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Abstract. We present an approach to detecting and recognizing ges-
tures in a stream of multi-modal data. Our approach combines a sliding-
window gesture detector with features drawn from skeleton data, color
imagery, and depth data produced by a first-generation Kinect sensor.
The detector consists of a set of one-versus-all boosted classifiers, each
tuned to a specific gesture. Features are extracted at multiple tempo-
ral scales, and include descriptive statistics of normalized skeleton joint
positions, angles, and velocities, as well as image-based hand descrip-
tors. The full set of gesture detectors may be trained in under two hours
on a single machine, and is extremely efficient at runtime, operating at
1700fps using only skeletal data, or at 100fps using fused skeleton and
image features. Our method achieved a Jaccard Index score of 0.834 on
the ChaLearn-2014 Gesture Recognition Test dataset, and was ranked
2nd overall in the competition.

Keywords: Gesture Recognition; Boosting Methods; One-vs-All; Multi-
modal Fusion; Feature Pooling

1 Introduction

Automated gesture recognition has many desirable applications, including home
entertainment, American Sign Language (ASL) translation, human-robot inter-
action (HRI), and security and surveillance. The area has been a focus of exten-
sive research and development in the past decade, and while significant advances
in sensor technologies and algorithmic methods have been made, current systems
remain far from capable of human-level recognition accuracy for most real-world
applications. The problem of recognizing gestures in a stream of data comprises
multiple challenges, including noisy or missing data, non-uniform temporal vari-
ation in gesture execution, variability across individuals, and significant volumes
of data. In this paper, we present an efficient and highly-competitive approach
to detecting and recognizing gestures in a stream of multi-modal (skeleton pose,
color, and depth) data. Our proposed method achieved a Jaccard Index score of
0.834 on the ChaLearn-2014 Gesture Recognition Test dataset, and was ranked
2nd overall in the competition.
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1.1 Related Work

Vision-based pose and gesture recognition technologies have been developed for
three general categories of sensors: monocular cameras, stereo cameras, and fused
color/active ranging sensors such as the Microsoft Kinect. Monocular (single-
camera) methods offer an advantage in terms of cost and flexibility of application,
but represent a significant challenge from an algorithmic perspective as depth,
segmentation and pose data are not easily obtained. Much of the foundational
work in pose and gesture recognition addresses monocular imagery [1, 2], and this
continues to be an active area of research [3–5]. Stereo cameras, which provide
depth information in addition to color imagery and function equally indoors and
outdoors, have recently been applied to the problem of recognizing gestures in
real-world applications such as gesture recognition for robot control [6, 7].

The Kinect series of sensors, which provides built-in skeleton tracking data
along with high-resolution depth and co-registered color imagery, has been ap-
plied to a wide variety of tasks involving gesture recognition, including entertain-
ment, human-robot control [8], and virtual telepresence [9]. While the technology
is restricted to indoor use, the rich data produced by the Kinect is particularly
well-suited to the task of recognizing complex human gestures such as american
sign language (ASL), as well as culturally significant gestures and body language.

Researchers have developed a variety of approaches to extracting features
suitable for representing complex gestures or gesture elements, including bag-of-
words representations [10], poselets [11, 12], and hierarchical representations [13,
14]. Significant effort has been aimed at developing methods capable of discrimi-
nating between complex temporal sequences. Popular models reported in the ges-
ture recognition literature typically derive from sequence-learning methods such
as Hidden Markov Models (HMM) and Conditional Random Fields (CRF) [15].
Song et al.[13] propose a hierarchical sequence summarization (HSS) approach
to recognizing gestures based on CRFs. The winners of the 2013 ChaLearn com-
petition combine an HMM audio classifier with a dynamic time warping (DTW)
based pose sequence classifier [16].

So-called “non-temporal” models that operate on fixed-length sequences,
such as Support Vector Machines (SVM) [17], Random Decision Forests (RDF)
[18], and boosting methods [19] have been successfully applied to the problem of
gesture and action recognition[14, 20], but are often passed over in favor of mod-
els that are expected to implicitly handle complex temporal structures, such as
HMM and CRF [13, 21]. In this paper, we demonstrate that non-temporal meth-
ods such as Adaboost can indeed yield highly-competitive results for gesture
detection when combined with appropriate multi-scale feature representations.

2 Proposed Method

We propose an approach to gesture recognition that combines a sliding-window
detector with multi-modal features drawn from skeleton, color, and depth data
produced by a first-generation Kinect sensor. The gesture detector consists of



Multi-scale Boosted Detector for Efficient and Robust Gesture Recognition 3

a set of boosted classifiers, each tuned to a specific gesture. Each classifier is
trained independently on labeled training data, employing bootstrapping to col-
lect hard examples. At run-time, the gesture classifiers are evaluated in a one-vs-
all manner across a sliding window. Fig. 1 illustrates our multi-scale approach to
feature extraction and gesture classification. We describe the dataset, features,
and classifiers in the following sections.
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Fig. 1. Overview of our sliding-window approach. Local features are extracted on a
frame-by-frame basis, and interpolated to a fixed-size feature matrix. Following a pool-
ing step, the resulting descriptor is processed by a previously trained classifier. The
process is repeated at multiple scales and offsets in the data stream.

Table 1. ChaLearn 2014 Gesture Dataset Statistics

Dataset Labeled Instances Length (min)

Development 7,754 ∼470
Validation 3,362 ∼230
Test 2,742 ∼240

3 Dataset

We report methods and results developed on the ChaLearn 2014 Gesture Recog-
nition challenge dataset. The challenge dataset consists of Development, Vali-
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dation, and Testing sets used throughout different stages of the competition.
Each dataset respectively contains 470, 230, and 240 minute-long sequences of
culturally-relevant gestures performed by multiple individuals. Fig. 1 describes
statistics for each dataset. The challenge focuses on a specific set of 20 labeled
Italian gestures, but includes multiple unlabeled gestures as confusers. Data
products include color and depth video, segmentation masks, and skeleton joint
data produced by a first-generation Kinect sensor. Fig. 2 illustrates sample data
for a single gesture sequence.

Fig. 2. Example color, depth, and segmentation data corresponding to a single gesture
instance

4 Features

We extract features including normalized skeleton joint positions, rotations, and
velocities, as well as HOG descriptors of the hands. Features are extracted at
multiple temporal scales to enable recognition of variable-length gestures. Fea-
tures including skeleton pose and hand shape are extracted from each frame of
video to produce a corresponding sequence of d-dimensional descriptors. These
descriptors are interpolated to produce a fixed-width m× d sequence describing
the sequence, where m is the expected minimum duration, in frames, of a single
gesture. Features in this sequence are then pooled to produce a final descriptor
that may be processed by a gesture classifier. This process is repeated at mul-
tiple time scales, to account for temporal variation between gesture types and
across individuals.

4.1 Skeleton Features

We extract multiple features from the skeleton data produced by the Kinect, in-
cluding the normalized positions of the 9 major joints in the upper body, relative
positions of these joints, joint angles, and instantaneous derivatives (velocities)
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of each feature. To reduce variability across subjects, joint positions xi
j for each

subject i are first normalized according to the length of an individual’s torso si,
following

xi,j =
xi,j − xi,hip

si
(1)

Where si is measured as the distance between the hips and the base of the
neck. Following normalization, four types of features are extracted: normalized
joint positions xj ; joint quaternion angles qj ; Euclidean distances between spe-
cific joints; and directed distances between pairs of joints, based on the features
proposed by Yao et al. [22]. This latter feature consists of the distance from one
joint to another along the normal vector defined by the source joint and the
its parent. The features corresponding to joint positions and angles account for
9×3×2 = 54 dimensions. We compute joint-pair features between all joints with
a parent node (8 joints, excluding the hip), yielding an additional 8 × 8 = 64
dimensions, for a total of 110 static pose features. Finally, first-order deriva-
tives are computed across adjacent frames, for all skeletal features, bringing the
total feature vector size to 220 dimensions describing the skeleton’s pose and
instantaneous motion in a single frame of data.

4.2 Hand Features

G11

“Ok”

G15

“Non ce ne piu”
G4

“E un furbo”
G18

“Buonissimo”

Fig. 3. Examples of gestures that differ primarily in hand pose

While many of the gestures contained in the ChaLearn-2014 dataset may be
differentiated by examining the positions and movements of large joints such
as the elbows and wrists, a number of gestures differ primarily in hand pose,
as well as in slight differences in positioning relative to the body or face. Fig.
3 illustrates a typical set of similar gesture pairs. The first-generation Kinect
provides tracking data for large joints, but does not provide tracking information
for the fingers necessary to differentiate between gestures such as these.

We employ a straightforward approach to describing hand shape. First, a
square image chip is extracted around each hand, using the position information
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provided by the Kinect. As the scale of the subject’s hand in the image is un-
known, we estimate the dimensions of each hand chip based on the known scale
of a body part that is parallel to the image plane. For simplicity, we again use
the torso as a reference, as the gestures are performed by upright subjects who
are typically far enough from the camera for perspective effects to be negligible.
Explicitly, image dimensions for a subject’s hand are computed as:

wi,h =
‖xi,wrist − xi,elbow‖

si
s′i (2)

where s′i is the length of the subject’s torso as measured in image space. This
approach produces an image chip scaled to the length of the subject’s forearm,
which is sufficient for capturing a fully-extended hand. Extracted hand images
are then rescaled to 64x64 using bilinear interpolation.

To reduce the inclusion of background in the hand shape descriptor, we con-
duct an additional masking step using the associated depth image. Depth data is
extracted using the same approach as for color images, producing a 64x64 depth
image for each hand. Foreground masks are then computed by eliminating pixels
whose depth deviates by more than a threshold Td from the median depth of the
image. In our experiments, Td was computed empirically as the mean extent of
well-segmented hands (i.e., hands held away from the body) in the dataset. Fig.
4 illustrates the process for producing masked hand images.

(a) (b)

(c)

Fig. 4. Hand segmentation process. Color and depth images centered around the hand
are extracted (a) using known skeleton joint positions. Depth is smoothed, thresholded
to remove background, and expanded using dilation to produce a segmentation mask,
and a gradient image is computed from the color image (b). The mask is applied to
the gradient image (c), from which HOG features are extracted.

We compute a masked histogram of oriented gradients (HOG) descriptor
[23] for each hand, using the extracted color images and depth masks. HOG
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features are computed for 9 orientation bins across 16x16 non-overlapping blocks,
resulting in shape descriptors of dimensionality dHOG = 144 for each hand.

4.3 Feature Pooling

Following the extraction of skeleton and hand features at each frame, features
within the time window to be classified are collected and linearly interpolated
to a fixed-length sequence of size m× d. To reduce sensitivity to translation and
minimize noise, we perform mean pooling at multiple overlapping intervals of
varying length. To capture high-level information related to gesture periodicity
or complexity, we compute the variance of each feature within the same intervals
used for mean pooling. Fig. 5 illustrates the pooling process. The pooled features
are then combined into the final feature vector used in classification, resulting
in a feature vector of dimensionality d = 20746.

d

m

. . .

σ

µ

Fig. 5. Notional illustration of feature pooling. The raw feature vector is oversampled
using multiple overlapping regions in which mean and variance are computed. Mean
pooling is achieved using intervals and step sizes of length 2,4, and 8. Variance is
computed over intervals of length 6,12 and a step size of 4. In our experiments, we
define m = 24.

5 Classification

As sliding-window methods must typically analyze many windows at various
scales, we apply an efficient boosted classifier cascade [24] to the task of recog-
nizing individual gestures. This type of classifier provides a significant advan-
tage in run-time efficiency over “monolithic” methods such as nonlinear SVMs,
because the cascade structure enables partial evaluation (and thereby partial
feature extraction) on the majority of negative samples. Each gesture is inde-
pendently learned by a single boosted classifier using a one-versus-all (OVA)
approach [25]. We use boosted classifiers comprising 1000 depth-2 decision trees
in our experiments. During training, each classifier is initialized using the full
set of labeled positive gesture examples, along with a subset of randomly sam-
pled negative gestures and non-gestural examples. The initial gesture detector
is then applied to the training data to collect hard examples, and the classifier
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subsequently re-trained, in a process commonly referred to as bootstrapping [26,
27]. The full set of gesture classifiers require approximately 2 hours to train on
modern laptop, with 4 rounds of bootstrapping.

At runtime, the set of classifiers is applied to each time window, and the max-
imum response stored. As many overlapping windows and time scales are con-
sidered, multiple detections are typically produced in the vicinity of gestures or
gesture-like sequences. To resolve conflicting detections, we apply non-maximal
suppression (NMS) using the PASCAL overlap criterion [28].

6 Experimental Results

In this section, we discuss the performance of variations in our proposed method
within the context of the ChaLearn competition, and provide a more detailed
analysis of the top-scoring method using standard measures of detector perfor-
mance.

The ChaLearn competition evaluated methods using the Jaccard Index J ∈
{0, 1}, which measures detection accuracy as the fractional overlap between a
detection window and ground truth. Overall performance is summarized using
the mean of the Jaccard Index for all truthed gesture instances. False positives
are included in this statistic, and contribute a Jaccard Index value of J = 0.

We evaluated the performance of our proposed method using four feature
sets, progressively combining: normalized skeleton joints and velocities (SK);
joint angles and angular velocities (JA); joint-pair distances and velocities (JP);
and hand HOG descriptors (HH). Classifiers were trained on the Development
data, and evaluated on the reserved Validation data. To ensure a fair comparison
across feature sets, classifier thresholds were chosen to achieve a constant rate of
1 false positive per minute (fppm). In all cases, the system was evaluated over
windows computed at 30 scales, using a step size of 2 frames. Table 2 illustrates
the Jaccard Index score for each variant. The baseline feature set (SK) yields a
competitive score of 0.742, which is improved slightly by the inclusion of joint
angle data (SK+JA). A more significant improvement is apparent from the in-
clusion of joint-pair features (SK+JA+JP), which likely reflects the importance
of fine interactions between the various moving parts of the body, including the
face and hands.

Table 2. Jaccard Index scores for detectors trained on the four feature sets. Classifiers
were trained on Development and evaluated on Validation datasets

Feature set JI Score

SK 0.742
SK+JA 0.755
SK+JA+JP 0.791
SK+JA+JP+HH 0.822
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An analysis of the confusion matrix for the skeleton-only detector reveals that
skeleton data is sufficient to accurately differentiate between the majority of the
labeled gestures in the ChaLearn dataset, and is even sufficient to discriminate
between most instances of visually similar gestures such as those illustrated
in 3. The addition of hand-specific descriptors (SK+JA+JP+HH) significantly
reduces error rates on these gestures, and yields our strongest detector with
J = 0.834 on the Test dataset. Despite the introduction of additional unlabeled
gestures in the Test dataset, the detector achieved higher accuracy than on the
Validation dataset; this may be explained by the fact that the final detector was
trained on a larger dataset consisting of both Development and Validation data,
and may therefore be expected to exhibit better generalization properties. The
full 20-gesture detector is highly efficient, exceeding 100fps on the ChaLearn data
on a single-core modern laptop. Using skeleton features only (SK+JA+JP), our
detector is capable of processing over a minute of data per second, equivalent to
1700fps.

G1 0.97 0.01 0 0 0.01 0 0 0.01 0 0 0.01 0 0 0 0 0 0 0 0.01 0

G2 0.01 0.98 0 0 0 0 0 0 0 0 0.01 0 0 0 0 0 0 0 0 0

G3 0.01 0 0.98 0 0 0 0 0 0 0 0.01 0 0 0 0 0 0 0 0 0

G4 0 0 0 0.99 0 0 0 0 0 0.01 0 0 0 0 0 0 0 0 0 0

G5 0 0 0 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

G6 0 0 0 0 0 0.99 0 0 0.01 0 0 0 0 0 0 0.01 0 0 0 0

G7 0 0 0 0.01 0 0 0.99 0 0 0 0 0 0 0 0 0 0 0 0 0

G8 0 0 0 0.01 0 0 0 0.96 0 0 0 0 0 0 0 0 0.01 0.02 0 0

G9 0 0 0 0 0 0.01 0 0 0.99 0 0 0 0 0 0 0 0 0 0 0

G10 0 0 0.02 0.01 0 0 0 0 0.01 0.94 0 0.01 0 0 0.01 0 0 0.01 0 0

G11 0.01 0.01 0.01 0 0 0 0 0 0 0 0.98 0 0 0 0 0 0 0 0 0

G12 0 0 0.01 0.01 0 0 0 0 0 0 0 0.98 0 0 0 0 0 0.01 0 0

G13 0 0 0 0 0 0.01 0 0 0 0 0 0 0.99 0 0 0 0 0 0 0

G14 0 0.01 0 0 0.01 0 0 0 0 0 0 0 0 0.97 0.02 0 0 0 0.01 0

G15 0 0.01 0 0 0 0.01 0 0 0 0.01 0 0 0 0.01 0.96 0 0 0.01 0 0

G16 0 0 0 0 0.01 0 0 0 0 0 0 0 0 0 0 0.98 0 0 0 0.01

G17 0 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.99 0 0 0

G18 0 0 0 0.02 0 0.01 0 0.02 0 0 0 0 0 0 0 0 0 0.95 0 0

G19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.01 0 0 0 0.99 0.01

G20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.01 0.99

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 G15 G16 G17 G18 G19 G20

Fig. 6. Confusion matrix for the 20 hand labeled gestures in the ChaLearn-2014 Test
dataset, produced by the SK+JA+JP+HH detector. Results are computed for detec-
tions that overlap ground truth according to the PASCAL criterion

Figure 6 illustrates the confusion matrix for the final detector on the Test
data, computed at a 1 fppm. Recognition rates across gestures is generally con-
sistent - detected gestures are classified with mean accuracy 97.9 ± 1.61%, with
a single gesture (G10) falling below 95% recognition rate. The remaining source
of error in our experiments is generally attributed to false positives caused by
unlabeled confusers in the Test data. Figure 7 illustrates the tradeoff between
detection and false-positive rates.
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Fig. 7. Detection/false-positive tradeoff (ROC) curves for the four detectors. Although
detection accuracy converges near 1 fppm, measurable differences in Jaccard Index are
apparent. This difference is likely explained by the use of the PASCAL criterion in
computing ROC curves, which require only 50% overlap to be considered a match.

7 Conclusions

Our approach to gesture detection achieves highly competitive results on the
ChaLearn 2014 gesture recognition dataset, ranking 2nd in the overall com-
petition. The proposed method deviates from many recently developed gesture
recognition systems in its use of a boosted classifier cascade rather than sequence-
learning methods such as HMM and CRF. A message from the outcome of this
work is a reminder that simple methods based on effective feature construction
will frequently outperform more sophisticated models that incorporate inade-
quate feature data. While our approach performed well on the ChaLearn dataset,
it is likely that other types of gestures, such as ASL, will provide more complex
structures that will pose a more significant challenge. In future work, we plan to
evaluate our approach on a wider set of gesture lexicons and application areas,
which may highlight specific areas for improvement.
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