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Deep Dynamic Neural Networks for Gesture
Segmentation and Recognition
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Abstract. The purpose of this paper is to describe a novel Deep Dy-
namic Neural Networks(DDNN) for the track 3 of the Chalearn Looking
at People 2014 challenge [1]. A generalised semi-supervised hierarchical
dynamic framework is proposed for simultaneous gesture segmentation
and recognition taking both skeleton and depth images as input mod-
ules. First, Deep Belief Networks(DBN) and 3D Convolutional Neural
Networks (3DCNN) are adopted for skeletal and depth module accord-
ingly to extract high level spatio-temporal features. Then the learned
representations are used for estimating emission probabilities of the Hid-
den Markov Models to infer action sequence. The framework can be
easily extended by including an ergodic state to segment and recognise
video sequence in a frame-to-frame mechanism, rendering it possible for
online segmentation and recognition for diverse input modules. Some
normalisation details pertaining to preprocessing raw features are also
discussed. This purely data-driven approach achieves 0.8162 score in
this gesture spotting challenge. The performance is on par with a variety
of the state-of-the-art hand-tuned-feature approaches and other learning-
based methods, opening the doors for using deep learning techniques to
explore time series multimodal data.

Keywords: Deep Belief Networks, 3D Convolutional Neural Networks,
Gesture Recognition, ChaLearn

1 Introduction

In recent years, human action recognition has drawn increasing attention of
researchers, primarily due to its growing potential in areas such as video surveil-
lance, robotics, human-computer interaction, user interface design, and multi-
media video retrieval.

Previous works on video-based motion recognition focused on adapting hand-
crafted features and low-level hand-designed features have been heavily employed
with much success. These methods usually have two stages: an optional feature
detection stage followed by a feature description stage. Well-known feature de-
tection methods (“interest point detectors”) are Harris3D [2], Cuboids [3] and
Hessian3D [4]. For descriptors, popular methods are Cuboids [5], HOG/HOF [2],
HOG3D [6] and Extended SURF [4]. In a recent work of Wang et al. [7], dense

mailto:stevenwudi@gmail.com
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2 Di Wu, Ling Shao

trajectories with improved motion-based descriptors epitomized the pinnacle of
handcrafted features and achieved state-of-the-art results on a variety of “in
the wild” datasets. Given the current trends, challenges and interests in action
recognition, this list would probably continue to spread out extensively.

In the evaluation paper of Wang et al. [8], one interesting finding is that
there is no universally best hand-engineered feature for all datasets, suggesting
that learning features directly from the dataset itself may be more advantageous.
Albeit the dominant methodology for visual recognition from images and videos
relies on hand-crafted features, there has been a growing interest in methods
that learn low-level and mid-level features, either in supervised, unsupervised,
or semi-supervised settings [9,10,11].

With the recent resurgence of neural networks invoked by Hinton and oth-
ers [12], deep neural architectures have been proposed as an effective solution
for extracting high level features from data. Deep artificial neural networks (in-
cluding the family of recurrent neural networks) have won numerous contests
in pattern recognition and representation learning. Schmidhuber [13] compiled
a historical survey compactly summarising relevant works with more than 850
entries of credited works. Such models have been successfully applied to a pletho-
ra of different domains: the GPU-based cuda-convnet [14] classifies 1.2 million
high-resolution images into 1000 different classes; multi-column Deep Neural
Networks [15] achieve near-human performance on the handwritten digits and
traffic signs recognition benchmarks; 3D Convolutional Neural Networks [16,17]
recognize human actions in surveillance videos; Deep Belief Networks combining
with Hidden Markov Models [18,19] for acoustic and skeletal joints modeling out-
perform the decade-dominating paradigm of Gaussian Mixture Models+Hidden
Markov Models. In these fields, deep architectures have shown great capacity to
discover and extract higher level relevant features.

However, direct and unconstrained learning of complex problems is difficult,
since (i) the amount of required training data increases steeply with the com-
plexity of the prediction model and (ii) training highly complex models with
very general learning algorithms is extremely difficult. It is therefore common
practice to restrain the complexity of the model and this is generally done by
operating on small patches to reduce the input dimension and diversity [11], or
by training the model in an unsupervised manner [10], or by forcing the mod-
el parameters to be identical for different input locations (as in convolutional
neural networks [14,15,16]).

With the immense popularity of Kinect [20], there has been renewed interest
in developing methods for human gesture and action recognition from 3D skeletal
data and depth images. A number of new datasets [21,22,23,24] have provided
researchers with the opportunity to design novel representations and algorithms
and test them on a much larger number of sequences. It may seem that the
task of action recognition given 3D joint positions is trivial, but this is not the
case, largely due to the high dimensionality of the pose space. Furthermore, to
achieve continuous action recognition, the sequence need to be segmented into
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Deep Dynamic Neural Networks for Gesture Segmentation and Recognition 3

contiguous action segments; such segmentation is as important as recognition
itself and is often neglected in action recognition research.

In this paper, a data driven framework is proposed, focusing on analysis of
acyclic video sequence labeling problems, i.e., video sequences are non-repetitive
as opposed to longer repetitive activities, e.g., jogging, walking and running.

2 Experiments and Analysis

2.1 Chalearn LAP Dataset & Evaluation Metrics

This dataset1 is on “multiple instance, user independent learning and continuous
gesture spotting” [21] of gestures. And in the 3 track, there are more than 14,000
gestures are drawn from a vocabulary of 20 Italian cultural/anthropological sign
gesture categories with 700 sample sequences for training and validation and 240
sample sequences for testing.

The evaluation criteria for this track is the Jaccard index (overlap) on a
frame-to-frame basis.

J(A,B) =
A
⋂
B

A
⋃
B

(1)

2.2 Model Architecture: Deep Dynamic Neural Networks

Inspired by the framework successfully applied to the speech recognition [18],
the proposed model borrows the idea of a data driven learning system, relying
on a pure learning approach in which all the knowledge in the model comes from
the data without sophisticated pre-processing or dimensionality reduction. The
proposed Deep Dynamic Neural Networks(DDNN) can be seen as an extension
to [19] in that instead of only using the Restricted Boltzmann Machines to model
human motion, various connectivity layers, e.g., fully connected layers, convolu-
tional layers, etc., are stacked together to learn higher level features justified by
a variational bound [12] from different input modules.

A continuous-observation HMM with discrete hidden states is adopted for
modelling higher level temporal relationships. At each time step t, we have one
random observation variable Xt. Additionally we have an unobserved variable
Ht taking values of a finite set H = (

⋃
a∈AHa),where Ha is a set of states

associated to an individual action a by force-alignment scheme defined in Sec.
2.4. The intuition motivating this construction is that an action is composed
of a sequence of poses where the relative duration of each pose may vary. This
variance is captured by allowing flexible forward transitions within the chain.
With this definitions, the full probability model is now specified as HMM:

p(H1:T , X1:T ) = p(H1)p(X1|H1)

T∏
t=2

p(Xt|Ht)p(Ht|Ht−1), (2)

1 http://gesture.chalearn.org/homewebsourcereferrals

http://gesture.chalearn.org/homewebsourcereferrals
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4 Di Wu, Ling Shao

Fig. 1: Per-action model: a forward-linked chain. Inputs (skeletal features or depth

image features) are first passed through Deep Neural Nets (Deep Belief Networks for

skeletal modality or 3D Convolutional Neural Networks for depth modality) to extract

high level features. The outputs are the emission probabilities of the hidden states.

where p(H1) is the prior on the first hidden state; p(Ht|Ht−1) is the transition
dynamics model and p(Xt|Ht) is the emission probability modelled by the deep
neural nets.

The motivation for using deep neural nets to model marginal distribution
is that by constructing multi-layer networks, semantically meaningful high level
features will be extracted whilst learning the parametric prior of human pose
from mass pool of data. In the recent work of [25], a non-parametric bayesian
network is adopted for human pose prior estimation, whereas in the proposed
framework, the parametric networks are incorporated. The graphical represen-
tation of a per-action model is shown as Fig. 1.

2.3 ES-HMM : Simultaneous Segmentation and Recognition

The aforementioned framework can be easily adapted for simultaneous action
segmentation and recognition by adding an ergodic states-ES which resembles
the silence state for speech recognition. Hence, the unobserved variable Ht takes
an extra finite set H = (

⋃
a∈AHa)

⋃
ES, where ES is the ergodic state as the

resting position between actions and we refer the model as ES-HMM.
Since our goal is to capture the variation in speed of performing gestures, we

set the transitions in the following way: when being in a particular node n in time
t, moving to time t+1, we can either stay in the same node (slower performance),
move to node n+1 (the same speed of performance), or move to node n+2 (faster
performance). From the ES we can move to the first three nodes of any gesture
class, and from the last three nodes of any gesture class we can move to the ES as
shown in Fig. 2. The ES-HMM framework differs from the Firing Hidden Markov
Model of [26] in that we strictly follow the temporal independent assumption,
forbidding inter-states transverse, preconditioned that a non-repetitive sequence
would maintain its unique states throughout its performing cycle.

The emission probability of the trained model is represented as a matrix
of size NT C × NF where NF is the number of frames in a test sequence and
output target class NT C = NA × NHa

+ 1 where NA is the number of action
class and NHa

is the number of states associated to an individual action a and
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Deep Dynamic Neural Networks for Gesture Segmentation and Recognition 5

Fig. 2: State diagram of the ES-HMM model for low-latency action segmentation and

recognition. An ergodic states (ES) shows the resting position between action sequence.

Each node represents a single frame and each row represents a single action model. The

arrows indicate possible transitions between states.

one ES state. Once we have the trained model, we can use the normal online
or offline smoothing, inferring the hidden marginal distributions p(Ht|Xt) of
every node (frame) of the test video. Because the graph for the Hidden Markov
Model is a directed tree, this problem can be solved exactly using the max-sum
algorithm. The number of possible paths through the lattice grows exponentially
with the length of the chain. The Viterbi algorithm searches this space of paths
efficiently to find the most probable path with a computational cost that grows
only linearly with the length of the chain [27]. We can infer the action presence
in a new sequence by Viterbi decoding as:

Vt,H = P (Ht|Xt) + log( max
H∈Ha

(Vt−1,H)) (3)

where initial state V1,H = log(P (H1|X1)). From the inference results, we define
the probability of an action a ∈ A as p(yt = a|x1:t) = VT,H. Result of the
Viterbi algorithm is a path–sequence of nodes which correspond to hidden states
of gesture classes. From this path we can infer the class of the gesture (c.f. Fig.
10). The overall algorithm for training and testing are presented in Algorithm 1
and 4.

2.4 Experimental Setups

For input sequences, there are three modalities, i.e. skeleton, RGB and depth
(with user segmentation) provided. However, only skeletal modality and the
depth modality are considered(c.f. Fig. 3). In the following experiments, the
first 650 sample sequences are used for training, 50 for validation and the rest
240 for testing where each sequence contains around 20 gestures with some noisy
non-meaningful vocabulary tokens.
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6 Di Wu, Ling Shao

Algorithm 1: Multimodal Deep Dynamic Networks – training

Data:
X1 = {x1

i }i∈[1...t] - raw input(skeletal) feature sequence.
X2 = {x2

i }i∈[1...t] - raw input(depth) feature sequence in the form of
M1 ×M2 × T , where M1,M2 are the height and width of the input
image and T is the number of contiguous frames of the
spatio-temporal cuboid.
Note that the GPU library cuda-convnet [14] used requires square size images and

T is a multiple of 4.
Y = {yi}i∈[1...t] - frame based local label (achieved by semi-supervised

forced-aligment),
where yi ∈ {C ∗ S + 1} with C is the number of class, S is the
number of hidden states for each class, 1 as ergodic state.

1 for m← 1 to 2 do
2 if m is 1 then
3 Preprocessing the data X1 as in Eq.4.
4 Normalizing(zero mean, unit variance per dimension) the above features

and feed to to Eq.6.
5 Pre-training the networks using Contrastive Divergence.
6 Supervised fine-tuning the Deep Belief Networks using Y by standard

mini-batch SGD backpropagation.

7 else
8 Preprocessing the data X2 (normalizing, median filtering the depth

data) Algo.2 or Algo.3.
9 Feeding the above features to Eq.9.

10 Supervised fine-tuning the Deep 3D Convolutional Neural Networks
using Y by standard mini-batch SGD Backpropagation.

Result:
GDBN - a gaussian bernoulli visible layer Deep Belief Network to

generate the emission probabilities for hidden markov model.
3DCNN - a 3D Deep Convolutional Neural Networks to generate the

emission probabilities for hidden markov model.
p(H1) - prior probability for Y.
p(Ht|Ht−1) - transition probability for Y, enforcing the beginning and

ending of a sequence can only start from the first or the last state.
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Deep Dynamic Neural Networks for Gesture Segmentation and Recognition 7

Fig. 3: Point cloud projection of depth image and the 3D positional features.

Hidden states(Ht): Force alignment is used to extract the hidden states, i.e.,
if a gesture token is 100 frames, the first 10 frames are assigned as hidden
state 1 and the 10-20 frames are assigned as hidden state 2 and so on and
so forth.

Ergodic states: Neutral frames are extracted as 5 frames before or after a
gesture tokens labelled by ground truth.

2.5 Skeleton Module & DBN training

Only upper body joints are relevant to the discriminative gesture recognition
tasks. Therefore, only the 11 upper body joints are considered. The 11 upper
body joints used are “ElbowLeft, WristLeft, ShoulderLeft, HandLeft, ElbowRight,
WristRight, ShoulderRight, HandRight, Head, Spine, HipCenter”.

The 3D coordinates ofN joints of frame c are given as:Xc = {xc1, xc2, . . . , xcN}.
3D positional pairwise differences of joints [19] are deployed for observation do-
main X . They capture posture features, motion features by direction concatena-
tion: X = [fcc, fcp] as demonstrated in Eq 4. Note that offset features fci used in
[19] depend on the first frame, if the initialization fails which is a very common
scenario, the feature descriptor will be generally very noisy. Hence, the offset
features fci are discarded and only the two more robust features [fcc, fcp] (as
shown in Fig. 3) are kept:

fcc = {xci − xcj |i, j = 1, 2, . . . , N ; i 6= j} (4)

fcp = {xci − x
p
j |x

c
i ∈ Xc;x

p
j ∈ Xp} (5)

This results in a raw dimension of NX = Njoints ∗ (Njoints − 1)/2 +N2
joints) ∗ 3

where Njoints is the number of joints used. Therefore, in the experiment with
Njoints = 11, NX = 528. Admittedly, we do not completely neglect human pri-
or knowledge about information extraction for relevant static postures, velocity
and offset overall dynamics of motion data. Nevertheless, the aforementioned
three attributes are all very crude pairwise features without any tweak into
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8 Di Wu, Ling Shao

the dataset or handpicking the most relevant pairwise, triple wise, etc. , de-
signed features [28,29,26,30]. A similar data driven approach has been adopted
in [22] where random forest classifiers were adapted to the problem of recognizing
gestures using a bundle of 35 frames. These sets of feature extraction process-
es resemble the Mel Frequency Cepstral Coefficients (MFCCs) for the speech
recognition community [18].

Gaussian Bernoulli Restricted Boltzmann machines Because input skele-
tal features(a.k.a.observation domain X ) are continuous instead of binomial fea-
tures, we use the Gaussian RBM (GRBM ) to model the energy term of first
visible layer:

E(v, h; θ) = −
D∑
i=1

(vi − bi)2

2σ2
i

−
D∑
i=1

F∑
j=1

Wijhj
vi
σi
−

F∑
j=1

ajhj (6)

The conditional distributions needed for inference and generation are given
by:

P (hj=1|v) = g(
∑
i

Wijvi + aj)); (7)

P (vi=1|h) = N (vi|µi, σ
2
i ). (8)

where µi = bi + σ2
i

∑
j Wijhj and N is normal distribution. In general, we

normalize the data (mean substraction and standard deviation division) in the
preprocessing phase. Hence, in practice, instead of learning σ2

i , one would typi-
cally use a fixed, predetermined unit value 1 for σ2

i .
For high level skeleton feature extraction, two network architectures, i.e.,

a smaller one and a larger one were experimented: [NX , 1000, 1000, 500, NT C ]
and [NX , 2000, 2000, 1000, NT C ], where NX = 528 is the observation domain
dimension; NT C is the output target class. Because in all our experiments the
number of states associated to an individual action NHa is chosen as 10 for
modeling the states of an action class, therefore NT C = 20 + 1 = 201.

In the training set, there are in total 400, 117 frames. During the training
of DBN, 90% is used for training, 8% for validation (for the purpose of early
stopping ) 2% is used for test evaluation. The feed forward networks are pre-
trained with a fixed recipe using stochastic gradient decent with a mini-batch
size of 200 training cases. Unsupervised initializations tend to avoid local minima
and increase the networks performance stability and we have run 100 epochs for
unsupervised pre-training. For Gaussian-binary RBMs, learning rate is fixed at
0.001 while for binary-binary RBMs as 0.01 (note in generally training GRBM
requires smaller learning rate). For fine-tuning, the learning rate starts at 1
with 0.99999 mini-batch scaling. Maximum number of fine-tuning epoch is 500
with early stopping strategy and during the experiments, early stopping occurs
around 440 epoch. Optimization complete with best validation score (the frame
based prediction error rate) of 38.19%, with test performance 38.11%.

Though we believe further carefully choosing network architecture would lead
to more competitive results, in order not to “creeping overfitting”, as algorithms
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(a) template image (b) test image
(c) template

response

(d) shift-resize im-

age

Fig. 4: Illustration of normalization scheme 1: template matching.

over time become too adapted to the dataset, essentially memorizing all its
idiosyncrasies, and losing ability to generalize [31], we would like to treat the
model as the aforementioned more generic approach. Since a completely new
approach will initially have a hard time competing against established, carefully
fine-tuned methods. More fundamentally, it may be that the right way to treat
dataset performance numbers is not as a competition for the top place. This way,
fundamentally new approaches will not be forced to compete for top performance
right away, but will have a chance to develop and mature.

The performance of skeleton module is shown in Tab 1. And it can be seen
that larger net (Net2) will generally perform better than smaller net (Net1),
averaging multi-column nets almost will certainly further improve the perfor-
mance [15]. Hence, in the following experiments, only the multi-column averaging
results are reported.

2.6 Depth 3D Module

Preprocessing & Normalizing: shifting, scaling and resizing. Working
directly with raw input Kinect recorded data frames, which are 480× 640 pixel
images, can be computationally demanding. Deepmind technology [32] presented
the first deep learning model to successfully learn control policies directly from
high-dimensional sensory input using deep reinforcement learning. Similarly, ba-
sic preprocessing steps are adopted aimed at reducing the input dimensionality
from the original 480 × 640 pixels to 90 × 90 pixels. The square-sized of the
final image is required because the used GPU implementation from [14] expects
square inputs and the input channel should be in the set of [1, 3, 4x]. There are
two normalization schemes implemented as 2 using depth template matching
method and 3 using skeletal joins as assistant normalization. Note that the
scheme 2 depends heavily on the provided maximum depth from the recording
scene and scheme 3 depends on the accurate detection of skeleton joins, and
both scheme require the performer remains a roughly static position (though
the max pooling scheme in 3DCNN to some extend overcome the problem of
position shifting). Generally, scheme 3 is more robust than scheme 2 because
the provided maximum depth can sometimes be very noisy, e.g., Sample0671,
Sample0692, Sample0699, etc. After the normalization and resizing, a cuboid of
4 frames, hence, size 90× 90× 4, is extracted as a spatio-temporal unit.
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10 Di Wu, Ling Shao

Algorithm 2: Normalization scheme 1: template matching

Data:
T - exemplary template with original scale of size 320× 320,

(Sample0003 is chosen as the exemplary template, shown in 4a).
Rdepth - reference depth, fixed to 1941 (acquired from the above

exemplary template T).

T̂ - test image, as shown in 4b.
M - user foreground segmented mask.

1 Apply a 5× 5 aperture median filter to test depth frame T̂ as in [33] to reduce
the salt and pepper noise.

2 Multiply test depth frame T̂ with the user segmented mask M: T̂ = T̂×M.

3 Template matching test image T̂ with T using normalized cross-correlation [34],
the response score R is shown in 4c.

4 Shift the image according to the maximum response R to its centre applying
affine transformation [35].

5 Scale the image according to reference depth Rdepth and the median depth of a
bounding box in the centre of the image with 25× 25 size as shown as the green
boundingp box in 4d.

6 Resize the image from 320× 320 to 90× 90.
Result:

T̃ - Resize-normalized image shown in the yellow bounding box of 4d.

3DCNN Architecture & Details of Learning. The 3D convolution is
achieved by convolving a 3D kernel to the cuboid formed by stacking multi-
ple contiguous frames together. We follow the nomenclature as in [17]. However,
instead of using tanh unit as in [17], the Rectified Linear Units (ReLUs) [14]
were adopted where trainings are several times faster than their equivalents with
tanh units. Formally, the value of a unit at position (x, y, z) (z here corresponds
the time-axis) in the jth feature map in the ith layer, denoted as vxyzij , is given
by:

vxyzij = max(0, (bij +
∑
m

Pi−1∑
p=0

Qi−1∑
q=0

Ri−1∑
r=0

wpqr
ijmv

(x+p)(y+q)(t+r)
(i−1)m )) (9)

The 3DCNN architecture is depicted as Fig. 5: the input contextual frames
are stacked as size 90× 90× 4 substracting the mean activity over the training
set from each pixel, the first layer contains 16 maps of 7 × 7 × 4 3D kernel
followed by local response normalization layer [14] and stride 2 max pooling;
the second convolutional layers has 32 maps of 5 × 5 kernel followed by local
response normalization layer and stride 2 max pooling; the third convolution
layer is composed of 32 maps of 6 × 6 kernel followed by max pooling; then
we have one fully connected layer of size 1000; the output layer NT C is of size
201 = 10 × 20 + 1 (number of hidden states for each class× number of classes
plus one ergodic state).
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Algorithm 3: Normalization scheme 2: skeleton normalization

Data:
Sspine - Skeleton Spine joints pixel coordinates.
Sshoulder - Skeleton Shoulder joints pixel coordinates.

T̂ - test image.
M - user foreground segmented mask.
Rlength - reference length of shoulder to spine, fixed to 100 (1 meter).

1 Apply a 5× 5 aperture median filter to test depth frame T̂.

2 Multiply test depth frame T̂ with the user segmented mask M.
3 Shift the image according to the centroid of Spine joint Sspine.
4 Scale the image according to the Rlength/(Sspine − Sshoulder).

Result:

T̃ - Resize the shifted-scaledp image to 90× 90 .

The training set is roughly of 400,000 frames and is divided into 33 mini-
batches with first 30 batches for training and the rest 3 batches for validation.
Standard SGD is run for the first 100 epochs with learning rate of 0.1 and the
weight learning rate as 0.001 and weight bias learning rate 0.002 both momentum
are fixed as 0.9, weight decay is fixed to 0.0005, the next 100 epochs with 0.1×
learning rate. Another network trained by randomly cropping 82× 82 pixels on
the flight as [14] is also implemented to enhance the model’s robustness. During
the test time, the centre part and other 4 corner parts are averaged to obtain the
final score, c.f. Fig 6c. Due to the time constraint, only 150 epochs are trained
with the learning rate reduced to one tenth at the 92th epoch. The training
frame based classification error for the aforementioned two networks are shown
in 6a and 6b. One interesting observation is that for the network with uncropped
input, reducing the learning rate at 100 epoch, the frame-based classification rate
reduces drastically whereas for the network with cropped input, reducing the
learning rate results in a spike increase of frame-based classification error rate.
The reason for this discrepancy worths further investigation. The performance
of depth module is shown in Tab 1.

Looking into the networks-visualization of filter banks. The weight filters
of the first conv1 layer are illustrated in Fig 7 and it can be seen that both shape
pattern filters and motion filters are learnt effectively and the filters/weights
of the cropped input trained networks are smoother then the uncropped one.
Interestingly, the 3DCNN is able to learn the most informative motion part of
the body effectively (highest response parts are the arms/hands areas), albeit
no signal was explicitly given during training instructing which body parts the
gesture recognition tasks should focus on.
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12 Di Wu, Ling Shao

Fig. 5: An illustration of the architecture of the 3DCNN architecture.

(a) Frame based classifica-
tion error with uncropped
input.

(b) Frame based classifica-
tion error with cropped in-
put.

(c) Cropped images
to enhance model’s
robustness.

Fig. 6: Visualization of the first filters and training statistics for 3DCNN.

2.7 Post-Processing

The predicted token less than 20 frames are discarded as noisy tokens. Note that
there are many noisy gesture tokens predicted by viterbi decoding. One way to
sift through the noisy tokens is to discard the token path log probability small
than certain threshold. However, because the metric of this challenge: Jaccard
index strongly penalizes false negatives, experiments show that it’s better to
have more false positives than to miss true positives. Effective ways to detect
false positives should be an interesting aspect of future works.

2.8 Score Fusion

To fuse the dual model prediction, the strategy shown as Fig 8 is adopted.
The complementary properties of both modules can be seen from the Viterbi
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Fig. 7: Top left: the conv1 weights of the 3DCNN learnt with uncropped input; top

right: the conv1 weights of the 3DCNN learnt with cropped input. It can be seen that

filters/weights of the cropped input trained networks are smoother. Bottom: visualiza-

tion of sample frames after conv1 layer (Sample0654, 264-296 frames, sampled every

8 frames). It can be seen that the filters of the first convolutional layer are able to

learn both shape pattern(red bounding box) and motion(yellow bounding box). Also

note that the high response maps correspond to the most informative part of the body,

even though during the training process, all local patches are learned indiscriminately

regardless of its location.

path decoding plot in Fig 10. Note that the skeleton module generally performs
better than the depth module, one reason could be that the skeleton joints learnt
from [20] lie in success of utilizing huge and highly varied training data: from
both realistic and synthetic depth images, a total number of 1 million images
were used to train the deep randomized decision forest classifier in order to avoid
overfitting. Hence skeleton data are more robust.

2.9 Computational complexity

Though learning the Deep Neural Networks using stochastic gradient descent is
tediously lengthy, once the model finishes training, with a low inference cost, our
framework can perform real-time video sequence labeling. Specifically, a single
feed forward neural network incurs trivial computational time (O(T )) and is
fast because it requires only matrix products and convolution operations. The
complexity of Viterbi algorithm is O(T ∗ |S|2) with number of frames T and
state number S.
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Fig. 8: Illustration of descriptor fusion.

```````````Module
Evaluation Set

Validation Test

Skeleton–DBDN Net1 0.7468 -

Skeleton–DBDN Net2 0.8017 -

Skeleton–DBDN MultiNet 0.8236 0.7873

Depth–3DCNN Norm1 2 0.6378 -

Depth–3DCNN Norm2 3 0.6924 0.6371

Score Fusion 0.8045 0.8162

Table 1: Comparison of results in terms of Jaccard index between different network

structures and various modules. DBDN Net1 corresponds to network structure of

[528, 1000, 1000, 500, 201] and DBDN Net2 [528, 2000, 2000, 1000, 201], DBDN Multi-

Net is the average of 3 Nets (2 Net1 and 1 Net2 with different initializations). It can be

seen that larger net has better performance and multi-column net will further improve

the classification rate. Norm1 corresponds to the normalization scheme 2 and Norm2

corresponds to the scheme 3.

3 Conclusion and Discussion

Hand-engineered, task-specific features are often less adaptive and time-consuming
to design. This difficulty is more pronounced with multimodal data as the fea-
tures have to relate multiple data sources. In this paper, we presented a novel
Deep Dynamic Neural Networks(DDNN) framework that utilizes Deep Belief
Networks and 3D Convolutional Neural Networks for learning contextual frame-
level representations and modeling emission probabilities for Markov Field. The
heterogeneous inputs from skeletal joints and depth images require different fea-
ture learning methods and the late fusion scheme is adopted at the score level.
The experimental results on bi-modal time series data show that the multimodal
DDNN framework can learn a good model of the joint space of multiple sensory
inputs, and is consistently as good as/better than the unimodal input, opening
the door for exploring the complementary representation among multimodal in-
puts. It also suggests that learning features directly from data is a very important
research direction and with more and more data and flops-free computational
power, the learning-based methods are not only more generalizable to many do-
mains, but also are powerful in combining with other well-studied probabilistic
graphical models for modeling and reasoning dynamic sequences. Future works
include learning the share representation amongst the heterogeneous inputs at
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the penultimate layer and backpropagating the gradient in the share space in a
unified representation.
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4 Supplementary materials

4.1 Deep Learning Library: Theano & cuda-convnet

Theano. The Deep Belief Network library used in this section is Theano [36]
2 which is a Python library that allows you to define, optimize, and eval-
uate mathematical expressions involving multi-dimensional arrays efficiently.

cuda-convnet. The GPU enabled blazing fast Convolutional Neural Network
library used in this section is cuda-convnet [14] 3 which is a fast C++/CUDA
implementation of convolutional (or more generally, feed-forward) neural
networks. It can model arbitrary layer connectivity and network depth. Any
directed acyclic graph of layers will do. Training is done using the back-
propagation algorithm.

4.2 Details of the Code

Deep Belief Dynamic Networks The python project for “Leveraging Hierar-
chical Parametric Network for Skeletal Joints Action Segmentation and Recog-
nition” can be found at:
https://github.com/stevenwudi/CVPR_2014_code

Deep 3D Convolutional Dynamic Networks The python project, C++/CUDA
backend for Deep 3D Convolutional Dynamic Network can be found at:
https://github.com/stevenwudi/3DCNN_HMM

4.3 Extra Figures for Illustration

2 http://deeplearning.net/software/theano/
3 https://code.google.com/p/cuda-convnet/

http://deeplearning.net/software/theano/
https://code.google.com/p/cuda-convnet/
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Fig. 9: More illustrations of the middle level features from the activation images after

first convolutional layer. High response arms and hands areas are learnt automatically

without explicit learning signal in term of location information.

Fig. 10: Viterbi decoding of two modules and their fusion result of sample sequence

704. Top to bottom: skeleton, depth, score fusion with x-axis representing the time and

y-axis representing the hidden states of all the classes with the ergodic state at the

bottom. Red lines are the ground truth label, cyan lines are the viterbi shortest path

and yellow lines are the predicted label. There are some complementary information

of the two modules and generally skeletal module outperforms the depth module. The

fusion of the two could exploit the uncertainty, e.g. light green dashed box indicates

that depth module makes the correct prediction whereas the skeletal module fails, the

combined module is still making the correct prediction.
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Algorithm 4: Multimodal Deep Dynamic Networks – testing

Data:
X1 = {x1

i }i∈[1...t] - raw input(skeletal) feature sequence.
X2 = {x2

i }i∈[1...t] - raw input(depth) feature sequence in the form of
M ×M × T .

GDBN - a gaussian bernoulli visible layer Deep Belief Network to
generate the emission probabilities for hidden markov model.

3DCNN - the trained 3D Deep Convolutional Neural Networks to
generate the emission probabilities for hidden markov model.

p(H1) - prior probability for Y.
p(Ht|Ht−1) - transition probability for Y.

1 for m← 1 to 2 do
2 if m is 1 then
3 Preprocessing and normalizing the data X1 as in Eq.4.
4 Feedforwarding network GDBN to generate the emission probability

p(Xt|Ht) in Eq.2.
5 Generating the score probability matrix S1 = p(H1:T,X1:T).

6 else
7 Preprocessing the data X2 (normalizing, median filtering the depth

data) Algo.2 or Algo.3.
8 Feedforwarding 3DCNN to generate the emission probability

S2 = p(Xt|Ht) in Eq.2.
9 Generating the score probability matrix S2 = p(H1:T,X1:T).

10 Fusing the score matrix S = S1 + S2.
11 Finding the best path Vt,H using S by Viterbi decoding as in Eq.3.

Result:
Y = {yi}i∈[1...t] - frame based local label

where yi ∈ {C ∗ S + 1} with C is the number of class, S is the
number of hidden states for each class, 1 as ergodic state.

C - global label, the anchor point is chosen as the middle state frame.
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