connected and all planar patches in Pseti are connected with each other (they
represent the keyframe pose constraint, visibility constraint and geometric con-
straint, respectively).

Second, we perform fragment registration of Pseti with multiple fragments
of the global graph to include Pseti into the global model while minimising
deformations as much as possible. We first identify a set of keyframes each of
which is sufficiently close to Ki, and divide the set into fragments so that each
fragment consists of only successive keyframes.

We define the set Si of the neighboring keyframes of Ki in the global graph
as follows:

Si = {Kj | d(Ki,Kj) < τd and α(Ki,Kj) < τα},

where d(Ki,Kj) and α(Ki,Kj) are the Euclidean distance between the centres
of two cameras, and the angle between the two viewing directions of the two
cameras (respectively) for the ith and jth keyframes (in the experiments, we set
τd = 3m and τα = 45◦).

We then break the set Si into p fragments: Si = {F 1
i , F

2
i , ..., F

p
i } = {{Ks1 ,

Ks1+1,Ks1+2, ...,Ks1+t1}, ..., {Ksp ,Ksp+1,Ksp+2, ...,Ksp+tp}} where for all j ∈
[1 : p− 1], sj+1 > sj + tj + 1. We reason that the local 3D models corresponding
to successive keyframes are registered together in a sufficiently correct (i.e. un-
deformed) manner to perform rigid alignment with Pseti. This is not the case
if the set of keyframes contains non-successive keyframes.

We then align Pseti with each of {F ji }j∈[1:p]. We align Pseti with a fragment

F ji (j ∈ [1 : p]) as follows. Let us denote by Psetji the set of all planar patches

connected to a keyframe in F ji .
We first initialise the transformation by using matches of SIFT features [8]

between Ki and Ksj . We use the RANSAC strategy here to have a set of matched
features. If the number of matched features is greater than a threshold (we used
a threshold of 30 in our experiments), then the transformation is initialised by
the matched features, it is set to the identity transformation otherwise.

After the initialisation, we applied the GICP algorithm [14] to align Pseti
and Psetji . Because of millions of points in Psetji , searching for the closest points
in a standard manner (using k-d trees for example) is not practical at all. Instead,
we borrow the idea of the projective data association algorithm [3], which can
be run efficiently on the GPU. Namely, for each planar patch Pl ∈ Pseti and

Two-stage strategy for dense 3D reconstruction 11

for each pixel (u, v) in the Bump image of Pl, we project the 3D point pt(u, v)
into all planar patches in Psetji . We then identify the closest point of pt(u, v)
as the point at the projected location with the minimum Euclidean distance to
pt(u, v) and with angle between the two normals sufficiently small (we used a
threshold of 40o in the experiments). If the minimum distance is greater than a
threshold (we used a threshold of 5cm in the experiments), then we regard that
pt(u, v) has no match.

After aligning Pseti with Psetji as seen above, we generate edges that repre-
sent the identity constraints, and then optimise the global graph using the g2o
framework [4]. We fix the poses of all planar patches in Pseti and those of all
planar patches in Psetsj . We also fix those of Ksj and Ki. The poses of the other
vertices are then optimised with respect to all constraints before proceeding to
align Pseti with the next fragment (if there is one). After each optimisation, all
planar patches are positioned such that (1) the relative positions between the
planar patches in the same local model are close to the exact ones (this reduces
the deformations between different objects in the scene), and (2) the relative
positions between planar patches representing the same object in the scene are
close to the relative positions obtained with fragment registration (this reduces
the deformations within each object in the scene).

4 Experiments

We evaluated our proposed method in several situations using real data. All
scenes were captured at 30 fps. We used a resolution of 0.4cm for attribute
images in all cases. The CPU we used was an Intel Xeon processor with 3.47
GHz and the GPU was a NVIDIA GeForce GTX 580. Our method runs at about
28 fps with a live stream from a Kinect camera.

Figure 4 (a) shows results obtained by our method using data rgbd dataset
freiburg3 long office household [2]. In this data-set, captured with a

Kinect camera, the camera turns around a small scale scene, which requires loop-
closure operations for 3D reconstruction. We compared results by our method
with those shown in [19]. Note that we used the mocap camera trajectory in
Fig. 4 (b) [7] as the ground truth. The circled parts on the the right side of
Fig. 4 (a) and on the left side of Fig. 4 (b) focus on the corner of the central
wall to attest the ability of each method to correct deformations. In the squared
boxes, we zoomed in a smooth surface (blue box) and thin details (red box) to
attest the capability of each method to generate fine details of the 3D scene.

Figure 4 (a) shows that our method succeeded in building a geometrically
consistent and accurate 3D model. As we can see in the circled parts, our method
significantly outperformed in accuracy the Extended KinectFusion method [13]:
to the part where there is only one corner, two corners of the wall are incorrectly
reconstructed by [13] while ours reconstructed it as one corner. This is because
[13] does not employ any loop closure. In the squared boxes, we can observe that
the amount of noise (spiky effects in the blue box) obtained by our method is
similar to that by [18] or the ground truth (the mocap trajectory). On the other

12 Diego Thomas and Akihiro Sugimoto

Top view Back view Front view

(a) Results obtained with our method with real-time performance

(b) Results shown in [19].

Extended KinectFusion [13] Zhou and Koltun [18] Mocap trajectory
(ground truth)

Zhou, Miler and Koltun [19]

Fig. 4: Results obtained with data long office household. The circled ar-
eas show the advantage of using loop-closure algorithms. Without loop-closure,
the scene was deformed. The blue boxes show smoothness of the reconstructed
surface. The image should be uniformly white when illuminated (spiky effects
comes from noise). The red boxes show ability to reconstruct thin details. Un-
fortunately, when using planar patches representation, some details were lost.

hand, [19] achieved better accuracy than ours: the surface is smoother on the
wall (blue box). Note that due to employing planar patches representation, our
method generated a 3D model that is less dense than that obtained by [18] or
[19]: parts of the chair in the red box are missing with our method. We remark
that, the results by [18] or [19] are off-line while ours are on-line.

Figure 5 (a) shows results obtained by our method using data copyroom
and data lounge (captured with an Xtion Pro Live camera) available at [1]. We
compared the results obtained by our method with the state-of-the-art results
[19] on these two datasets. The dataset copyroom consists of 5490 RGB-D
images and contains a loop while the dataset lounge consists of 3000 RGB-D
images and does not contain any loop. We displayed top-views of the obtained
3D models to attest the amount of deformations of the reconstructed scenes.
From these results we can see that our method was able to reconstruct the 3D
models in details at large scale without deformations, similarly as in [19]. We

Two-stage strategy for dense 3D reconstruction 13

Our proposed method Zhou et.al [19] Our proposed method Zhou et.al [19]

(a) Data COPYROOM (b) Data LOUNGE

Fig. 5: Top views of two reconstructed scenes. Our method can build geometrical
consistent large-scale 3D scenes in real-time. Our proposed method also allowed
us to obtain color information of the 3D scene.

remark that our results were produced on-line, while those by [19] were off-line.
Moreover, with our method we could generate textured 3D models while texture
is not available in the results by [19].

We scanned an indoor scene of 10m by 5m, called Office, with a Kinect
camera. The dataset contains 8500 images. This scene is challenging in that de-
formations become evident at some parts (inside the green circle) in the middle of
the scene due to unconnected objects (e.g . opposite faces of the central wall), in
addition to complex camera motion. As a consequence, deformations of the gen-
erated 3D model can be easily observed, and thus the advantage of introducing
geometric constraints can be highlighted. Fig. 6 shows the results by our method
with/without using geometric constraints ((a) v.s. (b)) and with/without apply-
ing fragment registration ((a), (b) v.s. (c)). The improvement of the obtained
results using our geometric constraints for the fragment registration is signif-
icant, as shown in the circled parts. Fig. 6 (c) shows that, without handling
deformations (i.e. without fragment registration), results are catastrophic.

5 Conclusion

We proposed a two-stage strategy, local mapping and global mapping, to build
in details large-scale 3D models with minimal deformations in real time from
RGB-D image sequences. The local mapping creates accurate structured local
3D models from short subsequences while the global mapping organises all the
local 3D models into a global model in an undeformed way using fragment reg-
istration in the graph optimization framework. Introducing geometric and iden-
tity constraints facilitates repositioning planar patches to remove deformations
as much as possible. Our method produces 3D models of high quality, without
deformations and in real-time, even for large-scale scenes.

14 Diego Thomas and Akihiro Sugimoto

(c) Without fragment registration (b) With fragment registration but
no geometric constraints

(a) With fragment registration
and geometric constraints

Fig. 6: Comparative results obtained with data Office. The improvement of
the obtained results using geometric constraints for the fragment registration is
significant, as shown in the circled parts.

References

1. 3D Scene Dataset: http://www.stanford.edu/~qianyizh/projects/scenedata.
html.

2. RGB-D SLAM Dataset and Benchmark: http://vision.in.tum.de/data/

datasets/rgbd-dataset.
3. G. Blais and M.D. Levine. Registering multi vie range data to create 3D computer

objects. IEEE Trans. on PAMI, Vol. 17, No. 8, pp. 820-824, 1995.
4. R. Cameral, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard. g2o: A general

framework for graph optimisation. Proc. of ICRA, 2011.
5. J. Chen, D. Bautembach, and S. Izadi. Scalable real-time volumetric surface re-

construction. ACM Transactions on Graphics, 32(4):1132:1–113:8, 2013.
6. P. Henry, D. Fox, A. Bhowmik, and R. Mongia. Patch volumes: Segmentation-

based consistent mapping with RGB-D cameras. Proc. of 3DV’13, 2013.
7. P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox. RGB-D mapping: Using

Kinect-style depth cameras for dense 3D modelling of indoor environments. Inter-
national Journal of Robotics Research, 31(5):647–663, 2012.

8. D.G. Lowe. Object recognition from local scale-invariant features. Proc. of ICCV,
1150-1157, 1999.

9. M. Meilland and A. Comport. On unifying key-frame and voxel-based dense visual
SLAM at large scales. Proc. of IROS, 2013.

10. M. Neibner, M. Zollhofer, S. Izadi and M. Stamminger. Real-time 3D reconstruc-
tion at scale using voxel hashing. ACM Transactions on Graphics, 32(6):169:1–
169:11, 2013.

11. R. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. Davison, P. Kohli,
J. Shotton, S. Hodges, and A. Fitzgibbon. Kinectfusion: Real-time dense surface
mapping and tracking. Proc. of ISMAR’11, 127–136, 2011.

12. C. Nguyen, S. Izadi, and D. Lovell. Modeling kinect sensor noise for improved 3D
reconstruction and tracking. Proc. of 3DIM/PVT’12, 524–530, 2012.

13. H. Roth and M. Vona. Moving volume kinectfusion. Proc. of BMVC, 2012.
14. A. Segal, D. Haehnel, S. Thrun. Generalized-ICP. Robotics: Science and Systems,

2009.

Two-stage strategy for dense 3D reconstruction 15

15. D. Thomas and A. Sugimoto. A flexible scene representation for 3D reconstruction
using an RGB-D camera. Proc. of ICCV, 2013.

16. T. Whelan, J. McDonald, M. Kaess, M. Fallon, H. Johansson, and J. Leonard.
Kintinuous: Spatially extended kinectfusion. Proc. of RSS Workshop on RGB-D:
Advanced Reasoning with Depth Camera, 2012.

17. M. Zeng, F. Zhao, J. Zheng, and X. Liu. Octree-based fusion for realtime 3D
reconstruction. Transaction of Graphical Models, 75(3):126–136, 2013.

18. Q.-Y. Zhou and V. Koltun. Dense scene reconstruction with points of interest.
ACM Transaction on Graphics, 32(4):112:1–112:8, 2013.

19. Q.-Y. Zhou, S. Miller and V. Koltun. Elastic fragments for dense scene reconstruc-
tion. Proc. of ICCV, 2013.

