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Abstract. We present a new gesture recognition method using multi-
modal data. Our approach solves a labeling problem, which means that
gesture categories and their temporal ranges are determined at the same
time. For that purpose, a generative probabilistic model is formalized
and it is constructed by nonparametrically estimating multi-modal den-
sities from a training dataset. In addition to the conventional skeletal
joint based features, appearance information near the active hand in the
RGB image is exploited to capture the detailed motion of fingers. The es-
timated log-likelihood function is used as the unary term for our Markov
random field (MRF) model. The smoothness term is also incorporated to
enforce temporal coherence of our model. The labeling results can then be
obtained by the efficient dynamic programming technique. Experimental
results demonstrate that our method provides effective gesture labeling
results for the large-scale gesture dataset. Our method scores 0.8268 in
the mean Jaccard index and is ranked 3rd in the gesture recognition
track of the ChaLearn Looking at People (LAP) Challenge in 2014.

Keywords: Gesture recognition, Nonparametric estimation, Multi-modal
data

1 Introduction

Human activity recognition is one of the important problems in computer vi-
sion and it has various applications such as human-computer interaction, visual
surveillance, and intelligent robot. The goal of human activity recognition is to
automatically understand human behavior from input data sequence.
Until now, a large amount of research has been conducted for human activ-
ity recognition. There are several excellent surveys for RGB image/video based
activity recognition [1]. Recently, research based on depth data attracts great
attention [2]. The use of depth data enables us to overcome several difficulties
of traditional RGB based methods such as appearance variation, illumination
change, and loss of 3D information. Moreover, 3D human pose can be efficiently
estimated from depth data [3]. According to the recent interesting study [4],
such intermediate high-level pose features result in better recognition perfor-
mance than low/mid-level features such as dense trajectories [5], histograms of
oriented gradients [6], and histograms of optical flow [7].
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Fig. 1. Overview of the proposed method is illustrated. From the input test sequence
(a), multiple features in (b) are computed. They are used to construct the log-likelihood
matrix in (c). The x and y-axes denote the frame index and gesture class, respectively.
Dark pixels represent the high likelihood region. By using this as the unary term, our
MRF model produces the gesture labeling results, that are denoted by the yellow lines.
Final recognized gestures are shown in (d).

However, the structure of the estimated 3D pose sometimes lacks enough com-
plexity for certain activity recognition problems. For example, many human
gestures contain finger motion, but it is not easy to estimate the 3D pose of
the articulated hand model unless close range. In that case, it is necessary to
simultaneously consider both the rough information of 3D pose and the detailed
appearance of the image. Therefore, in this paper, we focus on human gesture
recognition based on multi-modal data, especially using the 3D pose information
and the RGB image.

Recently, the Looking at People (LAP) Challenge1 was held for solving the
human gesture recognition problem from multi-modal data [8]. The challenge
focused on multiple instance, user independent spotting of gestures. Its dataset
and goal have the following features. First, it includes a large amount of data,
specifically 13,858 gesture instances. Target gestures are defined by twenty Ital-
ian cultural and anthropological signs and they are composed of simple atomic
motions with both hands. Unlike the setting in many existing gesture/action
recognition works, the detection problem should be solved rather than the classi-
fication problem where the input video sequence is assumed to be pre-segmented.
This means the starting and ending points of the gesture should be also estimated
together with its category in this challenge.

In this paper, we present a novel gesture recognition method using multi-modal
data. Our proposed method is based on the labeling problem, where a gesture
category label should be inferred for every frame in a video. To solve the label-
ing problem, we basically take a simple classification approach for each frame.
Specifically, a multi-class classification problem should be solved to assign every
frame in a video one of the multiple labels corresponding to known gesture cat-

1 http://gesture.chalearn.org
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egories. This is a very simple formulation that does not explicitly assume any
temporal or hierarchical modeling of human gestures or actions.
The proposed method utilizes following features: skeletal joint position feature,
skeletal joint distance feature, and appearance features corresponding to left
and right hands. Under the naive Bayes assumption, likelihood functions are
independently defined for every feature. Such likelihood functions are nonpara-
metrically constructed from the training data by using kernel density estimation
(KDE). For computational efficiency, k-nearest neighbor (kNN) approximation
to the exact density estimator is proposed. Constructed likelihood functions are
combined to the multi-modal likelihood and this serves as the unary term for
our pairwise Markov random field (MRF) model. For enhancing temporal coher-
ence, the smoothness term is additionally incorporated to the MRF model. Final
gesture labels can be obtained via 1D MRF inference and this can be efficiently
done by dynamic programming. The overview of our method is illustrated in
Fig. 1.

2 Related Works

There is extensive literature on action recognition research. In this section, we
only review the methods relevant to our approach, especially ones based on
depth data. According to the recent surveys [1, 2], action recognition researches
can be classified into two categories: sequential approaches and space-time ap-
proaches. Sequential approaches have traditionally focused on how to model the
temporal dynamics of the target actions or gestures. They are usually based on
a hidden Markov model (HMM) [9, 10], a conditional random field (CRF) [11],
or a graphical model (GM) with more complex structures [12]. These models
generally assume the target actions to be represented by the dynamic changes
of states and such dynamic patterns are automatically learned from the train-
ing data. Our method is also based on the MRF, a kind of GM, and it looks
similar to the sequential approaches at first glance. However, our method does
not explicitly model the temporal dynamics and the labels of our MRF model
represent the gesture categories rather than the intermediate states.
In the dynamic time warping (DTW) based approaches [13, 14], the input test
sequence to be recognized is aligned with known sequences of the dataset to
produce the alignment-based distances, which are used to determine the action
category by finding the best matches. These approaches can be viewed as a
nonparametric version of the sequential approaches. Our method is also based
on the nonparametric matching process between the input data and the dataset.
However, the distance measure in our method is defined as the simple Euclidean
distance without the time-consuming alignment step. Therefore, our approach
is computationally more efficient than the DTW-based methods and applicable
to the large-scale gesture recognition datasets like the LAP multi-modal gesture
dataset [8].
Space-time approaches usually take a space-time volume and extract local or
global features inside it. The extracted features and the ground-truth action
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categories of the training dataset are used to discriminatively learn parametric
models by using support vector machines (SVM) [15, 16], structural SVM [17],
etc. Such discriminative approaches require a learning step and the performance
of the learned model generally depends on the size of the training dataset. There-
fore, most of the discriminative approaches suffer from a heavy computational
burden for training with the large-scale dataset.

We next investigate nonparametric space-time approaches most relevant to our
method. The authors in [18] proposed a nonparametric action recognition method
based on the skeletal joint information. In their work, the EigenJoints descriptor
is developed and the Naive-Bayes-Nearest-Neighbor (NBNN) classifier is adopted
to solve the gesture classification problem. Three features including posture, mo-
tion, and offset features are computed from the skeletal joint information. They
are then concatenated into one feature vector and principal component anal-
ysis (PCA) is used to construct the EigenJoint feature. Their method applies
the Naive Bayes (NB) assumption to the EigenJoint features obtained for all
frames in a given data sequence. On the other hand, our method utilizes the
multi-modal features and assume the NB assumption for the multi-modal fea-
tures in each frame. While their approach assumes segmented video input for
classification, our approach combines the nonparametric model with the MRF
to simultaneously solve both classification and segmentation.

In [19], the Moving Pose (MP) descriptor that captures not only the skeletal joint
position features but also differential properties like the speed and acceleration
of the joints was proposed. The discriminative key frames for each action class
are learned from the training dataset and they are used to produce the matching
scores between the test sequence and the action classes by using the modified
kNN classifier. Moreover, it is applied to all frames according to the sliding
window strategy for action detection in unsegmented sequences. However, the
labeling problem is locally solved for each frame and temporal coherence between
subsequent frames is not enforced. On the other hand, our method adopts the
pairwise MRF with the smoothness term, so temporally coherent solutions can
be obtained. While the MP descriptor is developed only for the skeletal joint
features, our approach can handle the multi-modal data by probabilistic fusion
of the nonparametrically estimated likelihood functions.

3 Proposed Method

Suppose we are given a training dataset and each frame in a training sequence
is labeled a gesture category g(i) ∈ G, where i and G denote the frame index
and the set of all gesture labels, respectively. In this paper, each sequence can
have multiple gesture categories without overlapping, that is, each frame in a
sequence is constrained to be labeled only with one gesture category. Now the
objective is to solve the labeling problem, where each frame of a test sequence
should be assigned a gesture category label.
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3.1 Generative Probabilistic Model

We basically approach to the gesture labeling problem by solving the classifi-
cation problem, where temporal positions or dynamics are not considered at
all and the gesture should be independently classified for each frame. This is
an extremely simple assumption compared to the general HMM or CRF based
approaches that usually introduce the intermediate states and model gestures
by the temporal dynamics of the states. Now the generative probabilistic model
for gesture classification can be simply formalized as follows. Hidden random
variables G generate M multi-modal observations Xj , j ∈ {1, . . . ,M}. Here the
observed feature Xj is computed from the multi-modal data in the several frames
near the current frame. Under the naive Bayes assumption, the multi-modal fea-
tures are conditionally independent of each other given the gesture category.
Therefore, the multi-modal likelihood can be defined by

p(X1, . . . , XM |G) = p(X1|G) · · · p(XM |G). (1)

Now we present the multi-modal features and how to estimate their correspond-
ing likelihoods.

3.2 Multi-modal Features

In this paper, the skeletal joint data and RGB images are assumed to be the
multi-modal input to our proposed method. It is well known that the skeletal
joint features can be efficiently and robustly estimated from the depth image [3].
From the skeletal joints, we only consider K joints belonging to the upper body.
Let xj , j = 1, . . . ,K denote the 3D coordinates of such joints. We then define the
normalized joint coordinates x̄j , j = 1, . . . ,K by taking the differences between
xj and the reference joint xp, that is assumed to be the neck joint in this paper.
To increase the discriminability, we concatenate the normalized joint coordinates
from LP frames near the current frame to construct the skeletal joint position
feature xP. The resultant xP is a LP · 3 ·K dimensional vector and it holistically
describes the motion dynamics of the upper body near the current frame.
Despite the normalization process, the skeletal joint position feature is not view-
point invariant. As a viewpoint invariant feature, we utilize the Euclidean dis-
tance ‖xj − xk‖ between joint j and k. The skeletal joint distance feature xD

is then defined by concatenating all such distances for LD frames. Note that

the dimensionality of xD is LD · K(K−1)
2 . This is a kind of the relational pose

feature [20], describing geometric relations between specific joints in a short
sequence of frames.
We additionally consider the RGB image to exploit the details not captured by
the skeletal joint features. For that purpose, the 3D joints of left and right hands
are first projected to the RGB image. Histogram of oriented gradients (HOG)
descriptors are then computed for the windows centered on the projected points.
We concatenate the HOG descriptors of LL frames near the current frame to
construct our appearance feature xL for the left hand. The appearance feature for
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the right hand xR is similarly defined from the HOG descriptors corresponding
to the right hand.
Because our features are constructed from several frames, their dimensionality is
generally very high, especially for the appearance features. Therefore, we use the
PCA to reduce the computational complexity of our method. We also apply the
standardization process to compensate the different scales of the multi-modal
features. As a result, each multi-modal feature will have zero-mean and unit-
variance.

3.3 Active Hand Approach

In general, gestures including the motion of hands often express the informa-
tion with just one hand and which hand to use is not important. For gestures
based on both hands, their motions are usually similar to each other. Based on
these observations, we propose to select the main hand and to use its appear-
ance feature for gesture representation. For that purpose, we introduce a new
deterministic variable a(i) for each frame i:

a(i) =

{
0, if ‖x(i+1)

l − x(i)
l ‖ > ‖x

(i+1)
r − x(i)

r ‖;
1, otherwise,

(2)

where x
(i)
l and x

(i)
r denote the 3D joint coordinates of left and right hands,

respectively. The variable a(i) can be intuitively understood as an indicator of
which hand is more active at i-th frame. Now our hypothesis is that the active
hand is the main hand and using only the feature of the main hand is helpful
for gesture classification. We finally define the appearance feature for the active
hand xA by xL if the left hand is active (a = 0) and by xR if the right hand is
active (a = 1). In this paper, this active hand feature xA is adopted instead of
the left and right hand features xL and xR.

3.4 Nonparametric Estimation of Multi-modal Likelihood

Now we present how to estimate the likelihood function for each feature from the
training dataset. Let xg1, . . .x

g
N denote all the features labeled a gesture category

class g from all the training sequences. Then the kernel density estimator of the
likelihood function is:

p̂(x|g) =
1

N

N∑
j=1

K(x− xgj ), (3)

where K(x) is the kernel function, which should be non-negative and integrate to
one. In this paper, the spherical Gaussian function is used for the kernel function
K(x) = (2π)−D/2σ−D exp(− 1

2σ2 ‖x‖2), where D and σ denote the dimensionality
of the feature vector and the bandwidth parameter, respectively.
In general, N (i.e., the number of training samples belonging to each gesture
class) is very large, so computing the likelihood in (3) is computationally very
expensive. Therefore we approximate it by considering only the largest term in
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the summation (3). Because the Gaussian kernel is assumed, this term corre-
sponds to the nearest neighbor of the feature vector x within xg1, . . .x

g
N , and the

likelihood function (3) can be rewritten as:

pNN(x|g) ∝ exp(− 1

2σ2
‖x− xgNN‖

2), (4)

where xgNN denotes the nearest neighbor vector. This nearest neighbor vector
can be efficiently found by using the randomized kd-trees [21]. In general, we
can consider the k-nearest neighbors (k ≥ 2), but empirically this improves the
performance very little.
We apply the above estimation process to all multi-modal features, and obtain
their corresponding approximate likelihoods. They are then combined to the
multi-modal likelihood and its negative log-likelihood can be written as

L(x|g) =

M∑
j=1

1

2σ2
j

‖xj − xgj,NN‖
2, (5)

where σj is the bandwidth for the j-th multi-modal feature and xgj,NN denotes
the nearest neighbor of the multi-modal feature xj within the training samples
of the gesture class g. Note that the bandwidth parameters σj , j ∈ {1, . . . ,M}
control the relative importance between the multi-modal features. They can be
decided based on several approaches such as maximum likelihood criterion [22],
discriminative method with the hinge loss [23], etc. In this paper, we simply use
the cross-validation. This requires us to search a 2D parameter space of (σD

σP
, σA

σP
),

which is feasible.

3.5 MRF Model with Temporal Coherence

Now let us assume that the test sequence is given and its multi-modal features

are x(i) = (x
(i)
1 , . . . ,x

(i)
M ), i = 1, . . . , T , where T is the length of the test sequence.

We can then locally perform gesture labeling for the test sequence by using the
negative log-likelihood in (5). Specifically, for each frame i of the test sequence,
the optimal gesture class g(i)∗ can be found by minimizing the negative log-
likelihood:

g(i)∗ = arg min
g(i)

L(x(i)|g(i)). (6)

However, this locally optimized solution may lack the temporal coherence. There-
fore, we formulate the following MRF model to enhance the temporal coherence
of the solution:

E(g) =

T∑
i=1

Eunary(x(i), g(i)) + λ

T−1∑
i=1

Epairwise(g(i), g(i+1)), (7)

where g = (g(1), . . . , g(T )) denotes the gesture label vector. The unary term is
defined as the negative log-likelihood ratio:

Eunary(x(i), g(i)) = L(x(i)|g(i))− min
g∈ḡ(i)

L(x(i)|g), (8)
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where ḡ(i) denotes the set of all gesture classes excluding g(i). This slightly
improves the performance rather than using the negative log-likelihood. And
the pairwise term is defined as the simple smoothness constraint:

Epairwise(g(i), g(i+1)) =

{
0, if g(i) = g(i+1);
1, otherwise.

(9)

The parameter λ controls the strength of the smoothness constraint and it is
determined by the cross-validation. Now the final gesture label vector g can
be obtained by minimizing the MRF energy in (7). Because our model is 1D
MRF, its optimal solution can be very efficiently computed by using the dynamic
programming.

4 Experimental Results

4.1 Dataset and Evaluation Metric

To evaluate the performance of the proposed gesture labeling method, we use
the gesture dataset [8] introduced in ChaLearn LAP Challenge. It is composed
of total 940 sequences (470 training, 230 validation, and 240 test sequences) and
each sequence contains RGB, depth data, skeleton information extracted from
the depth data by [3], and manually annotated gesture labels. Target gestures
are twenty Italian cultural/anthropological signs performed by many subjects.
Specifically, there are total 13,858 gesture instances (7,754 training, 3,362 vali-
dation, and 2,742 test instances) and this is one of the largest-known datasets
for gesture recognition.
Let A(s,n) and B(s,n) denote the ground-truth of gesture n at sequence s and
its prediction result, where both A(s,n) and B(s,n) are sets including frames at
which the n-th gesture is being performed in the s-th sequence. The Jaccard
index can then be defined as

J(s,n) =
|A(s,n) ∩B(s,n)|
|A(s,n) ∪B(s,n)|

, (10)

which represents the similarity between two sets. The Jaccard index J(s,n) is
averaged over all gesture classes and all sequences to produce the mean Jaccard
index. We use this mean Jaccard index as the main evaluation criterion. We
also compute the precision and recall to evaluate the detection performance of
our method. For that purpose, we need to judge whether the detected gesture
interval is the true/false positive. Similarly to the object detection research [24],
the detection result is considered to be correct if the overlap ratio r between the
ground-truth interval Igt and the predicted interval Ip exceeds 0.5:

r =
length(Igt ∩ Ip)

length(Igt ∪ Ip)
, (11)

where Igt ∩ Ip represents the intersection of the ground-truth and predicted
intervals and Igt ∪ Ip their union.
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Fig. 2. Unary costs for one of the test sequences (sample index 701) are illustrated in
this figure. Colored texts and gray dotted lines denote the ground-truth gesture classes
and their starting/ending frames, respectively.

4.2 Implementation Details

Each frame of the dataset sequence is labeled one of the twenty gesture cate-
gories, but there are also many frames containing no meaningful gestures. We
simply regard it as the twenty-first gesture category in our gesture labeling frame-
work. However, note that it is excluded from computing the evaluation metrics
such as the Jaccard index, precision, and recall.
For the skeletal joint position and distance features, K = 10 joints in the upper
body are utilized. The RGB images of both hands are resized to 128 × 128
images, and their HOG descriptors are computed with 16 × 16 cell size and
9 orientations. The size of the temporal window for constructing our features
are LP = 14, LD = 14, and LA = 2, respectively. We then apply the PCA to
each feature for dimensionality reduction. The variance thresholds of the PCA
are 0.99 for the skeletal joint position and distance features, and 0.85 for the
appearance feature of the active hand. Remaining parameters are the bandwidth
parameters σP, σD, σA, and the smoothness parameter λ. They are determined
by the cross-validation. Finally, the open source VLFeat library [25] is used to
compute the HOG descriptors and to perform the fast nearest neighbor search
with the randomized kd-trees.

4.3 Performance Analysis

From now, we present the evaluation results of the proposed gesture labeling
method. First, to investigate the feasibility of our method, we only consider the
skeletal joint position feature. Fig. 2 shows the unary costs for a test sample with
the annotated ground-truth. We can see that the unary costs provide the strong
cues for gesture labeling. The value of the unary cost (i.e., negative log-likelihood
ratio) for the ground-truth gesture class is lowest among all the gesture classes
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Feature mJ mP mR

Joint Pos. (Local) 0.7547 0.7891 0.8556
Joint Position 0.7816 0.8653 0.8754
Joint Distance 0.7536 0.8403 0.8496
Left Hand 0.3613 0.6505 0.4421
Right Hand 0.6412 0.8270 0.7396
Both Hands 0.7136 0.9013 0.8494
Active Hand 0.7504 0.8885 0.8822

mJ mP mR
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Fig. 3. Performance of the proposed method based on a single feature is illustrated.
mJ, mP, and mR denote the mean Jaccard index, mean precision, and mean recall,
respectively.
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Fig. 4. Jaccard index scores are illustrated for each gesture category.

except the ok gesture in Fig. 2. Therefore, the proposed method can produce
satisfactory results without considering the coherence between the neighboring
frames. It is well illustrated in Fig. 3, where the evaluation results of our method
with and without the smoothness term can be found. The mean Jaccard index
of our results based on the local approach (6) is 0.7547. We then adopt the
smoothness term in (9) and globally optimize the MRF energy in (7), which
results in 0.7816. Note that the local approach achieves a reasonable performance
and the global version further improves it.

We next examine the performance of the proposed method based on a single
feature. Fig. 3 shows the evaluation results corresponding to the various features
introduced in Section 3.2 and 3.3. Note that the right hand based appearance
feature results in better performance than the left hand based one. This is be-
cause the right hand is more frequently used in many gesture instances of the
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(a) ok (b) cheduepalle (c) chevuoi

(d) daccordo (e) combinato (f) basta

Fig. 5. The pose of fingers plays an important role in recognizing the ok gesture in (a).
The gestures based on the motions of both hands are illustrated in (b)-(f).

dataset. Both hands are then simultaneously utilized and this outperforms the
single hand cases as expected. Finally, the active hand feature defined in Sec-
tion 3.3 is evaluated, which produces better results than using the both hands.
Note that only half the amount of information is required to represent the active
hand feature compared to the both hands.

For detailed analysis, the Jaccard index scores are computed for each gesture cat-
egory and they are illustrated in Fig. 4, where the numbers of x-axis denote the
following twenty gesture classes: vattene, vieniqui, perfetto, furbo, cheduepalle,
chevuoi, daccordo, seipazzo, combinato, freganiente, ok, cosatifarei, basta, pren-
dere, noncenepiu, fame, tantotempo, buonissimo, messidaccordo, and sonostufo.
We can see that the active hand based approach significantly outperforms the
others especially for the gesture category 11, i.e., ok. This is reasonable because
the specific configuration of fingers is an important characteristic to distinguish
the ok from the other gestures. It is also noticeable that the left hand based
method achieves comparable results with the right hand for the gesture classes
5, 6, 7, 9, 13, i.e., cheduepalle, chevuoi, daccordo, combinato, and basta. All these
gestures are composed of the same motions of both hands. See Fig. 5 that illus-
trates the above mentioned gestures.

We then investigate the performance of our multi-modal approach. Let us con-
sider the joint position xP, joint distance xD, and active hand xA based fea-
tures. To exploit the multiple features, their bandwidth parameters σP, σD, and
σA should be decided. We set σP to 1.0 and then optimize σD and σA by the
brute-force search. The smoothness parameter λ is similarly determined. Fig. 6
illustrates the results of this cross-validation process with the validation dataset.
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Fig. 6. The bandwidth parameters and the smoothness coefficient are determined by
the simple brute-force search.

Feature mJ mP mR

P 0.7816 0.8653 0.8754
P+D 0.7948 0.8962 0.8824
P+L+R 0.8110 0.9254 0.9157
P+A 0.8244 0.8950 0.9191
P+D+A (NoCV) 0.8247 0.9258 0.9204
P+D+A 0.8268 0.9199 0.9158

mJ mP mR
0

0.2

0.4
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0.8

1

 

 

P
P+D
P+L+R
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P+D+A (NoCV)
P+D+A

Fig. 7. Performance of the proposed method based on multiple features is illustrated.
P, D, L, R, and A denote the joint position, joint distance, left hand, right hand, and
active hand based features, respectively. NoCV denotes that cross-validation is not
used and all bandwidth parameters are equally set to 1.0.

Fig. 7 shows that the mean Jaccard index score is slightly improved by optimiz-
ing the bandwidth parameters. Note that the simple feature combination with
equal bandwidth produces the comparable result 0.8247 with the optimal case
0.8268 thanks to the standardization process between the multi-modal features.

Fig. 7 and 8 show the evaluation results by using various combinations of multiple
features. We can see that the use of multiple features significantly improves the
recognition performance. Specifically, by using the joint position, joint distance,
and active hand features together, the proposed method scores 0.8268 in the
mean Jaccard index and this result is a 3rd place in the gesture recognition
track of the ChaLearn LAP Challenge. The top 10 results of the challenge are
reported in Table 1.

We finally examine the computational complexity of the proposed method. Our
algorithm can be roughly divided into two parts: (1) the training process includ-
ing feature pre-processing and kd-tree construction, (2) the testing process in-
cluding nearest neighbor search with the kd-trees and MRF optimization by dy-
namic programming. The training part uses the training and validation datasets,
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Fig. 8. Jaccard index scores are illustrated for each gesture category.

whereas the testing part runs on the test dataset. The run-time results of them
are 1191.7 and 474.1 seconds respectively, as measured on a 12 core CPU ma-
chine. Specifically, it takes 1.4 milliseconds per frame to perform the gesture
labeling of a test sequence, which shows the efficiency of our approach.

Table 1. Results of ChaLearn LAP Challenge (track 3) are illustrated.

Rank Team Score Rank Team Score

1 Neverova et al. [26] 0.8500 6 Wu [27] 0.7873
2 Monnier et al. [28] 0.8339 7 Camgoz et al. [29] 0.7466
3 Ours 0.8268 8 Evangelidis et al. [30] 0.7454
4 Peng et al. [31] 0.7919 9 Undisclosed authors 0.6888
5 Pigou et al. [32] 0.7888 10 Chen et al. [33] 0.6490

5 Conclusions

We have proposed a novel gesture recognition method based on the nonparamet-
ric density estimation of the multi-modal features. Our approach can produce
gesture category labels for all frames of the test sequence, which allows not only
gesture classification but also accurate localization. Experimental results demon-
strate that the proposed method achieves a convincing performance in terms of
the mean Jaccard index criterion. In our method, the bandwidth parameters
and the smoothness coefficient are determined by the simple cross-validation.
The computational complexity of this brute-force search grows exponentially
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with the number of features. In the future, we aim to estimate these parameters
by using a more sophisticated learning process.
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