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Abstract. Procrustes Analysis (PA) has been a popular technique to
align and build 2-D statistical models of shapes. Given a set of 2-D
shapes PA is applied to remove rigid transformations. Later, a non-rigid
2-D model is computed by modeling the residual (e.g., PCA). Although
PA has been widely used, it has several limitations for modeling 2-D
shapes: occluded landmarks and missing data can result in local minima
solutions, independent PA and PCA steps might result in a sub-optimal
model, and there is no guarantee that the 2-D shapes provide a uni-
form sampling of the 3-D space of rotations for the object. To address
previous issues, this paper proposes Subspace PA (SPA). Given several
instances of a 3-D object, SPA computes the mean and a 2-D subspace
that can simultaneously model all rigid and non-rigid deformations of
the 3-D object. We propose a discrete (DSPA) and continuous (CSPA)
formulation for SPA, assuming that a 3-D shape of an object is provided.
DSPA extends the traditional PA, and produces unbiased 2-D models by
uniformly sampling different views of the 3-D object. CSPA provides a
continuous approach to uniformly sample the space of 3-D rotations, be-
ing more efficient in space and time. Experiments using SPA to learn
2-D models of bodies from motion capture data illustrate the benefits of
our approach.

1 Introduction

In computer vision, Procrustes Analysis (PA) has been used extensively to align
shapes (e.g., [18, 4]) and appearance (e.g., [19, 13]) as a pre-processing step to
build 2-D models of shape variation. Usually, shape models are learned from a
discrete set of 2-D landmarks through a two-step process [8]. Firstly, the rigid
transformations are removed by aligning the training set w.r.t. the mean using
PA; next, the remaining deformations are modeled using Principal Component
Analysis (PCA) [17, 5].

PA has been widely employed despite suffering from several limitations: (1)
The 2-D training samples do not necessarily cover an uniform sampling of all 3-D
rigid transformations of an object and this can result in a biased model (i.e., some
poses are better represented than others). (2) It is computationally expensive
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to learn a shape model by sampling all possible 3-D rigid transformations of an
object. (3) The models that are learned using only 2-D landmarks cannot model
missing landmarks due to large pose changes. Moreover, PA methods can lead
to local minima problems if there are missing components in the training data.
(4) Finally, PA is computationally expensive, it scales linearly with the number
of samples and landmarks and quadratically with the dimension of the data.

To address these issues, this paper proposes a discrete and a continuous for-
mulation of Subspace Procrustes Analysis (SPA). SPA is able to efficiently com-
pute the non-rigid subspace of possible 2-D projections given several 3-D samples
of a deformable object. The learned 2-D model has the same representational
power of a 3-D model but leads to faster fitting algorithms [14]. SPA uniformly
samples the space of possible 3-D rigid transformations, and it is extremely ef-
ficient in space and time. The main idea of SPA is to combine functional data
analysis with subspace estimation techniques. Note that our proposed work is
the inverse problem of Non-Rigid Structure From Motion (NRSFM) [21, 20, 3].
The goal of NRSFM is to recover 3-D shape models from 2-D tracked landmarks,
while SPA builds unbiased 2-D models from 3-D data.

Fig. 1 illustrates the main idea of this work. In Fig. 1 (a), we represent many
samples of 3-D motion capture data of humans performing several activities.
SPA simultaneously aligns all 3-D samples projections, while computing a 2-D
subspace (Fig. 1 (b)) that can represent all possible projections of the 3-D motion
capture samples under different camera views. Hence, SPA provides a simple,
efficient and effective method to learn a 2-D subspace that accounts for non-
rigid and 3-D geometric deformation of 3-D objects. These 2-D subspace models
can be used for detection (i.e., constrain body parts, see Fig. 1 (c)), because
the subspace models all 3-D rigid projections and non-rigid deformations. As we
will show in the experimental validation, the models learned by SPA are able
to generalize better than existing PA approaches across view-points (because
they are built using 3-D models) and preserve expressive non-rigid deformations.
Moreover, computing SPA is extremely efficient in space and time.

2 Procrustes Analysis Revisited

This section describes three different formulations of PA with an unified and
enlightening matrix formulation.

Procustes Analysis (PA): Given a set of m centered shapes (see footnote
for notation1) Di ∈ Rd×`,∀i = 1, . . . ,m, PA [6, 9, 8, 10, 2] computes the reference
shape M and the m transformations Ti ∈ Rd×d (e.g., affine, Euclidean) that

1 Bold capital letters denote a matrix X, bold lower-case letters a column vector x. xi

represents the ith column of the matrix X. xij denotes the scalar in the ith row and
jth column of the matrix X. All non-bold letters represent scalars. In ∈ Rn×n is an

identity matrix. ‖x‖p = p
√∑

i |xi|p and ‖X‖F =
√∑

ij x
2
ij denote the p-norm for

vector and the Frobenius norm of a matrix, respectively. X(p) is the vec-transpose
operator, detailed in Appendix B.
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(a) (b) (c)

Fig. 1. Illustration of Continuous Subspace Procrustes Analysis (CSPA), which builds
an unbiased 2-D model of human joints’ variation (b) by integrating over all possible
viewpoints of a 3-D motion capture data (a). This 2-D body shape model is used to
reconstruct 2-D shapes from different viewpoints (c). Our CSPA model generalizes
across poses and camera views because it is learned from a 3-D model.

minimize the reference-space model [10, 8, 2] (see Fig. 2 (a)):

ER(M,T) =

m∑
i=1

||TiDi −M||2F , (1)

where Di and M ∈ Rd×` are d-dimensional shapes composed by ` landmarks, and
T = [TT

1 , · · · ,TT
m]T ∈ Rdm×d. In the case of two-dimensional shapes (d = 2),

Di =

[
x1 x2 . . . x`
y1 y2 . . . y`

]
. Alternatively, PA can be optimized using the data-space

model [2] (see Fig. 2 (b)):

ED(M,A) =

m∑
i=1

||Di −AiM||2F , (2)

where A = [AT
1 , · · · ,AT

m]T ∈ Rdm×d. Ai = T−1 ∈ Rd×d is the inverse trans-
formation of Ti and corresponds to the rigid transformation for the reference
shape M.

The error function of the reference-space model minimizes the difference be-
tween the reference shape and the registered shape data. In the data-space model,
the error function compares the observed shape points with the transformed ref-
erence shape, i.e., shape points predicted by the model and based on the notion of
average shape [22]. This difference between both models leads to different prop-
erties. Since the reference-space cost (ER, Eq. (1)) is a sum of squares and it is
linear in the optimization parameters, it can be optimized with Alternated Least
Squares (ALS) methods. On the other hand, the data-space cost (ED, Eq. (2))
is a bilinear problem and non-convex. If there is no missing data, the data-space
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(a) (b)

Fig. 2. (a): Reference-space model. (b): Data-space model. Note that Ai = T−1
i .

model can be solved using the Singular Value Decomposition (SVD). A major
advantage of the data-space model is that it is gauge invariant (i.e., the cost
does not depend on the coordinate frame in which the reference shape and the
transformations are expressed) [2]. Benefits of both models are combined in [2].
Recently, Pizarro et al. [18] have proposed a convex approach for PA based in
the reference-space model. In their case, the cost function is expressed with a
quaternion parametrization which allows conversion to a sum of squares program
(SOSP). Finally, the equivalent semi-definite program of a SOSP relaxation is
solved using convex optimization.

PA has also been applied to learn appearance models invariant to geometric
transformations. When PA is applied to shapes, the geometric transformation
(e.g., Ti or Ai) can be directly applied to the image coordinates. However, to
align appearance features the geometric transformations have to be composed
with the image coordinates, and the process is a bit more complicated. This is
the main difference when applying PA to align appearance and shape. Frey and
Jojic [7] proposed a method for learning a factor analysis model that is invari-
ant to geometric transformations. The computational cost of this method grows
polynomially with the number of possible spatial transformations and it can be
computationally intensive when working with high-dimensional motion models.
To improve upon that, De la Torre and Black [19] proposed parameterized com-
ponent analysis: a method that learns a subspace of appearance invariant to
affine transformations. Miller et al. proposed the congealing method [13], which
uses an entropy measure to align images with respect to the distribution of the
data. Kookinos and Yuille [12] proposed a probabilistic framework and extended
previous approaches to deal with articulated objects using a Markov Random
Field (MRF) on top of Active Appearance Models (AAMs).

Projected Procrustes Analysis (PPA): Due to advances in 3-D capture
systems, nowadays it is common to have access to 3-D shape models for a variety
of objects. Given n 3-D shapes, we can compute r projections at uniformly
sampled angles for each one of them (after removing translation) and minimize
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PPA:

EPPA(M,Aij) =

n∑
i=1

r∑
j=1

‖PjDi −AijM‖2F , (3)

where Di ∈ R3×` and Pj ∈ R2×3 is an orthographic projection of a 3-D rotation
R(ω) in a given domain Ω. Note that, while data and reference shapes are d-
dimensional in Eq. (1) and Eq. (2), data Di ∈ R3×` and reference M ∈ R2×`

shapes in Eq. (3) are fixed to be 3-D and 2-D, respectively. ALS is a common
method to minimize Eq. (2) and (3). ALS alternates between minimizing over
M and Aij ∈ R2×2 with the following expressions:

Aij = PjDiM
T (MMT )−1 ∀i, j, (4)

M = (

n∑
i=1

r∑
j=1

AT
ijAij)

−1(

n∑
i=1

(

r∑
j=1

AT
ijPj)Di). (5)

Note that PPA and its extensions deal with missing data naturally, since
they use the whole 3-D shape of objects.

Continuous Procrustes Analysis (CPA): A major limitation of PPA is
the difficulty to generate uniform distributions in the Special Orthogonal group
SO(3). Due to the topology of SO(3), different angles should be sampled follow-
ing different distributions, which becomes difficult when the rotation matrices
must be confined in a specific region Ω of SO(3), restricted by rotation angles
ω = {φ, θ, ψ}. Moreover, the computational complexity of PPA increases linearly
with the number of projections (r) and 3-D objects (n).

In order to deal with these drawbacks, a continuous formulation (CPA) was
proposed in [10] by formulating PPA within a functional analysis framework.
CPA minimizes:

ECPA(M,A(ω)i) =

n∑
i=1

∫
Ω
‖P(ω)Di −A(ω)iM‖2F dω, (6)

where dω = 1
8π2 sin(θ)dφdθdψ ensures uniformity in SO(3) [16]. This continuous

formulation finds the optimal 2-D projected reference shape of a 3-D dataset in
a given rotation domain Ω, by integrating over all possible rotations in that
domain. The main difference between Eq. (3) and Eq. (6) is that the entries
in P(ω) ∈ R2×3 and A(ω)i ∈ R2×2 are not scalars anymore, but functions of
the integration angles ω = {φ, θ, ψ}. After some linear algebra and functional
analysis, it is possible to find an equivalent expression to the discrete approach
(Eq. (3)), where A(ω)i and M have the following expressions:

A(ω)i = P(ω)DiM
T (MMT )−1 ∀i, (7)

M =

(
n∑
i=1

∫
Ω

A(ω)Ti A(ω)idω

)−1( n∑
i=1

(∫
Ω

A(ω)Ti P(ω)dω

)
Di

)
. (8)
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It is important to notice that the 2-D projections are not explicitly computed
in the continuous formulation. The solution of M is found using fixed-point
iteration in Eq. (6):

M = (ZMT (MMT )−1)−1Z, (9)

where X =
∫
Ω P(ω)TP(ω)dω ∈ R2×2 averages the rotation covariances and

Z = (MMT )−1M
(∑n

i=1(DT
i ⊗DT

i ) vec(X)
)(2)

. Note that the definite integral
X is not data dependent, and it can be computed off-line.

Our work builds on [10] but extends it in several ways; first, CPA only com-
putes the reference shape of the dataset. In this paper, we add a subspace that is
able to model non-rigid deformations of the object, as well as rigid 3-D transfor-
mations that the affine transformation cannot model. As we will describe later,
adding a subspace to the PA formulation is not a trivial task. For instance, mod-
eling a subspace following the standard methodology based on CPA would still
require to generate r rotations for each 3-D sample. Hence, the CPA efficiency is
limited to rigid models while our approach is not. Second, we provide a discrete
and continuous formulation in order to provide a better understanding of the
problem, and experimentally show that it converges to the same solution when
the number of sampled rotations (r) increases. Finally, we evaluate the models in
two challenging problems: pose estimation in still images and joint’s modeling.

3 Subspace Procrustes Analysis (SPA)

This section proposes Discrete Subspace Procrustes Analysis (DSPA) and Con-
tinuous Subspace Procrustes Analysis (CSPA) to learn unbiased 2-D models
from 3-D deformable objects.

Discrete Subspace Procrustes Analysis (DSPA): Given a set of r view-

points of the n 3-D shapes, where di = D
(3)
i = vec(Di) ∈ R3`×1, DSPA extends

PA by considering a subspace B ∈ R2`×k and minimizing the following function:

EDSPA(M,Aij ,B, cij) =

n∑
i=1

r∑
j=1

∥∥∥PjDi −AijM− (cij ⊗ I2)B(2)
∥∥∥2
F

(10)

=

n∑
i=1

r∑
j=1

‖(I` ⊗Pj)di − (I` ⊗Aij)µ−Bcij‖22 , (11)

where Pj ∈ R2×3 is a particular 3-D rotation, R(ω), that is projected using an
orthographic projection into 2-D, µ = vec(M) ∈ R2`×1 is the vectorized version
of the reference shape, cij ∈ Rk×1 are the weights of the subspace for each 2-D
shape projection and B(2) ∈ R2k×` is the reshaped subspace2. Observe that the
only difference with Eq. (3) is that we have added a subspace. This subspace
will compensate for the non-rigid components of the 3-D object and the rigid

2 See Appendix B for an explanation of the vec-transpose operator.
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component (3-D rotation and projection to the image plane) that the affine
transformation cannot model. Recall that a 3-D rigid object under orthographic
projection can be recovered with a three-dimensional subspace (if the mean is
removed), but PA cannot recover it because it is only rank two. Also, observe
that the coefficient c depends on two indexes, i for the object and j for the
geometric projection. Dependency of c on the geometric projection is a key
point. If this is not considered, the model will only be able to span a two-
dimensional subspace and it is unclear its usefulness for our purposes. Although
Eq. (10) and the NRSFM problem follow similar formulation [3], the assumptions
are different and variables have opposite meanings. For instance, the NRSFM
assumptions about rigid transformations do not apply here, since Aij are affine
transformations in our case.

Given an initialization of B = 0, DSPA is minimized by finding the transfor-
mations A∗

ij and reference shape M∗ that minimize Eq. (3), using the same ALS
framework as in PA. Then, we substitute A∗

ij and M∗ in Eq. (11) that results
in the expression:

EDSPA =

n∑
i=1

r∑
j=1

∥∥∥D̃ij − (cij ⊗ I2)B(2)
∥∥∥2
F

(12)

=

n∑
i=1

r∑
j=1

∥∥∥d̃ij −Bcij

∥∥∥2
2

=
∥∥∥D̃−BC

∥∥∥2
F
, (13)

where D̃ij = PjDi−A∗
ijM

∗ ∈ R2×`, d̃ij = vec(D̃ij) ∈ R2`×1, D̃ = [d̃1 . . . d̃nm] ∈
R2`×nm, and C ∈ Rk×nm. We can find the global optima of Eq. (13) by Singular

Value Decomposition (SVD): B = U and C = SVT , where D̃ = USVT .

Continuous Subspace Procrustes Analysis (CSPA): As it was dis-
cussed in the previous section, the discrete formulation is not efficient in space
nor time, and might suffer from not uniform sampling of the original space.
CSPA generalizes DSPA by re-writting it in a continuous formulation. CSPA
minimizes the following functional:

ECSPA =

n∑
i=1

∫
Ω

∥∥∥P(ω)Di −A(ω)iM− (c(ω)i ⊗ I2)B(2)
∥∥∥2
F
dω (14)

=

n∑
i=1

∫
Ω
‖(I` ⊗P(ω))di − (I` ⊗A(ω)i)µ−Bc(ω)i‖22 dω, (15)

where dω = 1
8π2 sin(θ)dφdθdψ. The main difference between Eq. (15) and Eq. (11)

is that the entries in c(ω)i ∈ Rk×1, P(ω) ∈ R2×3 and A(ω)i ∈ R2×2 are not
scalars anymore, but functions of integration angles ω = {φ, θ, ψ}.

Given an initialization of B = 0, and similarly to the DSPA model, CSPA is
minimized by finding the optimal reference shape M∗ that minimizes Eq. (6).
We used the same fixed-point framework as CPA. Given the value of M∗ and
the expression of A(ω)∗i from Eq. (7), we substitute them in Eq. (15) resulting
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in:

ECSPA =

n∑
i=1

∫
Ω

∥∥∥P(ω)D̄i − (c(ω)i ⊗ I2)B(2)
∥∥∥2
F
dω (16)

=

n∑
i=1

∫
Ω

∥∥(I` ⊗P(ω))d̄i −Bc(ω)i
∥∥2
2
dω, (17)

where D̄i = Di(I` ⊗ (M∗T (M∗M∗T )−1M∗)) and d̄i = D̄
(3)
i = vec(D̄i). We can

find the global optima of Eq. (17) by solving the eigenvalue problem, ΣB = BΛ,
where Λ are the eigenvalues corresponding with columns of B.

After some algebra (see Appendix A) we show that the covariance matrix
Σ = ((I` ⊗ Y) vec(

∑n
i=1

∑r
j=1 d̄ijd̄

T
ij))

(2`) where the definite integral Y =∫
Ω P(ω)(⊗(I` ⊗ P(ω)))dω ∈ R2`×2` can be computed off-line, leading to an

efficient optimization in space and time. Though the number of elements in ma-
trix Y increase quadratically with the number of landmarks `, note that the
integration time is constant since Y has a sparse structure with only 36 different
non-zero values (recall that P(ω) ∈ R2×3).

Although A(ω)i and c(ω)i are not explicitly computed during training, this
is not a limitation compared to DSPA. During testing time, training values of
c(ω)i are not needed. Only the deformation limits in each principal direction of
B are required. These limits also depend on eigenvalues [4], which are computed
with CSPA.

4 Experiments & Results

This section illustrates the benefits of DSPA and CSPA, and compares them
with state-of-the-art PA methods to build 2-D shape models of human skeletons.
First, we compare the performance of PA+PCA and SPA to build a 2-D shape
model of Motion Capture (MoCap) bodies using the Carnegie Mellon University
MoCap dataset [1]. Next, we compare our discrete and continuous approaches
in a large scale experiment. Finally, we illustrate the generalization of our 2-D
body model in the problem of human pose estimation using the Leeds Sport
Dataset [11].

4.1 Learning 2-D Joint Models

The aim of this experiment is to build a generic 2-D body model that can
reconstruct the non-rigid deformations under a large range of 3-D rotations. For
training and testing, we used the Carnegie Mellon University MoCap dataset
that is composed of 2605 sequences performed by 109 subjects. The sequences
cover a wide variety of daily human activities and sports. Skeletons with 31 joints
are provided, as well as RGB video recordings for several sequences. We trained
our models using the set of 14 landmarks as is common across several databases
for human pose estimation.
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(a) (b) (c)

Fig. 3. Comparisons as a function of the number of training viewpoint projections. (a)
Rigid and (b) Deformable models (using a subspace of 9 basis) from Experiment 1,
respectively; (b) CSPA and DSPA deformable models (using a subspace of 12 basis)
from Experiment 2.

Experiment 1: Comparison with State-of-the-Art PA Methods This
section compares DSPA, CSPA methods with the state-of-the-art Stratified Gen-
eralized Procrustes Analysis (SGPA) [2]3. For training we randomly selected 3
sequences with 30 frames per sequence from the set of 11 running sequences of the
user number 9 (this is due to the memory limitations of SGPA). For testing we
randomly selected 2 sequences with 30 frames from the same set. We rotated the
3-D models in the yaw and pitch angles, within the ranges of φ, θ ∈ [−π/2, π/2].
The angles were uniformly selected and we report results varying the number of
considered angles (i.e., rotations) between 1 ∼ 100 angles in training, and fixed
300 angles for testing.

There are several versions of SGPA. We selected the “Affine-factorization”
with the data-space model to make a fair comparison with our method. Re-
call that under our assumption of non-missing data “Affine-All” and “Affine-
factorization” achieve the same solution, being “Affine-factorization” faster.

Fig. 3 shows the mean test error and 0.5 of the standard deviation for the 100
realizations. Fig. 3 (a) reports the results comparing PA, CPA and SGPA. As
expected, PA and SGPA converge to CPA as the number of training rotations
increased. However, observe that CPA achieves the same performance, but it
is much more efficient. Fig. 3 (b) compares DSPA, CSPA, and SGPA followed
by PCA (we will refer to this method SGPA+PCA). From the figure we can
observe that the mean error in the test for DSPA and SGPA+PCA decrease
with the number of rotations in the training, and it converges to CSPA. CSPA
provides a bound on the lower error. Observe, that we used 90 3-D bodies (3
sequences with 30 frames) within rotating angles φ, θ ∈ [−π/2, π/2], and DSPA
and SGPA+PCA needed about 30 angles to achieve similar result to CSPA. So,
in this case, discrete methods need 30 more space than the continuous one. The
execution times with 30 rotations, on a 2.2GHz computer with 8Gb of RAM,
were 1.44 sec. (DSPA), 0.03 sec. (CSPA) and 3.54 sec. (SGPA+PCA).

3 The code was downloaded from author’s website (http://isit.u-clermont1.fr/∼ab).



10 X. Perez-Sala, F. De la Torre, L. Igual, S. Escalera, and C. Angulo

Fig. 4. Experiment 2 results with 1 (top), and 30 (bottom) rotations. Examples show
skeleton reconstructions from continuous (CSPA in solid red lines) and discrete (SPA
in dashed blue lines) models.

Experiment 2: Comparison between CSPA and DSPA This experiment
compares DSPA and CSPA in a large-scale problem as a function of the number
of rotations. For training we randomly selected 20 sequences with 30 frames
per sequence. For testing we randomly selected 5 sequences with 30 frames.
We rotated the 3-D models in the yaw and pitch angles, within the ranges of
φ, θ ∈ [−π/2, π/2]. The angles were uniformly selected and we report results
varying the number of angles (i.e., rotations) between 1 ∼ 100 angles in training,
and 300 angles for testing.

Fig. 3 (c) shows the mean test error and 0.5 of the standard deviation for
the 100 realizations, comparing DSPA and CSPA. As expected, DSPA converges
to CSPA as the number of training rotations increases. However, observe that
CSPA achieves the same performance, but it is much more efficient. In this
experiment, with 6000 3-D training bodies (20 sequences with 30 frames) and
domain: φ, θ ∈ [−π/2, π/2] discrete method required, again, around 30 2-D view-
point projections to achieve similar results to CSPA. Thus, discrete model DSPA
needs 30 times more storage space than CSPA. The execution times with 30 ro-
tations, on a 2.2GHz computer with 8Gb of RAM, were 14.75 sec. (DSPA) and
0.04 sec. (CSPA).

Qualitative results from CSPA and DSPA models trained with different num-
ber of rotations are shown in Fig. 4. Note that training DSPA model with 1 rota-
tion (top) results in poorly reconstructed. However, training it with 30 rotations
(bottom) leads to reconstructions almost as accurate as made by CSPA.

4.2 Leeds Sport Dataset. Experiment 3

This section illustrates how to use the 2-D body models learned with CSPA
to detect body configurations from images. We used the Leeds Sport Dataset
(LSP) that contains 2000 images of people performing different sports, some of
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Fig. 5. Experiment 3 examples, reconstructing ground truth skeletons of LSP dataset
with CSPA-MoCap (solid red lines) and SGPA+PCA-LSP (dashed blue lines) models.

them including extreme poses or viewpoints (e.g., parkour images). The first
1000 images of the dataset are considered for training and the second set of 1000
images for testing. One skeleton manually labeled with 14 joints is provided for
each training and test image.

We trained our 2-D CSPA model in the CMU MoCap dataset [1] using 1000
frames. From the 2605 sequences of the motion capture data, we randomly se-
lected 1000 and the frame in the middle of sequence is selected as representative
frame. Using this training data, we built the 2-D CSPA model using the following
ranges for the pitch, roll and yaw angles: φ, θ, ψ ∈ [−3/4π, 3/4π]. We will refer
to this model as CSPA-MoCap. For comparison, we used the 1000 2-D training
images provided by the LSP dataset and run SGPA+PCA to build an alterna-
tive 2-D model. We will refer to this model as SGPA+PCA-LSP. Observe, that
this model was trained on similar data as the test set.

Table 1. Experiment 3 results. Mean error of our continuous model (CSPA-MoCap)
trained with 3-D MoCap data, the discrete model trained in the LSP dataset
(SGPA+PCA-LSP), and both rigid models (CPA-MoCap, SGPA+LSP).

Model CPA-MoCap SGPA-LSP CSPA-MoCap SGPA+PCA-LSP

Mean squared error 0.16405 0.16231 0.00824 0.01367

Table 1 reports the mean test error of the compared methods, using a sub-
space of 12 basis for both deformable models . Results show that CSPA-MoCap
has less test error than the standard method SGPA+PCA-LSP, even trained
in a different dataset than the test (CMU MoCap). Qualitative results from
CSPA-MoCap and SGPA+PCA-LSP models are shown in Fig. 5. Note that
CSPA-MoCap provides more accurate reconstructions than SGPA+PCA-LSP
because it is able to generalize to all possible 3-D rotations in the given interval.
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5 Conclusions

This paper proposes an extension of PA to learn a 2-D subspace of rigid and non-
rigid deformations of 3-D objects. We propose two models, one discrete (DSPA)
that samples the 3-D rotation space, and one continuous (CSPA) that integrates
over SO(3). As the number of projections increases DPSA converges to CSPA.
CSPA has two advantages over traditional PA, PPA and DSPA: (1) it generates
unbiased models because uniformly covers the space of projections, and (2) it is
much more efficient in space and time. Experiments comparing 2-D SPA models
of faces and bodies show improvements w.r.t. state-of-the-art PA methods. In
particular, CSPA models trained with motion capture data outperformed 2-D
models trained on the same database under the same conditions in the LSP
database, showing how our 2-D models from 3-D data can generalize better
to different viewpoints. In future work, we plan to explore other models that
decouple the rigid and non-rigid deformation by providing two independent basis
in the subspace.
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A Appendix. CSPA formulation

In this Appendix, we detail the steps from Eq. (14) to Eq. (17), as well as the
definition of the covariance matrix, introduced in Section 3.

Given the value of M∗ and the optimal expression of A(ω)∗i from Eq. (7),
we substitute them in Eq. (14) resulting in:

ECSPA =

n∑
i=1

∫
Ω

∥∥∥P(ω)Di −P(ω)DiH− (c(ω)i ⊗ I2)B(2)
∥∥∥2
F
dω, (18)

where H = M∗T (M∗M∗T )−1M∗ and Di ∈ R3×`. Then,

ECSPA =

n∑
i=1

∫
Ω

∥∥∥P(ω)Di(I−H)− (c(ω)i ⊗ I2)B(2)
∥∥∥2
F
dω (19)

leads us to Eq. (16) and Eq. (17), where D̄i = Di(I` −H) and d̄i = vec(D̄i).
From Eq. (17), solving ∂ECSPA

∂c(ω)i
= 0 we find:

c(ω)∗i = (BTB)−1BT (I` ⊗P(ω))d̄i. (20)
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The substitution of c(ω)∗i in Eq. (17) results in:

ECSPA =

n∑
i=1

∫
Ω

∥∥(I` ⊗P(ω))d̄i −B(BTB)−1BT (I` ⊗P(ω))d̄i
∥∥2
2
dω (21)

=

n∑
i=1

∫
Ω

∥∥(I−B(BTB)−1BT
)

(I` ⊗P(ω))d̄i
∥∥2
2
dω (22)

=

n∑
i=1

∫
Ω

tr
[(
I−B(BTB)−1BT

)
(I` ⊗P(ω))d̄i

(
(I` ⊗P(ω))d̄i

)T ]
dω (23)

= tr
[(
I−B(BTB)−1BT

)
Σ
]
, (24)

where:

Σ =

∫
Ω

(I` ⊗P(ω))

(
n∑
i=1

d̄id̄
T
i

)
(I` ⊗P(ω)T )dω. (25)

We can find the global optima of Eq. (24) by solving the eigenvalue problem,
ΣB = BΛ, where Σ is the covariance matrix and Λ are the eigenvalues cor-
responding with columns of B. However, the definite integral in Σ is data de-
pendent. To be able to compute the integral off-line, we need to rearrange the
elements of Σ. Using vectorization and vec-transpose operator4:

Σ = (vec [Σ])
(2`)

=

(
vec

[∫
Ω

(I` ⊗P(ω))

(
n∑
i=1

d̄id̄
T
i

)
(I` ⊗P(ω)T )dω

])(2`)

(26)

=

((∫
Ω

(I` ⊗P(ω))⊗ (I` ⊗P(ω)T )dω

)
vec

[
n∑
i=1

d̄id̄
T
i

])(2`)

, (27)

which finally leads to:

Σ =

(
(I` ⊗Y) vec

[
n∑
i=1

d̄ijd̄
T
ij

])(2`)

, (28)

where the definite integral Y =
∫
Ω P(ω)(⊗(I` ⊗ P(ω)))dω ∈ R4`×9` can be

computed off-line.

B Appendix. Vec-transpose

Vec-transpose A(p) is a fairly new operator which transposes matrix A with each
group of p rows treated as a unit, by vectorizing them before the transposition

4 See Appendix B for the vec-transpose operator.
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(extensive description of the operator and its properties can be found in [15]),


a11 a12 a13
a21 a22 a23
a31 a32 a33
a41 a42 a43


(2)

=


a11 a31
a21 a41
a12 a32
a22 a42
a13 a33
a23 a43

 (29)

A rule useful for pulling a matrix out of nested Kronecker products is, ((BA)(p)C)(p)

= (CT ⊗ I)BA = (B(p)C)(p)A, which leads to (CT ⊗ I2)B = (B(2)C)(2).
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