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Fig. 1. SlamDunk creates in real-time high quality point clouds in diverse settings, such as e.g.
object scanning and reconstruction of indoor environments.

Abstract. We propose an effective, real-time solution to the RGB-D SLAM
problem dubbed SlamDunk. Our proposal features a multi-view camera tracking
approach based on a dynamic local map of the workspace, enables metric loop
closure seamlessly and preserves local consistency by means of relative bundle
adjustment principles. SlamDunk requires a few threads, low memory consump-
tion and runs at 30Hz on a standard desktop computer without hardware accel-
eration by a GPGPU card. As such, it renders real-time dense SLAM affordable
on commodity hardware. SlamDunk permits highly responsive interactive oper-
ation in a variety of workspaces and scenarios, such as scanning small objects
or densely reconstructing large-scale environments. We provide quantitative and
qualitative experiments in diverse settings to demonstrate the accuracy and ro-
bustness of the proposed approach.

Keywords: RGBD SLAM, real time SLAM, relative bundle adjustment, camera
tracking

1 Introduction

For many years, the Simultaneous Localization And Mapping (SLAM) problem has
been addressed mainly by deploying either expensive and accurate 3D sensors, e.g.
laser scanners, or monocular RGB cameras. Though impressive results dealing with
laser measurements have been reported in literature [3, 17], size, cost and computa-
tional issues limit the range of addressable applications significantly. On the other hand,
though monocular SLAM has reached a considerable maturity [6, 13], it still mandates
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dedicated hardware acceleration, e.g. by GPGPU processing, to attain dense 3D recon-
struction in real-time [19].

Nowadays, consumer-grade RGB-D cameras capable of delivering color and depth
in real-time, such as the Microsoft Kinect and Asus Xtion Pro Live, gain increasing
interest as low-cost and low-power sensors suited to both robot platforms, e.g. in per-
sonal/service robotics, as well as user-operated systems. As for SLAM, real-time scan-
ning based on GPGPU processing has been demonstrated by the well-known KinectFu-
sion system [18], while most existing approaches deploying RGB-D cameras without
any hardware acceleration run notably slower.

In this work we propose a novel SLAM system for RGB-D cameras designed to
be accurate, robust and as efficient as to operate in real-time without any kind of hard-
ware acceleration. As illustrated in Fig. 1, the system can scan small objects as well as
reconstruct large scale environments like a room or an entire apartment. The proposed
approach creates a local map of the workspace which enables multi-view feature track-
ing. Scalability and real-time operation are achieved by smart feature selection and by
avoiding global optimization through relative bundle adjustment [22]. However, unlike
previous proposals [14, 24, 10, 8], we never marginalize point matches so to take advan-
tage of all the available information for pose refinement. The code of our system will be
soon made available under an open-source license and, to render usage as easy as pos-
sible, endowed with a clean interface to adjust only a few key parameters. We believe
that our system will allow any user, equipped with an RGB-D sensor and commodity
hardware, to scan and reconstruct in real-time indoor environments both effortlessly
and effectively. Hence, we dub it SlamDunk.

The remainder of this paper is organized as follows. Next section reviews related
publications and highlights similarities and differences with respect to our proposal.
Sec. 3 presents the notation used throughout the paper. The proposed method is de-
scribed in Sec. 4 and the experimental findings reported in Sec. 5. Finally, in Sec. 6 we
outline some concluding remarks and potential research directions.

2 Related Work

Besides GPU-based approaches [18, 26, 5], a few other methods try to solve the SLAM
problem for the specific case of RGB-D cameras. Two relevant approaches are RGB-D
Mapping, introduced by Henry et al. [10], and the very similar RGB-D SLAM system,
proposed by Endres et al. [8]. In both, visual features are extracted and matched to find
correspondences between the current and previous frame (or previous keyframe). Then,
2D feature points are projected into the 3D space thanks to the available depth measure-
ments and camera pose is estimated robustly by RANSAC-based Absolute Orientation
[1]. We adopt the visual features approach alike, but within a multi-view matching
scheme which provides more robust tracking especially when the previous frame is not
informative enough. In RGB-D Mapping [10] camera pose estimation is further refined
by ICP-like alignment, which yields improvements mainly in rather dark or texture-less
environments. Loop closure is explicitly addressed by separately matching a subset of
previous frames (or keyframes) to the current one. Instead, our multi-view feature pool
is built dynamically along with camera movement, thereby also handling metric loop



SlamDunk: Affordable Real-Time RGB-D SLAM 3

closure inherently during camera tracking. Both the above mentioned systems, and ours
alike, refine camera trajectory through pose graph relaxation [15]. However, inspired by
[9], we consider all the relevant feature matches instead of marginalizing to pose-pose
constraints. Finally, RGB-D Mapping as well as RGB-D SLAM achieve real time op-
eration only when using binary features [20] or GPU acceleration [27].

A different research line deals with dense estimation of the visual odometry between
two consecutive RGB-D frames, as proposed by Steinbruecker et al. [23] and Kerl et

al. [12]. However, their work is more focused on low-drift pairwise tracking rather than
on development of a full-fledged SLAM system. Accordingly, they simply create a new
keyframe every time the current frame can no longer be matched to the last keyframe,
thus likely wasting memory in presence of a loopy trajectory. Furthermore, detection
of a keyframe is followed by a loop closure detection which considers as candidates all
camera poses within a certain translation distance. As already mentioned, loop closure
is instead handled inherently by our tracking proposal. Finally, [23, 12] perform a pose-
pose graph optimization similarly to [10, 8].

More recently, two other real-time RGB-D SLAM systems running on a CPU have
been proposed. Scherer and Zell [21] combine the well-known PTAM [13] with the
relative bundle adjustment approach [22]. They select the best keyframe for tracking
by feature re-projection, then a pairwise alignment based on sparse optical flow and
RANSAC-based pose estimation is deployed. Instead, we propose a multi-view tracking
engine, so to attain higher accuracy on the same benchmark dataset.

Dryanovski et al. [7] have proposed a real-time visual odometry system based on an
ICP-like registration between keypoints on the current frame and a sparse 3D landmark
map. However, real-time operation is achieved with QVGA image resolution, while in
this work we deploy full VGA images. Also, they update landmarks’ positions using a
Kalman filter, while we adopt local camera trajectory optimization.

It is worth pointing out that one of the main contributions of SlamDunk consists in
the use of an active window of keyframes (see Sec. 4.1), which is both novel and key
to our multi-view tracking approach. Indeed, other methods based on feature tracking,
e.g. PTAM [13], cannot handle large workspaces due to the exceedingly large number
of features that would be considered as candidates for tracking. On the other hand,
proposals conceived to deal with long mapping paths, such as [24, 22], find the active
region following the existing connections between keyframes along the camera path;
instead, by relying on the current camera position only, we foster the creation of links
and, possibly, close short and medium size loops seamlessly.

3 Preliminaries

Throughout the paper we will assume to receive RGB-D frames from a camera, such as
the Microsoft Kinect or the Asus Xtion Pro Live, so that at each time stamp i there exist
a color image, Ci, and a depth map, Di. Camera intrinsic parameters are known and the
depth map is warped so to match the color image pixel-by-pixel. Thus, given the RGB
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Fig. 2. The SlamDunk pipeline comprises three main modules: Local Mapping (blue dotted line),
Camera Tracking (red dashed line) and Local Optimization (green dash-dot line).
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Then, the global coordinates of p are obtained by rotation and translation according to
the estimated camera pose, generally written as a 3× 3 rotation matrix R and a transla-
tion vector t ∈ R

3. Hereinafter, we will denote the camera pose at time i as

Ti =

(

Ri ti

0 1

)

(3)

and the corresponding global coordinates of pi as Ti [p].

4 The SlamDunk Algorithm

As depicted in Fig. 2, the proposed SLAM algorithm can be decoupled into three main
modules, namely Local Mapping (Sec. 4.1), Camera Tracking (Sec. 4.2) and Local
Optimization (Sec. 4.3).
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As for the first module, we model the camera path as a collection of keyframes and
store their poses within a quadtree data structure. However, as suggested by [24, 22],
to permit exploration of large workspaces we do not consider the whole path for track-
ing and mapping but, instead, dynamically select a subset of neighboring keyframes,
referred to as active keyframe window, which creates a local map of the workspace that
gets updated smoothly along with camera motion.

Following the pipeline in Fig. 2, each incoming RGB-D frame, made out of a color
and depth image, is fed to the Camera Tracking module, which estimates the current
camera pose. Purposely, visual features, such as SIFT [16] or SURF [2], are extracted
from the color image and matched against the local map of the environment. More
precisely, the features found in the current frame are matched into an indexing structure,
referred to as Feature Pool in Fig. 2, which stores all the features extracted from the
color images of the frames belonging to the active keyframe window. Then, incorrect
matches are filtered by means of a few RANSAC iterations and camera pose estimated
from the inlier set.

Joint optimization of camera poses helps counteracting tracking errors and minimiz-
ing drift. As highlighted in Fig. 2, for the sake of efficiency SlamDunk optimizes poses
locally and upon detection of a new keyframe rather than after tracking each incoming
frame. Keyframe detection is based on the overlap between the current frame and the
local map, thus effectively selecting those frames which contribute to better cover the
explored environment. As executing a costly global optimization across all keyframes
would hinder exploration of large workspaces, we rely on an efficient Local Optimiza-
tion module which enforces consistency between a subset of keyframes linked to the
newly spawned one. Our approach is particularly effective with very loopy trajectories,
as when the camera comes back frequently to previously explored locations, we do not
repeatedly spawn keyframes, as, e.g., [8, 23] would, but instead hook up to the known
map. Moreover, as discussed in Sec. 4.4, by combining information from camera track-
ing and the local map, SlamDunk can infer loop closure and trigger a local optimization
accordingly.

Finally, as with RGB-D cameras every color image is paired with a corresponding
depth map, a complete, dense reconstruction of the environment is achieved by back
projection and, possibly, raycasting into a 3D occupancy grid [11]. Accordingly, Slam-
Dunk provides dense 3D reconstruction in real-time without any post-processing step.

4.1 Local Mapping

Unlike [24, 22], to select the subset of neighboring keyframes determining the local
map of the workspace, we neither measure the distance between keyframes according
to the estimated camera path nor we count the number of tracked features. Indeed, as
illustrated in Fig. 3, we index two coordinates of the 3D translation vectors estimated
for all keyframes into a quadtree approximately parallel to the ground floor. Then, to
obtain the active keyframe window, i.e. the local map of the workspace, we just query
the quadtree for a squared window of size W around a given camera pose. The choice of
a quadtree data structure enables faster insertion and retrieval than more complex index-
ing approaches such as octrees or KD-Trees. The query to define a new active keyframe
window is performed whenever a new keyframe is spawned and, more precisely, after
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Fig. 3. Keyframe poses are indexed and retrieved within a quadtree structure. A squared window
(red square) centered at a given pose (red triangle) is built and queried to get the active keyframes
(blue triangles).

the related Local Optimization (Sec. 4.3), so that the query is centered at the optimized
pose of the newly created keyframe.

The visual features associated with active keyframes are gathered and indexed into
a single KD-Tree structure, the Feature Pool in Fig. 2. Moreover, the number of indexed
features is further reduced by considering the frustum of the camera pose placed at the
center of the active window, so we accept a visual feature iff the corresponding 3D point
lies inside that volume, i.e. it is actually visible from that viewpoint.

Finally, even though the current frame is not spawned as a keyframe, we might still
need to move the active keyframe window. Indeed, if the camera moves back to an al-
ready well mapped location, there would be no need to create new keyframes; however,
as the camera moves the overlap with the local map inevitably decreases so that, al-
though useless and costly, a new keyframe is eventually created. This issue can be dealt
with by having the active window follow camera movements. Though, in principle, the
active window may be moved after every frame, such an approach usually implies a
high computational effort and often small or no improvements at all. Therefore, a more
efficient strategy consists in moving the active window only upon a significant camera
shift with respect to the center of the local map. Accordingly, we compare the relative
translation between the currently estimated pose and the active window center (referred
to as “Shift” in Fig. 2): if this is found above a threshold T , we move the active window
and recompute the feature pool.

4.2 Camera Tracking

Camera pose estimation is achieved through feature tracking across multiple views.
Visual features [16, 2] are extracted from the current RGB image and matched to the
Feature Pool, i.e. the dynamic KD-Tree which stores the features associated with active
keyframes (Sec. 4.1). We perform an approximate search with high confidence and a
few threads (e.g. 4, as reported in Tab. 3) in order to reduce the overall complexity
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and thus search time. The KD-Tree search is the sole parallelized block of the entire
pipeline.

The matching scheme is inspired by the ratio criterion described in [16]: given a
threshold θ ∈ [0,1], we accept a match with Euclidean distance d0 iff the next-closest
feature provides a distance d1 such that θ ′ = d0/d1 < θ . However, if a feature from the
current frame has been also extracted from two different active keyframes, a correct
matching step would return a ratio almost equal to 1, making it impossible to detect
meaningful matches. Therefore, we compute such ratio looking for the next-closest
feature belonging to the same keyframe as the closest one. Accordingly, we aim at the
best matches from the most similar views.

It is worth pointing out that our multi-view matching scheme enables seamless re-
covery from tracking failures as long as the camera does not exit the current local map.
Tracking failures may occur due to the camera being directed towards a featureless area
of the scene or moved while temporarily occluded. In more general terms, a SLAM sys-
tems based on pairwise feature matching [10, 8, 23] is inherently prone to failure in case
of no or low overlap between the current and previous frame (or previous keyframe).
On the other hand, our multi-view approach may keep tracking even under these cir-
cumstances, as shown in the supplementary material.

As correspondences are sometimes incorrect, an outlier rejection strategy is em-
ployed after the feature matching phase. For each feature pair, we back project in 3D the
associated pixels, thus obtaining 3D point correspondences between the current frame
and the active window. Then, a standard RANSAC-based Absolute Orientation pro-
cedure [1] removes false correspondences and allows robust estimation of the current
camera pose.

Once the pose of the current frame has been estimated, we decide upon keyframe
spawning. This is a crucial step in every keyframe-based SLAM framework [24, 13]: a
fine sampling strategy would inevitably waste memory, while keeping too few frames
may lead to a tracking failure. Our approach is to rely on the amount of overlap between
the frame and the current local map. Accordingly, we coarsely divide the frame into
N ×M cells and count how many contain more than F features successfully matched
into the Feature Pool: if the count is smaller than a threshold τ , a new keyframe is
created. Though very simple, we found this approach to provide good tracking quality
under a variety of diverse circumstances.

4.3 Local Optimization

Keyframe detection brings in a vast amount of fresh information about the environment,
sometimes even a loop closure. Hence, we refine our estimates and reduce relative map-
ping errors by means of camera pose optimization. Following Kümmerle et al. [15], we
map the problem onto a general (hyper) graph, where vertexes represent the unknown
6DOF camera poses and edges encapsulate constraints to be satisfied. In particular, we
minimize the following cost function

F(T0, . . . ,Tn−1) = ∑
(mi,m j)∈C

wi j

∥

∥ei j

∥

∥

2
(4)
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Fig. 4. Local mapping (R = 3). Starting from the selected root (“root” - blue), a breadth-first
search reveals the first (“R1” - yellow), the second (“R2” - yellow) and the third (“F” - red) ring.
The vertexes in the red ring are kept fixed. The white vertex (“out”) does not contribute at all to
the minimization problem.

where {T0, . . . ,Tn−1} are the unknown poses, C is the set of feature matches between

keyframes and wi j

∥

∥ei j

∥

∥

2
is the cost associated to a feature match, with wi j ∈ [0,1]

representing a weight related to the degree of confidence of the match (i.e. 1−θ ′
i j, see

Sec. 4.2). Exploiting the relationship between the RGB and Depth images, constraints
between pixels, i.e. feature matches, are turned into constraints between 3D points (see
Sec. 3). Thus, the ei j term in Eq. (4) can be written as

ei j = pi −T−1
i T j [p j] (5)

where (pi,p j) is the 3D point match associated to the feature match (mi,m j) ∈ C and
(Ti,T j) their respective camera poses.

Inspired by [22, 24], instead of a time consuming global optimization, we devise a
local optimization approach. As illustrated in Fig. 4, we pick the last detected keyframe
as root for a breadth-first search into the optimization graph. Then, all the vertexes
found in the first R rings from the root are included into the optimization problem.
However, those belonging to the outermost ring only provide constraints (edges) to the
problem but are not subject to optimization, i.e. they are treated as constants rather
than unknowns. This way, we ensure that the local pose configuration does not move
w.r.t. the rest of the pose graph. If we find no camera poses in the Rth ring, then we fix
the root in order to avoid gauge freedom. Thus, we dynamically adapt the optimization
procedure to the local configuration, with just a small overhead as the map size increases
and always preserving local consistency.

4.4 Metric Loop Closure

SlamDunk handles loop closure both implicitly as well as explicitly. As for the former
modality, it is worth pointing out that the keyframes comprising the active window in
Fig. 3 are spatially adjacent but not necessarily temporally close one to another along
the camera path. This means that spatially adjacent keyframes gathered at distant times
can contribute to the local map against which the camera is tracked: as such, tracking
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seamlessly deploys metric loops although no explicit detection is carried out. However,
such implicit handling of loop closures would not trigger any pose optimization unless
a new keyframe linking the two opposite endpoints of the loop is spawned, this event
depending on the degree of overlap between the current frame and the local map, which
is a criterion unrelated to loop closure detection. Therefore, we also explicitly detect
metric loops by analysis of the pose graph. More precisely, upon successful tracking,
if the overlap between the current frame and the local feature map does not legitimize
the creation of a new keyframe, we still check whether at least a pair of keyframes
matching the tracked frame would exhibit a shorter mutual distance on the pose graph
because of the new links thus created. In such a case, we promote the tracked frame as
a new keyframe and trigger a local optimization. In particular, given the list of matched
keyframes, we measure the mutual shortest paths in the pose graph. If there exists a pair
of such keyframes at a distance greater than a threshold, we insert the current frame
in the map as a new keyframe, thus shortening their distance. We found a proper value
for the threshold to coincide with the number of rings, R, used for the Relative Bundle
Adjustment step of Sec. 4.3.

5 Experimental Results

In this section we evaluate our proposal both quantitatively and qualitatively. As for
quantitative experiments, we use several sequences from the publicly available RGB-
D benchmark dataset [25], which includes color and depth streams from a Microsoft
Kinect and Asus Xtion Pro Live cameras, as well as ground truth data obtained by
a motion capture system which tracks camera movements. Due to the complexity of
the testing environment, the estimated ground truth is sometimes not very accurate;
nevertheless quantitative results are still meaningful and useful to compare different
SLAM systems. In particular, Tab. 1 reports the results obtained by SlamDunk (SD) on
four Kinect sequences together with those published by the authors of a similar sys-
tem based on visual features, i.e. RGB-D SLAM [8]. As for SlamDunk, we test here
three different variants, each relying on a different state-of-the-art feature detector and
descriptor, namely SIFT (SD-SIFT) [16], SURF (SD-SURF64) and extended SURF
(SD-SURF128) [2], from the OpenCV implementation[4]. Throughout all the quantita-
tive and qualitative experiments described in this Section, the other parameters of our
method are set to the values reported in Tab. 3. The results reported in Tab. 1 vouch
that SlamDunk is typically more accurate that RGB-D SLAM regardless the adopted
visual features. Moreover, SD-SIFT runs at 6/8 FPS, SD-SURF128 at 20/25 FPS (with
a maximum of 30 FPS) and SD-SURF64 at 35/40 FPS. Conversely, RGB-D SLAM
achieves real-time operation only when using ORB features [20] or GPU acceleration.
On average, the feature matching and outlier rejection steps take about 2 ms, while the
feature pool update, which scales with the size of the active window, usually requires
from 4.8 to 14.6 ms. The local optimization step could be the most time consuming,
since it strongly depends on the number of active camera poses and their corresponding
matches. In our experiments it required from 3.6 to 37.3 ms, though, being the opti-
mization run only upon keyframe creation, its impact on the overall performance is
limited.
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Table 1. RMSE of absolute trajectory error (meters) on four sequences from the freiburg1 RGB-D
SLAM benchmark dataset (Microsoft Kinect camera).

Sequence SD-SIFT SD-SURF64 SD-SURF128 RGB-D SLAM

fr1/xyz 0.017 0.016 0.016 0.021

fr1/360 0.111 0.101 0.084 0.103

fr1/desk 0.022 0.027 0.025 0.049

fr1/floor 0.044 0.052 0.042 0.055

AVERAGE 0.048 0.049 0.042 0.057

Table 2. RMSE and median of absolute trajectory error (meters) on three sequences from the
freiburg3 RGB-D SLAM benchmark dataset (Asus Xtion Pro Live camera).

Sequence SD-SIFT SD-SURF64 SD-SURF128

fr3/long office
household

RMSE 0.023 0.026 0.027

median 0.021 0.024 0.022

fr3/structure texture
near

RMSE 0.012 0.015 0.016

median 0.007 0.011 0.012

fr3/structure texture
far

RMSE 0.024 0.024 0.025

median 0.022 0.019 0.015

fr3/teddy
RMSE 0.069 0.095 0.089

median 0.033 0.056 0.067

AVERAGE
RMSE 0.032 0.040 0.039

median 0.021 0.028 0.029

Table 3. SlamDunk parameters used throughout the experiments

Number of Threads
for KD-Tree Search

4

W 5m

T 5%W = 0.25m

θ 0.8

N,M 4

F 1

τ 80%

R 3
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Fig. 5. Details of the room shown on the right image of Fig. 1.

Tab. 2 provides additional quantitative results on four sequences of the RGB-D
benchmark dataset captured by an Asus Xtion Pro Live. To the best of our knowl-
edge, the results achieved by RGB-D SLAM on these sequences are not available in
any publication. Nonetheless, we report ours in Tab. 2, so to allow other researchers to
compare quantitatively their methods to SlamDunk. Basically, these additional results
on a different pool of sequences taken with a different camera confirm the good accu-
racy of our method. Between the three variants, SD-SIFT behaves consistently slightly
better on the Asus Xtion sequences. However, the use of SURF features in SlamDunk
provides overall the best trade-off between speed and accuracy. The Table reports also
the median value of the absolute trajectory error, so to highlight how, in some cases,
the median is significantly smaller than the RMSE, which is a symptom of a few larger
errors within a trend of more accurate pose estimations than measured by the RMSE.

The effectiveness of our proposal can also be judged from qualitative results at-
tained on sequences captured by an Asus Xtion Pro Live camera moved freely in the
workspace. Purposely, we show qualitative results addressing three diverse scenarios:
object scanning (Fig. 1), complete reconstruction of a room (Fig. 1 and Fig. 5) and
robot navigation within an apartment (Fig. 6). Finally, we provide additional qualita-
tive results in the supplementary material. In particular, a video shows detailed navi-
gation within the 3D reconstruction depicted in the right image of Fig. 1 and around
the scanned object in the central image of Fig. 1. Moreover, we include a sequence that
shows real-time 3D reconstruction of a Lab environment and demonstrates the ability
of SlamDunk to recover from tracking failures due to the camera undergoing motion
while the lens is temporarily occluded (as discussed in Sec. 4.2).

6 Final Remarks

We have presented SlamDunk, a novel real-time algorithm which allows for solving
effectively the Visual SLAM problem with a few CPU-threads, small memory require-
ments and no hardware acceleration. Thanks to its peculiar traits, the approach de-
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Fig. 6. A simulated robot navigation through an apartment.

scribed in this paper may represent a relevant step towards rendering real-time dense
SLAM amenable to low-cost, low-power platforms, so to foster further research and
pave the way for a host of new scenarios. In particular, the realm of mobile applications
may soon become addressable, should the foreseeable advent of RGB-D sensing on off-
the-shelf tablets and smartphones turn into reality 1. Hence, we are currently working
to create an implementation of SlamDunk suited to Android tablet devices.

1 For example, the Structure sensor (http://structure.io/) as well as the Project Tango tablet by
Google are scheduled for availability in 2014
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