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Abstract. We describe a method for human parsing that is straight-
forward and competes with state-of-the-art performance on standard
datasets. Unlike the state-of-the-art, our method does not search for
individual body parts or poselets. Instead, a regression forest is used
to predict a body configuration in body-space. The output of this re-
gression forest is then combined in a novel way. Instead of averaging
the output of each tree in the forest we use minimax to calculate opti-
mal weights for the trees. This optimal weighting improves performance
on rare poses and improves the generalization of our method to differ-
ent datasets. Our paper demonstrates the unique advantage of random
forest representations: minimax estimation is straightforward with no
significant retraining burden.

Keywords: Human pose estimation, regression, regression forests, min-
imax

1 Introduction

In this paper, we address the problem of human pose estimation from a single
RGB image. Pose estimation (or parsing) takes an image that is known to contain
a person and reports locations of some body parts (typically head, torso, upper
arms, lower arms, upper and lower legs). Parsing is a core vision problem with
a long history. Despite much recent activity[1–6], it remains very difficult to
produce fast, accurate parses.

All current parsers use local part models of some form to identify body layout.
Unlike existing methods that require complex inference or search, we train a
regression forest to predict multiple poses for a test image. This set of proposals,
depicted in Figure 1, defines the problems of finding the best prediction for an
example or of combining the predictions in an optimal way.

In our paper we apply a minimax optimization that improves our method’s
accuracy and generalizability. We explain how regression forests have a unique
advantage over other methods since minimax estimation is easy to apply to
their outputs without re-training. Our experiments show the sharp improve-
ments made by the minimax optimization on rare poses and on different datasets.
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Contributions: Our approach to pose estimation is simple and compares to
state-of-the-art results. By applying the minimax optimization method to the
output of regression forests we have presented a new approach to pose estimation
that finds an optimal combination of pose predictions. This lets us significantly
improve the accuracy and the generalization of our results on hard datasets.

Table 1. (top) By utilizing regression forests our system is able to make multiple
predictions for a joint location in an image. Images in the top row are from the FLIC
dataset and show the original predictions made by each tree in a 10-tree forest for right
(magenta) and left (cyan) wrists. (bottom) The advantage to using regression forests is
that their output is quickly and easily recombined to improve predictions. We present
an optimization over the forests that predicts an alternative weighting for the trees.
The uniformly-weighted prediction over the tree outputs have been marked in cyan
and the optimally re-weighted predictions in magenta.

2 Background

For single images, it is usual to model body segments with rectangles. One then
parses by solving an optimization problem to place these segments on the image.

Felzenszwalb and Huttenlocher showed how to produce highly efficient match-
ers for tree-structured models [7] (see also [8]). Most work since then assumes
a tree-structured model (e.g. [6, 9]). There have been efforts to build models
beyond trees, e.g. loopy graphs [10–12], mixtures of trees [8, 13], and fully con-
nected graphs [3], and there is some evidence that the advantages due to such a
model outweigh the disadvantages of approximate inference.

The key challenge of using full relational models is how to perform learn-
ing and inference efficiently. This has led to intense activity exploring pruning
strategies [14–16, 3, 5]. All part-based parsers must manage a tradeoff: limb ap-
pearance models that are specialized to a particular image tend to yield better
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parses (for example, one can exploit the color of clothing), but obtaining such a
specialized appearance model from a single image is hard to do. Various strate-
gies have evolved, including re-estimation of the appearance model [9], strong
priors on appearance [17], and using small, generic models [1].

One alternative is to look at the body on a longer spatial scale. Bourdev et
al. [18] suggest that one should directly detect poselets — stylized structures
on the body — then infer body configuration (respectively segmentation of the
body [19]; body attributes [20]) from those poselets. One could produce a parse
by directly decoding poselet response vectors [21], or by insisting on consistency
between body segment detectors, local poselets, and long-scale poselets [2]. An-
other alternative is to look at small parts on a shorter spatial scale. This allows
for the foreshortening of body segments, for example. Yang et al. show high
accuracy parses derived from small parts [1]. There is some evidence that each
method benefits from slightly different image information, so that a fused method
could offer improved accuracy. Jammalamadaka et al. demonstrate that image
based estimators can tell reliably whether a parser has succeeded or not [22].

Shotton et al. use regression forests in [23]. They construct 3 trees in order
to predict pose from RGB-D data. In [24] regression trees were used as part of a
tree-structured model to represent the unary potential. In neither of these cases
was the output of a forest optimized to improve the generalization of the method
as we have done. How well a method generalizes is a very important aspect of
evaluation, as shown by the discussion in [25].

While image parsing itself is viewed as an important problem, there has
been work demonstrating its applications. Ramanan et al. demonstrate a recipe
for turning a parser into a tracker [26]. Ferrari et al. demonstrate search for
human figures in video using pose as a search term [27]. Jammalamadaka et al.
demonstrate improvements on this recipe, showing a variety of ways to query
including a Kinect parse [22]. The parsing community has shown little interest
in recovering 3D representations, though 3D estimates are known to be available
from joint positions [28, 29]. Ikizler and Forsyth show an application of such
3D representations in activity recognition [30]. When depth data is available,
parsing is largely solved [23].

3 Method

We approach parsing with a unique construct. Our method has three steps.
First, we register all images into a normalized coordinate system and extract
image features. Second, we run a regression forest over the features to produce
multiple joint-location predictions. Third, we propose a new way to combine the
predictions that optimizes performance and generalizability.

3.1 Body-Space

The datasets we use provide an annotation of joint locations with each image. We
consider the right and left shoulder, elbow, wrist, and hip joints in our method.
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Fig. 1. (left) Example of joints projected into body-space. The torso is projected onto
the xy-plane and aligned so that the shoulders are parallel to the x-axis. One unit in
the x-dimension is equal to the distance between the neck and shoulders of the person.
One unit in the y-dimension is equal to the distance between the shoulders and hips.
(right) These two images have the right wrists in the same locations in the image, but
in very different locations with respect to the body.

We want to be able to predict human pose in body-space rather than in an
image. Body space is a normalized coordinate system that is centered at the
torso and that is scale- and viewpoint-invarient.

We want to be able to predict pose in body-space because it is more interest-
ing and informative to know what someone is doing relative to their body instead
of at a specific pixel. With the number of monitoring/surveillance applications
that want to know how people are interacting with scenes and with each other,
it is more important to know where people’s limbs are relative to objects (and
themselves) than where in a picture their hands are located. Being able to do
this in 3-dimensions is even more important but many current hardware systems
only provide 2-dimensional images. By predicting joints in body-space we can
construct a method gives real body poses in 2- or 3-dimensions.

We register the original joint locations (given as pixel coordinates) so that
the origin lies at the center of the torso. One unit in the body-space’s x-axis
corresponds to the distance between the neck and a shoulder and one unit on
the body-space’s y-axis corresponds to the distance between the neck and center
of the torso. An example of the effects of this projection can be seen in Figure 1.
Images are registered by computing the rotation, translation, and scale needed to
project shoulders and hips in pixel-coordinates to a target torso in body-space.

When preprocessing 3-d annotated datasets, such as the H3D dataset, joints
were projected into a 3-dimensional body-space by rotation, scale, and transla-
tion. In this space, the z-axis corresponds to the dimension going in front of and
behind the body. Examples of these projections can be seen in Figure 6.

3.2 Regression Forests

Previous work in pose estimation has run inference over a tree-structured model
or searched images for local patches. Our method does neither of these. It instead
builds a regression forest to predict joint locations for an example image.
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Unlike template-based methods that have to learn a unique representation
for every joint configuration a tree can build-in unique visual representations
automatically. For example, a hand can be turned in many different directions
whilst being in the same location. Discriminative methods need to learn a tem-
plate for each orientation of the hand in order to make a prediction. Since trees
can have multiple leaves with the same output value they are able to capture
the fact that visually different examples can map to the same output with no
additional effort.

Regression forests are an ensemble of trees. Each of t trees is constructed
using a random sampling, with replacement, of the training data. Trees split the
training data on a feature dimension fi until a leaf contains a minimum number
of elements and is not split again. At each split, a subset of

√
d features (where

d is the dimensionality of the feature vector) is considered.
Let yi ∈ Rd be the vector representing the joint being predicted for example

i. Note that yi can take on any dimensionality so it can represent a 2- or 3-joint
location or it can represent a number of joints such as the right wrist and elbow.
Let yi,t be the prediction for example i made by tree t. Our method makes a
final prediction, y∗

i by calculating the summed weight of all tree predictions:

y∗
i =

T∑
t=1

1

wt
yi,t (1)

wt is the weight of each tree. Initially we weight the trees uniformly, as is typically
done in regression forests.

The regression forest predicts poses in body-space, we project (using rotation,
translation, and scale) the images back into pixel-space for comparison. We do
this by projecting our body-space torso onto a predicted torso in pixel-space.
For each dataset we used torso predictions that were provided by the authors,
please see the Experiments and Results section for more detail.

3.3 Minimax

There is good evidence that in most vision tasks training and test sets are not
sampled from the same distribution [25]. This is a particular nuisance in hu-
man parsing, where performance falls off when a method is trained on one
dataset and tested on another (eg [3]). One standard method for obtaining a
well-behaved estimator in a situation like this is minimax. The recipe is as
follows: Assume we have a model of the family of possible test distributions,
parametrized by a parameter vector l. Assume we have a parametric family of
estimators, parametrized by a vector w. We cannot know the true value of l,
because we do not know the true test distribution. However, we can assume
that the true test distribution is “not too far” from the training distribution.
We can then search the collection of distributions that are “not too far” and
the estimator parameters for a pair (l,w) such that the error on the worst test
distribution is best. One can visualize this as a problem with two players: the
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Table 2. These are example images of the FLIC training set. Images on the left are
images that were up-weighted during an iteration of minimax when optimizing for the
right wrist (right-most wrist in the image). These are images that were difficult to
solve, and therefore given more weight in the re-weighting. The set of images on the
right are those that the optimization function found easy and down-weighted.

first chooses a test distribution l to make the performance as poor as possible,
and the second then chooses a w to produce as good as possible performance on
the worst test distribution. Write El for an expectation with respect to l. The
search becomes minw (maxl (El [Loss(w)])) subject to an appropriate notion of
“not too far” on the test distribution. This approach has not been used in detec-
tion or parsing to our knowledge. Although building a representation of a family
of test distributions is straightforward (one reweights the training samples to
get a different empirical training distribution), estimating w is hard because it
creates a massive re-training burden. At each stage of the search, we would need
to retrain the estimator to get the best loss on the current worst distribution.
For most representations, this burden is unmanageable.

A unique feature of regression forests, not to our knowledge previously re-
marked, is that they make minimax estimation easy. Assume that the test distri-
bution is“not too far” from the training distribution. Then the structure of the
trees in the forest (which variables are split, etc.) is unlikely to be affected by
the difference, because it is strongly random. We can then define a reasonable
parametric family of estimators by simply reweighting the trees in the forest,
so w is a non-negative weight vector. The appropriate notion of“not too far”
is to bound above the k-l divergence of l from the uniform distribution; alter-
natively, one could bound the entropy of l below. Each generates unpleasant
non-linear constraints. We relax these constraints by requiring 1

kN ≤ li ≤ k
N

and
∑

i li = 1 for each component li of l and a parameter k. This prevents
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any example being over or under weighted. We define the loss of a particular
weighting of a forest to be the squared error, so the objective function becomes

minw

(
maxl

(∑
i li

[
(yi −

∑
j wjTj(x))2

]))
where wj ≥ 0. No retraining of trees

is required, and the resulting optimization problem is straightforward to deal
with (below). In practice, we show that minimax tends to weight up difficult ex-
amples and to weight down common ones (the dataset player is trying to make
it difficult to predict good solutions; Figure 2). Minimax is known to be severely
pessimistic for some problems; in this case, it offers real improvements in perfor-
mance. We believe this is the result of constraining l. The constraints on l allow
minimax to emphasize hard examples, but prevent it from putting all weight on
the single most difficult example. As a result, the estimator is more willing to
make risky predictions. This improves performance for lower arms, which move
around a lot and where the distribution of configurations is poorly represented
in training data.

Optimization Problem: Let w ∈ Rt be the weighting over the t trees, l ∈ Rn

be the weighting over n training examples, y ∈ Rn×d be the correct location,
and M ∈ Rt×n×d be the predicted location made by each tree for every example.

w∗ = argmin
w

max
l

n∑
i=1

li||yi −wTMi||22 (2)

s. t.

n∑
i=1

li = 1 (3)

1

kn
≤ li ≤

k

n
k ∈ R (4)

w > 0

Where Mi ∈ Rt×d is the t tree predictions made for example i, yi ∈ R1×d is the
correct location for example i, and li ∈ R is the weight given to example i.

Solving the Optimization: Equation 2 is tractable in w and it is tractable
in l. To solve the optimization we iteratively solved for each variable separately.
We began by fixing l and w to be uniform weights and solved for an optimal l∗.
We then set l = l∗ and solved for w∗. We iterate until w∗ converges or until a
maximum number of iterations has been reached.

This new weighting w∗ is then applied in Equation 1.

4 Experiments and Results

Datasets We evaluate our method on three datasets: Buffy Stickmen V3.01
[4], FLIC dataset (the smaller version of the dataset with approximately 5000
images) [31], and PASCAL Stickmen V1.11 [4]. The Buffy Stickmen and FLIC
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datasets were split into train and test sets as specified by the datasets and the
PASCAL Stickmen was used in its entirety as a test set. For the PASCAL dataset
we trained on the FLIC dataset. For all datasets, we evaluated our method on
cropped images that contained a person.

Image Features As image features we extract globalPb features [32] from the
cropped images. We resized images uniformly and extracted the 8 per-pixel gPb
features. We used all features when running our regressions. These features cap-
ture the overall contour of the individual in the image. This provides the global
structure of a person’s layout.

Joints Predicted We built a separate forest for each of the four joints (right/left
elbow and wrist). To grow these trees we regressed image features against joint
positions that were projected into body-space. For evaluation, we project our
predictions back into pixels for fair comparison. In order to do this we rotate,
translate, and scale the body-space torso onto a predicted torso in pixels. For
the FLIC dataset we use the torsos predicted by [31] for BUFFY and PASCAL
we used the torsos provided with the datasets that were provided by [33].

4.1 Evaluation Metrics

We report our results in two formats. The first is the PCP evaluation metric used
to evaluate the Buffy and Pascal Stickmen datasets. In this metric a prediction
is correct if the average error (between ground truth and prediction) of the two
endpoints of a body part is below a threshold. The second metric we use is a
radial precision curve (Figure 3) as used in [31]. The radial precision curve is
calculated based upon a predicted point’s euclidean distance from the ground
truth point. The prediction is normalized by the distance between the left hip
and the right shoulder so that that distance is 100 pixels.

acci(r) =
100

n

n∑
i=1

1

(
||y∗

i − yi||2
(torsoheighti)/100

≥ r

)
n is the number of examples, y∗

i is the prediction for the joint of example i, and
yi is the ground truth location of the joint.

Evaluation is done after images have been projected into the pixel-coordinate
system. We take our body-space predictions and project the torso into the image
by using the shoulders and hips of a predicted pixel torso as a target.

4.2 Regression Forests: Average Prediction

For each training dataset we built four forests of 100 trees that were constrained
to stop growing once a leaf had a minimum of 10 elements. Since a regression
tree can have output of any dimension, we experimented with regressing to pre-
dict joints separately and jointly. In Figure 2 we compare performance on the
FLIC dataset’s elbows and wrist when we predict the four joints separately or
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Fig. 2. The output of regression trees can be multidimensional. In this experiment
we tested the performance of the regression forests when predicting each of the four
joints (right/left elbows and wrists) separately (black curve) and when predicting the
joints of each arm (wrist and elbow) jointly (red curve). Performance is not hurt by
considering the full arm jointly, the advantage to predicting full arms is that you are
insuring a real arm pose. The results shown here are the average prediction of the FLIC
regression forest on the FLIC test dataset.

the arms (one forest for the right elbow and wrist, one forest for the left elbow
and wrist) as a whole.

We evaluate our method on three standard datasets. We present results for
each dataset in the metrics used by other authors for those datasets. We present
three different types of results for the datasets. First, we show the performance of
the dataset when the test set is evaluated by forests grown by the same dataset,
see Figure 3 and Table 4. Second, we show the performance of the dataset when
the test set is evaluated by forests grown by another dataset, see Figure 3. Third,
we show the results of regressing the images against 3-dimensional skeletons to
predict a 3-dimensional results, see Figure 6. Since the PASCAL dataset does
not have a training set it was evaluated using the regression forests learned from
the FLIC dataset.

In order to regress images against 3-dimensional skeletons we trained the
forests on the H3D dataset. We projected the 3-dimensional annotations of the
H3D dataset into body-space by rotation, translation and scale. We then built
regression forests in the same way as before but with each leaf output being a
3-dimensional joint location prediction. Examples of these predictions for the
FLIC dataset can be seen in Figure 6.

The simple average of regression tree outputs produces results that are com-
petitive with state-of-the-art results on elbows and comparable to state-of-the-
art results on wrists. This is encouraging because state-of-the-art methods re-
quire complex inference or search. Our method provides the added benefit of
being able to produce multiple predictions for the same data allowing us to
recombine predictions in useful ways.



10 P. Daphne Tsatsoulis and David Forsyth

FLIC PASCAL

5 10 15 20

20

40

60

80

100
Elbows

Radius in pixels

Pe
rc

en
t o

f A
cc

ur
at

e 
Ex

am
pl

es

5 10 15 20

20

40

60

80

100
Wrists

Radius in pixels

Pe
rc

en
t o

f A
cc

ur
at

e 
Ex

am
pl

es

5 10 15 20

20

40

60

80

100
Elbows

Radius in Pixels

Pe
rc

en
t o

f A
cc

ur
at

e 
Ex

am
pl

es

5 10 15 20

20

40

60

80

100
Wrists

Radius in Pixels

Pe
rc

en
t o

f A
cc

ur
at

e 
Ex

am
pl

es

BUFFY from BUFFY BUFFY from FLIC

5 10 15 20

10
20
30
40
50
60
70
80
90

100
Elbows

Radius in Pixels

Pe
rc

en
t o

f A
cc

ur
at

e 
Ex

am
pl

es

5 10 15 20

10
20
30
40
50
60
70
80
90

100
Wrists

Radius in Pixels

Pe
rc

en
t o

f A
cc

ur
at

e 
Ex

am
pl

es

5 10 15 20

20

40

60

80

100
Elbows

Radius in Pixels
Pe

rc
en

t o
f A

cc
ur

at
e 

Ex
am

pl
es

5 10 15 20

20

40

60

80

100
Wrists

Radius in Pixels

Pe
rc

en
t o

f A
cc

ur
at

e 
Ex

am
pl

es
Table 3. Radial precision plots of elbow and wrist joint predictions. Radius (r) is
reported for a normalized torso diagonal of 100 pixels. For all datasets we report our
regression’s prediction in black when projected onto a predicted torso. In 70 PASCAL
images and 6 BUFFY images no torso was predicted, the result of the method when
those rejected images are excluded from the test set are in red. In order to see how
the method performs when the torso is known, we have projected our results onto the
ground truth torso and reported results in blue. This image is best viewed in color.
All test sets were evaluated on trees trained on the FLIC dataset, BUFFY was also
evaluated on trees trained on the BUFFY dataset.

4.3 Regression Forests: Minimax Optimization Predictions

Training: We trained our minimax optimization method on the FLIC dataset.
We used a 100-tree forest for each wrist and applied the mimimax optimization to
each wrist separately. We constrained the weighting of the training examples by
k = 10 and number of maximum iterations of the optimization to 100. We then
applied the learned weighting to the predictions made by the 100 trees (learned
on FLIC) on the FLIC dataset and on the BUFFY and PASCAL datasets.

Figure 7 shows examples of the output of both the uniformly-weighted re-
gression forests and the minimax-weighted regression forests. The minimax-
weighting pulls original predictions to be longer or to change the direction of
the limb.

Performance on same dataset: For this experiment we define two types of
pose, common and rare. In order to define these we gridded the space around the
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Method Torso U. Arm L. Arm

Andr. [6] 90.7 79.3 41.2

Eich. [4] 98.7 82.8 59.8

Sapp [34] 100 91.1 65.7

Sapp [5] 100 95.3 63.0

Yang [35] 98.8 97.8 68.6

Ours from BUFFY, predicted torso 80.6 18.5

Ours, found predicted torso 82.4 18.9

Ours, ground truth torso 96.1 45.3

Table 4. PCP is the common evaluation metric for the Buffy Stickmen dataset, we
report results with the standard threshold of 0.5. We report the performance of the
BUFFY test set when evaluated on forests built using BUFFY data. These results were
all projected onto predicted torsos in pixels for evaluation. In 6 BUFFY images no torso
was predicted, the result of the method when those rejected images are excluded are
labeled ‘found predicted torso’. In order to see how the method performs when the
torso is known, we have projected our results onto the ground truth torso and reported
results as well.

Right Wrist, threshold = 0.03
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Fig. 3. This is a visualization of ‘rare’ and ‘common’ positions for wrists in the FLIC
dataset relative to a torso in red. In black are marked locations that have more than
0.03 (left) and 0.05 (right) of the total data in them, these are considered common.
For the right wrist, 65% of the data is common by a 0.05 threshold. For the left wrist,
62% of the data is common by a 0.05 threshold.

torso into bins as shown in Figure 3. We then classified a bin as common if more
than a certain percentage of the data fell into this bin. As can be seen in Figure 4
the minimax method improves performance on rare (and often more difficult for
this method) poses and loses accuracy on the common examples. The trade-off
between the accuracies is made clear in the rare and common curves.

Performance on different datasets: In this experiment we test how the
mimimax optimization can improve performance when training on one dataset
and testing on another. We trained two regression forests on the FLIC dataset,
one for each wrist. We then evaluated the BUFFY and FLIC datasets using these
forests and plotted their accuracies in Figure 5 when projected onto predicted
torsos. When we used the weights calculated by the minimax optimization the
accuracies improved on both wrists and on both datasets. The improvement can
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Fig. 4. For this experiment we separated the FLIC dataset into common and rare
body-space locations (see Figure 3). Locations that were common by a threshold of
0.03 are evaluated on the left and results that were common by a threshold of 0.05
were evaluated on the right. The black curve represents the full FLIC test-set, the
red curve represents rare pose locations, and the blue curve represents common pose
locations. The dotted line is the result of uniformly weighting the tree outputs and
the solid line is the result of using the minimax weights to predict a final output.
Results were then projected onto predicted torsos for comparison. As expected, the
minimax method improves performance on rare (and therefore often more difficult for
this method) poses and loses accuracy on the common examples. The trade-off between
the accuracies is made clear in the rare and common curves.

also be seen in Table 5. Using the minimax method has made our method more
generalizable when evaluating on a different dataset than that which we trained
on.

5 Conclusions

We present a radically different approach to the problem of human pose estima-
tion from a single image. We have achieved accuracies comparable to state-of-
the-art methods with a system that uses no inference or search techniques. Unlike
current methods we use regression forests that provide multiple predictions for
every example image. We have taken advantage of these many proposals by using

Method U. Arm L. Arm

Trained on BUFFY, found predicted torso 82.4 18.9

Trained on FLIC, found predicted torso 79.7 26.0

Trained on FLIC with minimax, found predicted torso 79.7 34.1

Table 5. We report the performance of the BUFFY test set when evaluated on forests
built using BUFFY or FLIC data. To report the performance of the test data when
evaluated on FLIC forests with and without minimax optimization. We believe that
the method performed better when trained on FLIC than when trained on BUFFY
because of the size of the datasets. It is clear that applying the minimax optimization
helps the performance of the wrists significantly.
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Fig. 5. The results of evaluating the BUFFY (top row) and PASCAL (bottom row) on
the forests trained on FLIC. The black line is the average over the trees for the right
and left wrists. The blue line is the result of the minimax re-weighting. The results
were projected onto predicted torsos in pixel-space for evaluation (images in which no
torso was found have been excluded from this evaluation). The minimax re-weighting
has made our process more robust on datasets not trained on.

the minimax optimization that quickly and easily improves the generalization
of our method. We further utilize the regression forests to make predictions in
3-dimensions with no additional efforts.

We have presented the parsing problem in a new way. By producing multiple
outputs we can now apply re-weighting techniques (such as minimax) or consider
the problem of selecting the best of all proposals.

The method can be easily extended to lower body predictions. Because we do
not search for localized parts we expect our method could be robust to occlusions,
baggy clothing and motion blur.
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Fig. 6. Regression forests can predict multi-dimensional output. For this reason,
when trained on the H3D dataset (that has 3-dimensional annotations) producing
3-dimensional output is easy. These are examples of the results obtained for the FLIC
dataset when evaluated on the regression forests built by the H3D dataset. Skeletons
are shown facing down and the x (across body), y (down body), and z (in-front of
body) axes are marked.

Fig. 7. Examples of original uniformly-weighted predictions in cyan and the minimax-
reweighted predictions in magenta. The minimax often produces results that are similar
to the original prediction but that shift it in length or direction in attempt to correct
the original prediction.
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