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Abstract. This paper addresses the problem of continuous gesture recog-
nition from articulated poses. Unlike the common isolated recognition
scenario, the gesture boundaries are here unknown, and one has to solve
two problems: segmentation and recognition. This is cast into a labeling
framework, namely every site (frame) must be assigned a label (ges-
ture ID). The inherent constraint for a piece-wise constant labeling is
satisfied by solving a global optimization problem with a smoothness
term. For efficiency reasons, we suggest a dynamic programming (DP)
solver that seeks the optimal path in a recursive manner. To quantify
the consistency between the labels and the observations, we build on
a recent method that encodes sequences of articulated poses into Fisher
vectors using short skeletal descriptors. A sliding window allows to frame-
wise build such Fisher vectors that are then classified by a multi-class
SVM, whereby each label is assigned to each frame at some cost. In a
similar way, a binary classifier estimates costs for the “no-gesture” la-
bel, thus filling an extra row in the DP matrix. The evaluation in the
ChalearnLAP-2014 challenge shows that the method outperforms partic-
ipants that rely only on skeleton data. We also show that the proposed
method competes with the top-ranking methods when colour and skele-
ton features are jointly used.

1 Introduction

Gesture and human action recognition from visual information is an active topic
with many potential applications in human-computer interaction. The recent
release of depth sensors (e.g., Kinect) led to the development of recognition
methods based on depth or RGB-D data. Moreover, recent advances on human
pose recognition from depth data ([20]) made the human skeleton extraction
possible, so that three information sources are at one’s disposal: color, depth, and
skeleton. The latter has been proved very effective for human action recognition
when used either alone [6, 23] or in conjunction with color/depth features [33,
14].

The majority of gesture (or action) recognition methods consider known
boundaries of individual gestures and solve the isolated gesture recognition prob-
lem as a single-label assignment (1-of-L) problem, e.g., by invoking a multi-class
classfier. However, the continuous case is mostly met in practice, i.e., a video
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may contain a sequence of gestures in an unknown order and with unknown
gesture boundaries. Therefore, one has to solve both the segmentation and the
classification problem in order to answer the question: which gesture and when
is performed?

In this paper, we address the above problem in an energy minimization frame-
work, that is, we formulate it as a frame-wise labeling problem under the con-
straint for a piece-wise constant solution. We build on a recent isolated action
recognition method [6] and extend it to the continuous case for gesture recog-
nition. Unlike [6], we use a reduced set of the proposed skeletal descriptors per
pose in order to describe the position of the hands with respect to the body.
Based on a sliding window, we build frame-wise Fisher vectors that encode the
poses of a video segment. Then, a multi-class SVM allows us to assign each
label to each frame at some cost. All these costs, summarized in a table, are
finally exploited by a dynamic programming method that estimates the piece-
wise constant labeling which minimizes the total energy. We test our method on
the ChalearnLAP-2014 dataset [5] and we compare our method with other chal-
lenge participants. Note that our primary goal is to first extensively investigate
the potential of the skeleton information in a continuous recognition framework,
before combining skeletal data with other modalities.

The remainder of the paper is organised as follows. We summarise the related
work in Sec. 2 and we present the skeleton-based representation in Sec. 3. Sec. 4
presents the energy minimization framework, while our method is tested on
public datasets in Sec. 5. Finally, Sec. 6 concludes this work.

2 Related work

Regardless of the continuous nature of the recognition problem,1 one initially
has to extract features from the available modalities in order to encode the
footage. While the potential of color information to provide informative fea-
tures in a recognition scenario has been extensively studied [27], the release of
depth sensors led to the development of depth descriptors, e.g, local occupancy
patterns [28, 29, 24] and histogram of spatio-temporal surface normals [15, 35].
More interstingly, the articulated human pose estimation from depth data [20]
inspired many researchers to use skeleton as third modality along with RGB-D
data, thus building several skeletal descriptors: joint position differences [34, 29],
joint angles [3], joint motion characteristics [36], poses of spatio-temporal joint
groups [26], relative positions of joint quadruples [6], relative position of joint
edges [23], joint angle trajectories [14]. The benefit of combing features from
multiple visual sources [33, 14, 29] has been illustrated.

The features are typically translated into a single vector, e.g. Bag-of-Words
(BoW) histograms [33] or Fisher vectors [6], while a classifier, e.g. SVM, does
the 1–of–L label assignment in isolated case. Such a strategy is only locally
applicable in a continuous recognition scenario and one has to deal with the

1 we do not distinguish the problems of human action and gesture recognition, since
the latter can be roughly seen as the former when the upper-body part is used
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Fig. 1. A Gaussian Mixture Model (GMM), learnt on training data, is supposed to
generate skeletal quads. Based on the GMM parameters, the skeletal quads of a gesture
segment is encoded into a Fisher vector, and a multi-class SVM assigns a cost per label.
A global energy minimizer uses these costs to provide a piece-wise constant labeling.

temporal nature of the labeling, like in speech recognition. This inspired people
to develop continuous gesture/action recognition models.

The first continuous sign-language recognizers used hidden Markov models
(HMM) [25, 22] for both modeling and recognition. CRF models [21, 30] have
been also proposed to avoid HMM’s narrow temporal dependencies. Dynamic
programming (DP) constitutes a standard framework as well, either in one-pass
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x1 x2 x3 x4

HipCenter Head HandLeft HandRight
HipCenter Head HandRight HandLeft
HipCenter ShoulderCenter ElbowRight ElbowLeft
HipCenter ShoulderCenter ElbowLeft ElbowRight
HipCenter ShoulderCenter ElbowRight HandRight
HipCenter ShoulderCenter ElbowLeft HandLeft

Spine ShoulderLeft HandLeft ElbowLeft
Spine ShoulderRight HandRight ElbowRight

ShoulderRight ShoulderLeft HandRight HandLeft
ShoulderRight ShoulderLeft HandLeft HandRight
ShoulderRight HandRight WristRight ElbowRight
ShoulderLeft HandLeft WristLeft ElbowLeft
ShoulderRight HandRight ElbowLeft HandLeft
ShoulderLeft HandLeft ElbowRight HandRight

Fig. 2. (Left:) A sketch from [6] that illustrates the coding when (x1 x2 x3 x4)
correspond to the joints {Neck, Shoulder, Elbow, Hand}; the quad descriptor is
q = [Sx, Sy, Sz, Ex, Ey, Ez]>. (Right:) The 14 joint quadruples whose quads are lo-
cally describe the upper-body pose.

or two-pass mode, while it can be used in conjunction with either generative or
discriminative classifiers [11, 19, 7]. In the DP context, action templates (tempo-
ral models that replace HMMs) were recently proposed to be used in a dynamic
warping framework [9]. We refer the reader to the latter for a detailed discussion
about the pros and cons of all the above models.

Several methods have been proposed in the context of the ChalearnLAP-
2014 [5] for the continuous gesture recognition problem. The majority of the
methods exploit features from both RGB and depth data [13, 12, 2, 18, 31, 4, 10],
while [1] and [16] rely on single modalities, i.e., skeleton and RGB respectively.
The silence-based pre-segmentation of sequences is proposed by [4, 10], while
the rest of the methods simultaneously solve the segmentation and recognition
problems, e.g. with the help of a temporal model [2, 31]. It is worth noticing that
convolutional neural networks have been successfully invoked in a deep learning
framework [13, 18, 31]. We refer the reader to [5] for a detailed categorization of
the above methods in terms of several features.

3 Gesture representation

We rely on [6] in order to encode a set of articulated poses into an informative
vector. This approach uses skeletal features, referred to as skeletal quads, to
describe a sequence for isolated action recognition. A set of skeletal features is
then encoded as a Fisher vector with the help of a trained GMM that explains
the generation of any feature set. We briefly discuss these two steps below, that
are slightly modified for a gesture recognition scenario.
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3.1 Skeletal quads

In order to describe a gesture instance, and in particular the hand pose with
respect to the body, we use the skeletal quad [6]. This descriptor encodes the
geometric relation of joint quadruples thus leading to a low-dimensional descrip-
tor (see Fig 2). In short, if (x1 x2 x3 x4) is an ordered set of four joints, i.e.,
xi ∈ R3, it is encoded as q = [S(x3);S(x4)], with q ∈ R6, where

S(xi) = sR[xi − x1], i = 1 . . . 4, (1)

and s, R are the scale and rotation respectively, such that S(x1) = [0, 0, 0]> and
S(x2) = [1, 1, 1]>. In other words, a similarity normalization is applied to the
quadruple, whereby a view-invariant gesture descriptor is obtained.

Unlike [6] that enables all possible quads, we choose 14 specific quads based
on the upper-body joints, as shown in Fig. 2 (right). Note that this list is not
cross-validated based on some data-sets, but it intuitively describes the relation
among upper-body joints, by taking into account the body symmetry and the
fact the one performs the gesture in his own way, i.e., with his left or right hand.
For example, the first two quads encode the coordinates of the two hands when
the origin is the Hip-Center and the Head coincides with the point [1, 1, 1]>.

3.2 Gesture encoding

Fisher vectors have been proved more discriminative than the the popular BoW
representation in a recognition context [17]. We adopt this representation in order
to describe a gesture sequence as a set of gesture instances. Note that the low
dimension of the skeletal quads compensates for the large inherent dimensionality
associated with Fisher vectors.

If statistical independence is assumed, a set of M skeletal quads, Q = {qi, 1 ≤
i ≤ M}, can be modelled by a K-component Gaussian mixture model (GMM),
i.e.,

p(Q|θ) =

M∏
i=1

K∑
k=1

wkN (qi|µk,σk), (2)

where θ = {wk,µk,σk}Kk=1 is the set of the mixture parameters with mixing co-
efficients wk, means µk ∈ R6 and diagonal covariance matrices, represented here
as vectors, i.e., σk ∈ R6×1. Once the GMM parameters are estimated, e.g., via
the standard EM algorithm, any set Q may be described by its Fisher score [8],
namely the gradient of the log-probability with respect to the GMM parameters,
JQθ = ∇θ log p(Q|θ). The quadratic form of two such gradient vectors and the
inverse information matrix defines the Fisher kernel, which can be written as a
linear kernel of the so called Fisher vectors (FV), denoted here as J . The reader
is referred to [8] for a detailed analysis.

By considering the gradients with respect to µk and σk, the FV consists of
the concatenation of two vectors JQµk

and JQσk
. One can easily show (see [17])
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that the (6k − 6 + j)-th element of the above vectors (1 ≤ j ≤ 6, 1 ≤ k ≤ K),
that is the j-th entry for the k-th block, is given by

JQµk
(j) =

1

M
√
πk

M∑
i=1

γk,i
qji − µ

j
k

σjk
,

JQσk
(j) =

1

M
√

2πk

M∑
i=1

γk,i

((
qji − µ

j
k

σjk

)2

− 1

)
, (3)

where γk,i is the posterior probability that qi belongs to kth cluster conditioned
by Q. The normalization by M is added to avoid dependence on the Q’s car-
dinality. Since quads live in R6, the Fisher vectors are reasonably long, i.e.,
of dimension 12K. Once the FV is computed, we apply a power-normalisation
step, i.e., each vector element x is transformed to sgn(x)∗|x|α, and the resulting
vector is further normalized by its l2 norm. Note that the power-normalization
eliminates the inherent sparseness of the FV; the benefit is discussed in detail
in [17].

Unlike [6], we do not use a temporal pyramid since we are going to describe
the gestures locally. As a consequence, it is only the following energy minimiza-
tion scheme that takes into account the temporal nature of gestures towards a
continuous labelling.

4 Continuous gesture recognition

We formulate the continuous gesture recognition problem as a labeling problem.
In particular, every frame t∈{1, ..., T}must be assigned a label ft∈L that denotes
the gesture ID the frame belongs to. As a consequence, the goal is to find the
frame-wise labeling f = {f1, . . . , ft, . . . , fT } subject to: i) f is consistent with
the observations, ii) f is piece-wise constant. Note that a frame-wise labeling
direclty answers the question “which gesture and when is performed?”.

Such a global labeling problem can be cast into an energy minimization frame-
work, that is, one estimates the labeling f that minimizes the energy

E(f) = ED(f) + ES(f), (4)

where ED(f) (the data term) measures the dissimilarity between f and ob-
servations and ES(f) (the smoothness term) penalizes labelings that are not
piece-wise constant.

The data-term is typically defined as ED(f) =
∑T
t=1Dt(ft), where Dt(ft)

measures how appropriate the label ft is for t-th frame. Here, we use a mutli-
class SVM classifier to evaluate this appropriateness. Note that the framework
of [32] allows one to compute an empirical probability of assigning a label to an
input. We first train a multi-class SVM in an one-versus-all manner using FVs
of isolated gesture examples. During testing, FVs are built based on a sliding
temporal window centered at each frame. Instead of a fully varying window size,
we suggest the use of three windows, typically a narrow, a mid-size and a wide
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window. By denoting as pt(ft) the probability of assigning the label ft to frame
t, the above appropriateness is computed by the following convex combination

Dt(ft) = 1−
3∑
j=1

wjp
j
t (ft) (5)

where j stands for different windows and wj can balance their contribution.
The smoothness term penalizes the assignment of different labels to succes-

sive frames. If we consider that each frame interacts with its immediate neigh-
bors (first-order Markov assumption), the smoothness term can be written as a
summation of pairwise potentials

ES(f) =

T−1∑
t=1

V (ft, ft+1). (6)

Since we seek a piece-wise constant labeling, we define the potential function

V (ft, ft+1) =

{
0 if ft = ft+1

β otherwise.
(7)

In order to efficiently solve the global optimization problem minf E(f), we use
a dynamic programming approach, while we leave more sophisticated solutions
for a future paper. If Ct[ft] denotes the minimum labeling cost for the first t
frames provided that the t-th frame has label ft, the following recursive equation
(t is increasing) fills in a table C of size |L| × T :

C1[f1] = D1(f1)

Ct[ft] = Dt(ft) + min
ft−1

(Ct−1[ft−1] + V (ft−1, ft)) . (8)

Once the table is filled, the optimal solution can be obtained by first finding the
label of the last frame, i.e., f∗n = arg minfn Cn[fn], and then by tracing back in
order of decreasing t:

f∗t = arg min
fi

(
Ct[ft]) + V (ft, f

∗
t+1)

)
. (9)

In order to take into account the silent part of a gesture sequence, we train
a binary classifier based on silent and non-silent parts of a sufficient number of
training examples (see details in Sec. 5). This leads to an extra row in table C
that corresponds to a “no-gesture” class. Note that this does not imply a pre-
segmentation, but rather, we let the energy minimizer decide which frames are
silent or no.

Note that if one wants to solve the isolated recognition problem, dynamic
programming is not required (C reduces to a vector). In such a case, the single
label is directly obtained by f∗ = arg maxf p(f).
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Table 1. Recognition accuracy on MSRAction3D datasets.

Modality Methods Average Accuracy

Skeleton

EigenJoints [34] 82.33%
Joint Angles [14] 83.53%

FV of skeletal quads (less quads) 89.07%
Skeleton Lie group [23] 89.45%
FV of skeletal quads [6] 89.86%

Pose Set [26]∗ 90.22%
Moving pose [36] 91.70%

Skeleton, RGB-D

Joints+Actionlets [29] 88.20%
HON4D [15]∗ 88.89%

Joints + Depth Cuboids [33] 89.30%
Super Normal vectors [35] 93.09%

Joints+STIP [37]∗ 94.30%
Joint Angles+MaxMin+HOG2 [14]∗ 94.84%

*different cross-subject splitting

5 Experiments

5.1 MSR-Action3D Dataset

Although we focus on the continuous recognition problem, it is important to show
that our gesture representation is quite discriminative in the isolated recognition
scenario. However, our method reduces to [6] for isolated case, being the only
difference the less set of quads we consider here. We refer the reader to [6] for
a performance analysis of the method in isolated case. Here, we just present an
updated comparison table based on the widely used MSR-Action3D dataset, by
including very recent methods that were missed by [6].

We skip the details of the dataset (see [6]). We just notice that 20 actions
are performed by 10 actors and that a cross-subject splitting is considered, i.e.
five actors for training and five actors for testing. FVs are built based on 128-
component GMM, while they are power-normalized with α = 0.3. Instead of all
possible joint quadruples (4845) in [6], only 44 meaningful quads are used; they
relate hand and leg joints with the body. Note that this leads to a more efficient
recognition since the running time of building FVs is reduced by a factor of 100.

Table 1 shows the performance of various methods for this dataset. We do
not observe significant loss in performance when using less quads. Our method
achieves similar performance with the state-of-the-art methods that count on
skeleton joints, while it competes with the best-performing methods that use
multi-modal features.

5.2 Multi-modal Gesture Dataset 2014

The Multi-modal Gesture dataset was released for the ChalearnLAP-2014 chal-
lenge (Track3) [5]. More than 14, 000 gestures drawn from a vocabulary of 20
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Table 2. Results of the ChalearnLAP-2014 challenge (Track 3) [5]

Teams Modalities Score

Camgoz et al. [1] Skeleton 0.746
Skeletal quads (this work) Skeleton 0.745 (0.768∗)
Team-13 (Terrier) Skeleton 0.539
Team-17 (YNL) Skeleton 0.271

Neverova et al. [13] Skeleton, Depth, RGB 0.850
Monnier et al. [12] Depth, RGB 0.834
Ju Yong Chang [2] Skeleton, RGB 0.827
Skeletal quads+HOF (this work) Skeleton, RGB, 0.816
Peng et al. [16] RGB 0.792
Pigou et al. [18] Depth, RGB 0.789
Di Wu and Ling Shao [31] Skeleton, Depth 0.787
Team-9 (TelePoints) Skeleton, Depth, RGB 0.689
Chen et al. [4] Skeleton, Depth, RGB 0.649
Bin Liang and Lihong Zheng [10] Skeleton, Depth 0.597
Team-12 (Iva.mm) Skeleton, Depth, RGB 0.556
Team-14 (Netherlands) Skeleton, Depth, RGB 0.431
Team-16 (vecsrel) Skeleton, Depth, RGB 0.408
∗ A fixed software bug led to a higher index

Italian sign gesture categories were performed by several actors. Each actor, be-
ing captured by a Kinect camera, performed a non-fixed number of gestures.
Multi-modal data are available, i.e. skeleton (20 joints), RGB and depth image
sequences.

The dataset is divided into three parts, development data (7, 754 manually
labeled gestures), validation data (3, 362 labelled gestures) and evaluation data
(2742 gestures). Training and parameter cross-validation was done on develop-
ment and validation set respectively; testing was done on the evaluation data. In
specific, the GMM and the linear multi-class SVM 2 were learned on the develop-
ment data while the parameter β of the smoothness term was cross- validated on
the validation subset; best performance was obtained with β = 3. As mentioned,
14 quads were invoked (see Fig. 2). We used a GMM with 128 components that
led to 1536D Fisher vectors, which were power-normalized with α = 0.5. While
we observed that less components lead to a lower performance in validation set,
we did not test more components to avoid very long FVs. The size of the three
sliding windows were 15, 37 and 51, while equal weights (wj = 1/3) were used
to compute the cost of assigning each label per frame. There was no significant
difference in the performance when changing the window size and the weights.
As with the multi-class classifier, the cost of assigning a “no-gesture” label is the
average cost obtained from three classifications of short windows, i.e., with 5, 7
and 9 frames. We used 50 videos of the development data for training, being each

2 The scikit-learn Python package was used
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example the FV of a window. The performance of the recognition is quantified
by the average Jackard index.

Table 2 summarizes the Jackard indices of the participants in the challenge.
We first sort out the methods that count on skeleton data, and then the methods
that combine different modalities. The proposed method and Camgoz et al. [1]
achieve the best performance when only skeleton joints are used (almost same
index). Note that the Jackard index 0.745 corresponds to the performance of the
software version submitted to the challenge. A fixed bug led to a higher index,
i.e., 0.768. As previously, the best performing methods use multi-modal features.
Neverova et al. [13] exploit all the modalities, thus obtaining the highest Jackard
index (0.850). Note that Peng et al. [16] performs quite well by using only RGB
data.

We also report the performance of our method when skeletal features are
combined with color features, i.e., histograms of flows (HOF) [27]. We reduce
the dimensionality of HOF feature from 108 to 48 using PCA, and then, we learn
another GMM with 64 components which led to 6144D Fisher vector. An early
fusion is performed, i.e., the two FVs are concatenated into a single input to be
classified. This leads to a higher index (0.816) and makes the proposed method
comparable with the top-ranking methods. Note that we did not investigated
what is the best color feature to be combined with the quads. It is worth noticing
that the performance when using only HOF features is 0.693. Apparently, the
combination of skeletal quads with more sophisticated features [27] would lead
to a higher index. Note also that the accuracy of our method in the isolated case
is 90%, 86% and 94% when using skeleton, HOF and both features, respectively.

Fig. 3 depicts the confusion matrices for the continuous case when each frame
is considered as an example (the reader should not confuse these numbers with
the Jackard indices of Table 2). We also show the confusion matrices that cor-
respond to the isolated recognition scenario, i.e. when the gesture boundaries
are known. The proposed representation is quite discriminative in either case.
However, quite similar gestures like “Le vuoi prendere” (id 14) and “Non ce
ne piu” (id 15) may be confused without finger joints. The confusion matrix in
the continuous case is more sparse since the confusions are concentrated in the
column of the no-gesture class (label 00), owing to the frame-wise labeling. It is
important to note that the recognition accuracy of this class, i.e. 89%, 86% and
91%, is based on the final global labeling, as with any other class. Apparently,
the use of color features improves the discrimination and the matrices tend to
be more diagonal. Note that the percentages do not sum up to 100 since we keep
the integer part of the numbers.

6 Conclusions

We dealt with the continuous gesture recognition problem from series of artic-
ulated poses. The problem was cast in a labeling framework and it was solved
as a global energy minimization problem. We proposed a dynamic programming
solver that exploits the outputs of multiple SVMs and provides a piece-wise



Continuous gesture recognition from articulated poses 11

(a) (b)

(c) (d)

(e) (f)

Fig. 3. Confusion matrices of our recognition method for Multi-modal gesture dataset
when using skeletal quads (a,b), HOF (c,d), skeletal quads + HOF (e,f) in isolated
(left) and continuous recognition scenario (right).

constant labeling. We mainly tested our method on the Moltabagno Gesture
dataset, released for the ChalearnLAP-2014 challenge purposes. Despite the use
of the skeleton information only, the proposed method achieved high recognition
scores, while its performance was boosted when extra modalities, e.g. colour
data, were used. Future work consists of extending Fisher vectors to deal with
the temporal nature of a pose sequence, and of investigating the optimal fusion
with other modalities.
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