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Abstract. This paper is focused on developing a new approach for
video-based action detection where a set of temporally synchronized
videos are taken by multiple wearable cameras from different and varying
views and our goal is to accurately localize the starting and ending time
of each instance of the actions of interest in such videos. Compared with
traditional approaches based on fixed-camera videos, this new approach
incorporates the visual attention of the camera wearers and allows for
the action detection in a larger area, although it brings in new challenges
such as unconstrained motion of cameras. In this approach, we leverage
the multi-view information and the temporal synchronization of the in-
put videos for more reliable action detection. Specifically, we detect and
track the focal character in each video and conduct action recognition
only for the focal character in each temporal sliding window. To more
accurately localize the starting and ending time of actions, we develop
a strategy that may merge temporally adjacent sliding windows when
detecting durative actions, and non-maximally suppress temporally ad-
jacent sliding windows when detecting momentary actions. Finally we
propose a voting scheme to integrate the detection results from multi-
ple videos for more accurate action detection. For the experiments, we
collect a new dataset of multiple wearable-camera videos that reflect the
complex scenarios in practice.

Keywords: Action Detection, Multi-view Videos, Focal Character, Wear-
able Cameras

1 Introduction

Video-based action detection, i.e., detecting the starting and ending time of
the actions of interest, plays an important role in video surveillance, monitor-
ing, anomaly detection, human computer interaction and many other computer-
vision related applications. Traditionally, action detection in computer vision is
based on the videos collected from one or more fixed cameras, from which mo-
tion features are extracted and then fed to a trained classifier to determine the
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underlying action class [25, 31, 32, 35]. However, using fixed-camera videos has
two major limitations: 1) fixed cameras can only cover specific locations in a
limited area, and 2) when multiple persons are present, it is difficult to decide
the character of interest and his action from fixed-camera videos, especially with
mutual occlusions in a crowded scene. In this paper, we consider a completely
different approach where a set of temporally synchronized videos are collected
from multiple wearable cameras and our main goal is to integrate the information
from multiple wearable-camera videos for better action detection.

This new approach is applicable to many important scenarios. In a public
crowded area, such as an airport, we can get all the security officers and other
staff to wear a camera when they walk around for monitoring and detecting
abnormal activities. In a prison, we can get each prisoner to wear a camera to
collect videos, from which we may detect their individual activities, interactive
activities, and group activities. Over a longer term, we may use these videos to
infer the underlying social network among the prisoners to increase the security
of the prison. In a kindergarten, we can get the teachers and the kids to wear a
camera for recording what each of them sees daily, from which we can analyze
kids’ activities for finding kids with possible social difficulties, such as autism.
We can see that, for some applications, camera wearers and action performers are
different group of people, while for other applications, camera wearers and action
performers can overlap. In our approach, we assume that the videos collected
from multiple wearable cameras are temporally synchronized, which can be easily
achieved by integrating a calibrated clock in each camera.

The proposed approach well addresses the limitation of the traditional ap-
proaches that use fixed cameras. 1) Camera wearers can move as he wants and
therefore the videos can be collected in a much larger area; 2) Each collected
video better reflects the attention of the wearer – the focal character is more
likely to be located at the center of the view over a period of time and an ab-
normal activity may draw many camera-wearers’ attention. However, this new
approach also introduces new challenges compared to the approaches based on
fixed cameras. For example, each camera is moving with the wearer and the view
angle of the camera is totally unconstrained and time varying, while many avail-
able action recognition methods require the camera-view consistency between
the training and testing data. In this paper, we leverage the multi-view infor-
mation and the temporal synchronization of the input videos for more reliable
action detection.

We adopt the temporal sliding-window technique to convert the action de-
tection problem in long streaming videos to an action recognition problem over
windowed short video clips. In each video clip, we first compensate the camera
motions using the improved trajectories [32], followed by focal character detec-
tion by adapting the state-of-the-art detection and tracking algorithms [15, 28].
After that, we extract the motion features around the focal character for action
recognition. To more accurately localize the starting and ending time of an ac-
tion, we develop a strategy that may merge temporally adjacent sliding windows
when detecting durative actions, and non-maximally suppress temporally adja-
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cent sliding windows when detecting momentary actions. Finally, we develop a
majority-voting technique to integrate the action detection results from multiple
videos. To evaluate the performance of the proposed method, we conduct experi-
ments on a newly collected dataset consisting of multiple wearable-camera videos
with temporal synchronization. The main contributions in this paper are: 1) a
new approach for action detection based on multiple wearable-camera videos.
2) a new dataset consisting of multiple wearable-camera videos for performance
evaluation.

2 Related Work

Video-based action detection can usually be reduced to an action recognition
problem, when the starting and ending frames of the action are specified – an
action classifier is usually used to decide whether these frames describe the ac-
tion. Three techniques have been used for this reduction: the sliding-window
technique [11], which divides a long streaming video into a sequence of tempo-
rally overlapped short video clips, the tracking-based technique [38, 18], which
localizes human actions by person tracking, and the voting-based technique [38,
2], which uses local spatiotemporal features to vote for the location parameters
of an action. The sliding-window technique could be improved by using more
efficient search strategy [39].

Most of the existing work on action recognition uses a single-view video taken
by fixed cameras. Many motion-based feature descriptors have been proposed [1]
for action recognition, such as space time interest points (STIPs) [20] and dense
trajectories [31]. Extended from 2D features, 3D-SIFT [29] and HOG3D [19]
have also been used for action recognition. Local spatiotemporal features [10]
have been shown to be successful for action recognition and dense trajectories
achieve best performance on a variety of datasets [31]. However, many of these
features are sensitive to viewpoint changes – if the test videos are taken from
the views that are different from the training videos, these features may lead to
poor action recognition performance.

To address this problem, many view invariant methods have been devel-
oped for action recognition [17, 27, 41]. Motion history volumes (MHV) [34], his-
tograms of 3D joint locations (HOJ3D) [36] and hankelets [22] are view invari-
ant features. Temporal self-similarity descriptors show high stability under view
changes [17]. Liu et al. [23] developed an approach to extract bag-of-bilingual-
words (BoBW) to recognize human actions from different views. Recent studies
show that pose estimation can benefit action recognition [37], e.g., key poses
are very useful for recognizing actions from various views [6, 24]. In [33], an
exemplar-based Hidden Markov Model (HMM) is proposed for free view action
recognition.

In multi-view action recognition, a set of videos are taken from different
views by different cameras. There are basically two types of fusion scheme to
combine the multi-view videos for action recognition: feature-level fusion and
decision-level fusion. Feature-level fusion generally employs bag-of-words model
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to combine features from multiple views [40]. Decision-level fusion simply com-
bines the classification scores from all the views [26]. 3D action recognition ap-
proaches usually fuse the visual information by obtaining 3D body poses from 2D
body poses in terms of binary silhouettes [5]. Most existing work on multi-view
action recognition are based on videos taken by fixed cameras. As mentioned
earlier, they suffer from the problems of limited spatial coverage and degraded
performance in crowded scenes.

Also related to this paper is the egocentric video analysis and action recog-
nition. For example, in [14, 13] egocentric videos are used to recognize the daily
actions and predict the gaze of the wearer. Similar to our work, they also take
the videos from wearable cameras for action recognition. However, they are com-
pletely different from our work – in this paper, we recognize the actions of the
performers present in the videos while the egocentric action recognition aims to
recognize the actions of the camera wearers.

3 Proposed Method

3.1 Problem Description and Method Overview

We have a group of people, named (camera) wearers, each of whom wears a
camera over head, such as Google Glasses or GoPro. Meanwhile, we have a
group of people, named performers, each of whom performs actions over time.
There may be overlap between wearers and performers, i.e., some wearers are
also performers and vice versa. Over a period of time, each camera records a
video that reflects what its wearer sees and the videos from all the cameras are
temporally synchronized. We assume that at any time each wearer focuses his
attention on at most one “focal character”, who is one of the performers. The
wearer may move as he wants during the video recording to target better to
a performer or switch his attention to another performer. An example of such
videos is shown in Fig. 1, where five videos from five wearers are shown in five
rows respectively. For long streaming videos, the focal character in each video
may change over time and the focal character may perform different actions at
different time. Our goal of action detection is to accurately localize the starting
and ending time of each instance of the actions of interest performed by a focal
character by fusing the information from all the videos.

In this paper, we use the sliding-window technique to convert the action de-
tection problem on a long streaming video into an action recognition problem
on short video clips. Following sliding windows, a long-streaming video is tem-
porally divided into a sequence of overlapped short video clips and the features
from each clip are then fed into a trained classifier to determine whether a cer-
tain action occurs in the video clip. If yes, the action is detected with starting
and ending frames aligned with the corresponding sliding window. However, in
practice, instances of a same action or different actions may show substantially
different duration time and it is impossible to exhaustively try different sliding-
window lengths to match all possible action durations. In Section 3.4, we will
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Fig. 1. An example of the videos taken by five wearable cameras from different views.
Each row shows a sequence of frames from one video (i.e., from one wearer’s camera)
and each column shows the five frames with the same time stamp in the five videos
respectively. In each frame, the focal character is highlighted in a red box and the blue
boxes indicate the camera wearers, who wear a GoPro camera over the head to produce
these five videos. Some wearers are out of the view, e.g., a wearer is not present in the
video taken by his own camera. The same focal character is performing a jump action
in these five videos.

introduce a new merging and suppression strategy to the temporally adjacent
sliding windows to address this problem.

When multiple temporally synchronized videos are taken for the same focal
character, we can integrate the action detection results on all the videos for
more reliable action detections. In this paper, we identify the focal character on
each video, track its motion, extract its motion features, and feed the extracted
features into trained classifiers for action detection on each video. In Section 3.5,
we will introduce a voting scheme to integrate the action detection results from
multiple synchronized videos.

Moving cameras pose new challenges in action recognition because the ex-
tracted features may mix the desired foreground (focal character) motion and un-
desired background (camera) motion. In this paper, we remove camera motions
by following the idea in [32]. Specifically, we first extract the SURF features [3]
and match them between neighboring frames using nearest neighbor search. Op-
tical flow is also used to establish a dense correspondence between neighboring
frames. Finally we estimate the homography between frames by RANSAC [16]
and rectify each frame to remove camera motions.
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After removing the camera motions, on each video clip we extract the dense
trajectories and its corresponding descriptors using the algorithms introduced
in [31, 32]. Specifically, trajectories are built by tracking feature points detected
in a dense optical flow field [12] and then the local motion descriptors HOG [7],
HOF [21] and MBH [8] are computed and concatenated as the input for the
action classifier for both training and testing. We only consider trajectories with
a length of no less than 15 frames. We use the standard bag-of-feature-words
approach to encode the extracted features – for each feature descriptor, we use
K-means to construct a codebook from 100, 000 randomly sampled trajectory
features. The number of entries in each codebook is 4, 000. In the following, we
discuss in detail the major steps in the proposed method, i.e., focal character
detection, temporal merging and suppression for action detection and integrated
action detection from multiple videos.

3.2 Focal Character Detection

By detecting the focal character, we can focus only on his motion features for
more reliable action recognition. As discussed earlier, videos taken by wearable
cameras facilitate the focal character detection since the wearers usually focus
their attentions on their respective focal characters. In this paper we take the
following three steps to detect the focal character in each video clip constructed
by the sliding windows.

1. Detecting the persons in each video frame using the state-of-the-art human
detectors [15], for which we use a publicly available software package1.

2. Tracking the motion of the detected persons along the video clip using the
multiple-object tracking algorithm [28] for which we also use a publicly avail-
able software package2. Given missing detections on some frames (e.g., red
dashed box in Fig. 2), we need to link short human tracklets (e.g., solid
curves in Fig. 2) into longer tracks (e.g., the long red track in Fig. 2).

3. Ranking human tracks in terms of a proposed attention score function and
selecting the track with the highest score as the focal character, e.g., the
long red track in Fig. 2.

In the following, we elaborate on the tracklet linking and the attention score
function.

Tracklet Linking Let {T1, · · · , TN} be the N tracklets obtained by the human
detection/tracking. Each tracklet is a continuous sequence of detected bounding

boxes, i.e., Ti =
{
Bi

t

}t2
t=t1

where Bi
t represents 2D coordinates of the 4 corners

of the bounding box in frame t, and t1 and t2 indicate the starting and the

1 http://www.cs.berkeley.edu/∼rbg/latent/index.html
2 http://people.csail.mit.edu/hpirsiav/
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Fig. 2. An illustration of the focal character detection.

ending frames of this tracklet. The tracklet linking task can be formulated as a
Generalized Linear Assignment (GLA) problem [9]:

min
X

N∑
i=1

N∑
j=1

DijXij

s.t.

N∑
i=1

Xij ≤ 1;

N∑
j=1

Xij ≤ 1;Xij ∈ {0, 1}

(1)

where Xij = 1 indicates the linking of the last frame of Ti to the first frame of
Tj and Dij is a distance measure between two tracklets Ti and Tj when Xij = 1.

Specifically, we define Dij = DP (Ti, Tj)×DA(Ti, Tj) where DP and DA are
the location and appearance distances between Ti and Tj respectively. The lo-
cation distance DP is defined by the Euclidean distance between the spatiotem-
poral centers of Ti and Tj in terms of their bounding boxes. The appearance
distance DA is defined by the sum of χ2 distances between their intensity his-
tograms, over all three color channels inside all their bounding boxes.

The GLA problem defined in Eq. (1) is an NP-Complete problem [9] and
in this paper, we use a greedy algorithm to find a locally optimal solution [9].
By tracklet linking, we can interpolate the missing bounding boxes and achieve
longer human tracks along the windowed video clip.

(a)

(b)

Fig. 3. An example of human detection and focal character detection. (a) Human
detection results using Felzenszwalb detectors [15]. (b) Detected focal character.
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Focal Character Detection For each human track, we define an attention-
score function to measure its likelihood of being the focal character for the
wearer. Specifically, we quantify and integrate two attention principles here: 1)
the focal character is usually located inside the view of the camera wearer and
the wearer usually moves his eyes (therefore his camera) to keep tracking the
focal character. Mapped to the detected human tracks, the track of the focal
character tends to be longer than the other tracks; 2) the focal character is
usually located at a similar location in the view along a video clip. Based on
these, we define the attention score A(T ) for a human track T = {Bt}t2t=t1

as

A(T ) =

t2∑
t=t1

exp

{
−
(

(B̄tx − µTx)2

σ2
x

+
(B̄ty − µTy)2

σ2
y

)}
(2)

where (µTx, µTy) denotes the mean values of track T along the x and y axes,
respectively, (B̄tx, B̄ty) denotes the center of the bounding box Bt in the track
T at the frame t, and σx and σy control the level of the center bias, which we
empirically set to 1

12 and 1
4 respectively in all our experiments. Given a set of

human tracks in the video clip, we simply pick the one with the highest attention
score as the track of the focal character, as shown in Fig. 3.

3.3 Action Recognition

In this section, we consider the action recognition on a short video clip generated
by sliding windows. For both training and testing, we extract dense trajectory
features only inside the bounding boxes of the focal character. This way, other
irrelevant motion features in the background and associated to the non-focal
characters will be excluded, with which we can achieve more accurate action
recognition. Considering the large feature variation of a human action, we use a
state-of-the-art sparse coding technique for action recognition [4]. In the training
stage, we simply collect all the training instances of each action (actually their
feature vectors) as the bases for the action class. In the testing stage, we extract
the motion-feature vector of the focal character and sparsely reconstruct it using
the bases of each action class. The smaller the reconstruction error, the higher
the likelihood that this test video clip belongs to the action class. Specifically,
let T be the feature vector extracted from a testing video clip. The likelihood of
T belongs to action i is

L(i|T ) =
1√

2πσ2
exp

(
−‖T − T̃i‖2

2σ2

)
. (3)

where T̃i = Aix
∗ denotes the sparse coding reconstruction of feature vector T

using the bases Ai in action class i and x∗ is the linear combination coefficients
of the sparse coding representation which can be derived by solving the following
minimization problem:

x∗ = min
x
{‖T − Aix‖2 + α‖x‖0}. (4)
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3.4 Action Detection

As mentioned before, the video clips used for action recognition are produced
by sliding windows. In the simplest case, when an action is recognized in a video
clip, we can take the corresponding sliding window (with the starting and ending
frames) as the action detection result. However, in practice, different actions, or
even the same action, may show different duration time. In particular, some
actions, such as “handwave”, “jump”, “run” and “walk”, are usually durative,
while other actions, such as “sitdown”, “standup”, and “pickup”, are usually
momentary. Clearly, it is impossible to try all possible length sliding windows to
detect actions with different durations. In this paper we propose a new strategy
that conducts further temporal window merging or non-maximal suppression to
detect actions with different durations.

We propose a three-step algorithm to temporally localize the starting and
ending frames of each instance of the actions of interest. First, to accommo-
date the duration variation of each action, we try sliding windows with different
lengths. Different from a momentary action that is usually completed in a short
or limited time, a durative action may be continuously performed for an indefi-
nite time. Thus, it is difficult to pick a small number of sliding-window lengths
to well cover all possible durations of a durative action. Fortunately, durative
actions are usually made up of repetitive action periods and the duration of each
period is short and limited. For example, a durative “walk” action contains a
sequence of repeated “footsteps”. For a durative action, we select sliding-window
lengths to cover the duration of the action period instead of the whole action.

Second, for each considered action class, we combine its action likelihood
estimated on the video clips resulting from sliding windows with different lengths,
e.g., l1, l2 and l3 in Fig. 4, where the value of the curve labeled “window-length
l1” at time t is the action likelihood estimated on the video clip in the time
window [t − l1

2 , t + l1
2 ] (centered at t with length l1), using the approach we

introduced above. To estimate a unified action likelihood at time t, a basic
principle is that we pick the largest value at time t among all the curves, as
shown by the point A in Fig. 4. In this example, l1 is the most likely length
of this action (or action period) at t. As a result, we can obtain the unified
action likelihood curve (U(t), S(t)), where U(t) is the maximum action likelihood
over all tested different-length sliding windows centered at t and S(t) is the
corresponding window length that leads to U(t).

Finally, based on the unified action likelihood (U, S), we perform a temporal
merging/suppression strategy to better localize the starting and ending frames
of the considered action. For a durative action, each sliding window may cor-
respond to one of its action period. Our basic idea is to merge adjacent sliding
windows with high action likelihood for durative action detection. Specifically,
this merging operation is implemented by filtering out all the sliding windows
with U(t) < Th, where Th is a preset threshold. This filtering actually leads to a
set of temporally disjoint intervals in which all the t satisfy U(t) ≥ Th. For each

of these intervals, say [t1, t2], we take the temporal interval [t1− S(t1)
2 , t2 + S(t2)

2 ]
as a detection of the action. For a momentary action, we expect that it does not
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Fig. 4. An illustration of the estimated action likelihood using different-length sliding
windows.

occur repetitively without any transition. We perform a temporal non-maximum
suppression for detecting a momentary action – if U(t) ≥ Th and U(t) is a local

maximum at t, we take the temporal interval [t− S(t)
2 , t+ S(t)

2 ] as a detection of
the action. This way, on each video, we detect actions of interest in the form of
a set of temporal intervals, as illustrated in Fig. 5 where each detected action is
labeled by red font.

3.5 Integrated Action Detection from Multiple Videos

In this section, we integrate the action detection results from multiple synchro-
nized videos taken by different wearers to improve the accuracy of action de-
tection. The basic idea is to use majority voting over all the videos to decide
the underlying action class at each time. Note that here it is required that these
videos are taken for a same focal character. As illustrated in Fig. 5, we take the
following steps.

1. Temporally divide all the videos into uniform-length segments, e.g., segments
(a) and (b) that are separated by the vertical dashed lines in Fig. 5. In this
paper, we select the segment length to be 100 frames.

2. For each segment, e.g., segment (a) in Fig. 5, we examine its overlap with
the temporal intervals of the detected actions in each video and label it with
the corresponding action label or “no-action” when there is no overlap with
any detected action intervals. For example, segment (a) is labeled “run” in
Videos 1, 3, and 5, “walk” in Video 2, and “no-action” in Video 4.

3. For the considered segment, we perform a majority voting to update the
action labels over all the videos. For example, on three out of five videos,
segment (a) is labeled “run” in Fig. 5. We simply update the label of segment
(a) to “run” on all the videos.

4. After updating action labels for all the segments, update the action detection
results by merging adjacent segments with the same labels, as shown in the
last row of Fig. 5.

After these steps, the action detection results are the same for all the videos.
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Fig. 5. An illustration of integrating action detection from multiple videos.

4 Experiments

We collect a new video dataset for evaluating the performance of the proposed
method. In our experiment, we try two sliding-window lengths: 50 and 100 for
computing the unified action likelihood. For comparison, we also try the tradi-
tional approach, where the motion features are extracted over the whole video
without the focal character detection and the filtering of non-relevant features.
Other than that, the comparison method is the same as the proposed method,
including the type of the extracted features [31, 32], camera motion compensa-
tion [32], and the application of sliding windows. For both the proposed method
and the comparison method, we also examine the performance improvement by
integrating the action detection results from multiple videos.

4.1 Data Collection

Popular video datasets that are currently used for evaluating action detection
consist of either single-view videos with camera movement or multi-view videos
taken by fixed cameras. In this work, we collect a new dataset that consists of
temporally synchronized videos taken by multiple wearable cameras.

Specifically, we get 5 persons who are both performers and wearers and one
more person who is only a performer. They perform 7 actions: handwave, jump,
pickup, run, sit-down, stand-up and walk in an outdoor environment. Each of
the 5 wearers mounts a GoPro camera over the head. We arrange the video
recording in a way that the 6 performers alternately play as the focal character
for the other people. As the focal character, each person plays the 7 actions once
in the video recording. This way, we collected 5 temporally synchronized videos,
each of which contains 5 × 7 = 35 instances of actions performed by 5 persons,
excluding the wearer himself. The average duration of each action is about 18.4
seconds. We annotate these 5 videos for the focal characters and the starting
and ending frames of each instance of the actions of interest, using the open
video annotation tool of VATIC [30]. In our experiments, we use these 5 videos
for testing the action detection method.
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For training, we collect a set of video clips from two different views in a more
controlled way. Each clip contains only one instance of the actions of interest.
Specifically, we get the same 6 persons to perform each of the 7 actions two
or three times. In total we collected 204 video clips as the training data. The
average length of the video clips in the training data is 11.5 seconds. The camera
wearers are randomly selected from the five persons who are not the performer
and the wearer may move his head to focus the attention on the performer in the
recording. All the training videos (clips) are annotated with the focal characters
for feature extraction and classifier training. Figure 6 shows sample frames of
each action class from different cameras in our new dataset.

handwave jump pickup run sit-down stand-up walk

Fig. 6. Sample frames in the collected videos with annotated focal characters.

4.2 Independent Detection of Each Action

In this section, we conduct an experiment to detect each action independent of
other actions. Specifically, we set the threshold Th to 50 different values at the s-
percentile of U(t) over the entire video, i.e., U(t) > Th on s% of frames, where s
continuously increases one by one from 26 to 75. Under each selected value of Th,
we perform temporal merging/suppression to detect each action independently.
For each detected instance of an action (a temporal interval, e.g., D), if there
exists an annotated ground-truth instance of the same action, e.g., G, with a

temporal overlap TO= |D
⋂

G|
|D

⋃
G| , that is larger than 1

8 , we count this detection

D to be a true positive. This way we can calculate the precision, recall and
the F-score= 2×precision×recall

precision+recall . We pick the best F-score over all 50 selections
of the threshold Th for performance evaluation. From Table 1, we can see that
the proposed method outperforms the comparison method on 6 out of 7 actions
as well as the average performance. Note that in this experiment, the detected
actions are allowed to temporally overlap with each other and therefore the
integrated action detection technique proposed in Section 3.5 is not applicable.
The performance reported in Table 1 is the average one over all the 5 videos.
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Table 1. Performance (best F-score) of the proposed method and the comparison
method when independently detecting each of the 7 actions on the collected multiple
wearable-camera videos.

Methods handwave jump pickup run sitdown standup walk Average

Comparison 42.3% 37.3% 10.0% 33.2% 14.8% 8.9% 32.5% 24.1%

Proposed 42.4% 38.9% 16.2% 36.3% 11.8% 13.0% 38.9% 28.2%

4.3 Non-Overlap Action Detection

On the 5 collected long streaming videos, there is only one focal character at
any time and the focal character can only perform one single action at any
time. In this section, we enforce this constraint by keeping detecting at most one
action (the one with the highest action likelihood) at any time along the video.
Specifically, we set the threshold Th at the 75 percentile of U(t). Then for each
windowed short clip, we only consider it for the action with the highest action
likelihood and the likelihood for the other actions is directly set to zero for this
clip. After that, we follow the same temporal merging/suppression strategy to get
the final action detection. Table 2 gives the F-score of the proposed method and
the comparison method. It can be seen that the proposed method outperforms
the comparison method in all the videos under two different definitions of the
true positives – temporal overlap TO> 1

4 and TO> 1
8 , respectively. We then

further apply the technique developed in Section 3.5 to integrate the detection
results from all 5 videos and the final detection performance is shown in the
last column of Table 2. We can see that, by integrating detections from multiple
videos, we achieve better action detection. In addition, by adding this integration
step, the proposed method still outperforms the comparison method.

Table 2. Performance (F-score) of the proposed method and the comparison method
when detecting all the 7 actions in a non-overlapping way on the collected multiple
wearable-camera videos.

Methods Video1 Video2 Video3 Video4 Video5 Average Integrated

TO> 1
4

Comparison 15.8% 20.6% 11.2% 23.0% 16.3% 17.4% 19.8%
Proposed 26.1% 28.5% 19.0% 29.8% 30.2% 26.7% 28.3%

TO> 1
8

Comparison 22.6% 28.3% 21.7% 32.3% 26.9% 26.4% 28.3%
Proposed 32.7% 32.4% 30.9% 34.5% 30.8% 32.3% 34.0%

5 Conclusions

In this paper, we developed a new approach for action detection – input videos
are taken by multiple wearable cameras with temporal synchronization. We de-
veloped algorithms to identify focal characters from each video and combined
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the multiple videos to more accurately detect the actions of the focal charac-
ter. We developed a novel temporal merging/suppression algorithm to localize
starting and ending time of both the durative and momentary actions. Image
frames were rectified before feature extraction for removing the camera motion.
A voting technique was developed to integrate the action detection from multiple
videos. We also collected a video dataset that contains synchronized videos taken
by multiple wearable cameras for performance evaluation. In the future, we plan
to enhance each of the steps of the proposed approach and develop algorithms
to automatically identify subsets of videos with the same focal character.
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