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Abstract. Human segmentation in still images is a complex task due
to the wide range of body poses and drastic changes in environmental
conditions. Usually, human body segmentation is treated in a two-stage
fashion. First, a human body part detection step is performed, and then,
human part detections are used as prior knowledge to be optimized by
segmentation strategies. In this paper, we present a two-stage scheme
based on Multi-Scale Stacked Sequential Learning (MSSL). We define
an extended feature set by stacking a multi-scale decomposition of body
part likelihood maps. These likelihood maps are obtained in a first stage
by means of a ECOC ensemble of soft body part detectors. In a sec-
ond stage, contextual relations of part predictions are learnt by a binary
classifier, obtaining an accurate body confidence map. The obtained con-
fidence map is fed to a graph cut optimization procedure to obtain the
final segmentation. Results show improved segmentation when MSSL is
included in the human segmentation pipeline.
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1 Introduction

Human segmentation in RGB images is a challenging task due to the high vari-
ability of the human body, which includes a wide range of human poses, lighting
conditions, cluttering, clothes, appearance, background, point of view, number
of human body limbs, etc. In this particular problem, the goal is to provide a
complete segmentation of the person/people appearing in an image. In litera-
ture, human body segmentation is usually treated in a two-stage fashion. First, a
human body part detection step is performed, obtaining a large set of candidate
body parts. These parts are used as prior knowledge by segmentation/inference
optimization algorithms in order to obtain the final human body segmentation.

In the first stage, that is the detection of body parts, weak classifiers are
trained in order to obtain a soft prior of body parts (which are often noisy
and unreliable). Most works in literature have used edge detectors, convolutions
with filters, linear SVM classifiers, Adaboost or Cascading classifiers [27]. For
example, [22] used a tubular edge template as a detector, and convolved it with
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an image defining locally maximal responses above a threshold as detections.
In [21], the authors used quadratic logistic regression on RGB features as the
part detectors. Other works, have applied more robust part detectors such as
SVM classifiers [5, 16] or AdaBoost [19] trained on HOG features [7]. More re-
cently, Dantone et. al used Random Forest as classifiers to learn body parts [9].
Although recently robust classifiers have been used, part detectors still involve
false-positive and false-negatives problems given the similarity nature among
body parts and the presence of background artifacts. Therefore, a second stage
is usually required in order to provide an accurate segmentation.

In the second stage, soft part detections are jointly optimized taking into ac-
count the nature of the human body. However, standard segmentation techniques
(i.e.region-growing, thresholding, edge detection, etc.) are not applicable in this
context due to the huge variability of environmental factors (i.e lightning, cloth-
ing, cluttering, etc.) and the changing nature of body textures. In this sense, the
most known models for the optimization/inference of soft part priors are Pose-
lets [4, 19] of Bourdev et. al. and Pictorial Structures [14, 2, 24] by Felzenszwalb
et. al., both of which optimize the initial soft body part priors to obtain a more
accurate estimation of the human pose, and provide with a multi-limb detection.
In addition, there are some works in literature that tackle the problem of human
body segmentation (segmenting the full body as one class) obtaining satisfying
results. For instance, Vinet et al. [26] proposed to use Conditional Random Fields
(CRF) based on body part detectors to obtain a complete person/background
segmentation. Belief propagation, branch and bound or Graph Cut optimiza-
tion are common approaches used to perform inference of the graphical models
defined by human body [17, 23, 18]. Finally, methods like structured SVM or
mixture of parts [29, 28] can be use in order to take profit of the contextual
relations of body parts.

In this paper, we present a novel two-stage human body segmentation method
based on the discriminative Multi-Scale Stacked Sequential Learning (MSSL)
framework [15]. Until now stacked sequential learning has been used in several
domains, mainly in text sequences and time series [6, 11] showing important
computational and performance improvements when compared with other con-
textual inference methods such as CRF. Recently, the MSSL framework has been
also successfully used on pixel wise classification problems [20]. To the best of
our knowledge this is the first work that uses MSSL in order to find a context-
aware feature set that encodes high order relations between body parts, which
suffer non-rigid transformations, to obtain a robust human body segmentation.
Fig. 1 shows the proposed human body segmentation approach. In the first stage
of our method for human segmentation, a multi-class Error-Correcting Output
Codes classifier (ECOC) is trained to detect body parts and to produce a soft
likelihood map for each body part. In the second stage, a multi-scale decom-
position of these maps and a neighborhood sampling is performed, resulting in
a new set of features. The extended set of features encodes spatial, contextual
and relational information among body parts. This extended set is then fed to
the second classifier of MSSL, in this case a Random Forest binary classifier,
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which maps a multi-limb classification to a binary human classification problem.
Finally, in order to obtain the resulting binary human segmentation, a post-
processing step is performed by means of Graph Cuts optimization, which is
applied to the output of the binary classifier.

The rest of the paper is organized as follows: Section 2 introduces the pro-
posed method. Section 3 presents the experimental results. Finally, Section 4
concludes the paper.

2 Method

The proposed method for human body segmentation is based on the Multi-Scale
Stacked Sequential Learning (MSSL)[15] pipeline. Generalized Stacked Sequen-
tial Learning was proposed as a method for solving the main problems of sequen-
tial learning, namely: (a) how to capture and exploit sequential correlations; (b)
how to represent and incorporate complex loss functions in contextual learning;
(c) how to identify long-distance interactions; and (d) how to make sequential
learning computationally efficient. Fig. 1 (a) shows the abstract blocks of the pro-
cess1. Consider a training set consisting of data pairs {(xi, yi)}, where xi ∈ Rn is
a feature vector and yi ∈ Y, Y = {1, . . . ,K} is the class label. The first block
of MSSL consists of a classifier H1(x) trained with the input data set. Its output
results are a set of predicted labels or confidence values Y ′. The next block in the
pipeline, defines the policy for taking into account the context and long range
interactions. It is composed of two steps: first, a multi-resolution decomposition
models the relationship among neighboring locations, and second, a neighbor-
hood sampling proportional to the resolution scale defines the support lattice.
This last step allows to model the interaction range. This block is represented
by the function z = J(x, ρ, θ) : R → Rw, parameterized by the interaction
range θ in a neighborhood ρ. The last step of the algorithm creates an extended
data set by adding to the original data the new set of features resulting from the
sampling of the multi resolution confidence maps which is the input of a second
classifier H2(x).

2.1 Stage One: Body Parts Soft Detection

In this work, the first stage detector H1(x) in the MSSL pipeline is based on the
soft body parts detectors defined in [8]. The work of Bautista et al. [8] is based
on an ECOC ensemble of cascades of Adaboost classifiers. Each of the cascades
focuses on a subset of body parts described using Haar-like features where regions
have been previously rotated towards main orientation to make the recognition
rotation invariant. Although any other part detector technique could be used in
the first stage of our process, we also choose the same methodology. ECOC has
shown to be a powerful and general framework that allows the inclusion of any

1 The original formulation of MSSL also includes the input vector X as an additional
feature in the extended set X ′.
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base classifier, involving error-correction capabilities and allowing to reduce the
bias and variance errors of the ensemble [10, 12]. As a case study, although any
classifier can be included in the ECOC framework, here we considerer as base
learner also the same ensemble of cascades given its fast computization.

Because of its properties, cascades of classifiers are usually trained to split
one visual object from the rest of possible objects of an image. This means that
the cascade of classifiers learns to detect a certain object (body part in our case),
ignoring all other objects (all other body parts). However, some body parts have
similar appearance, i.e.legs and arms, and thus, it makes sense to group them in
the same visual category. Because of this, we learn a set of cascades of classifiers
where a subset of limbs are included in the positive set of one cascade, and the
remaining limbs are included as negative instances together with background
images in the negative set of the cascade. In this sense, classifier H1 is learned
by grouping different cascades of classifiers in a tree-structure way and combining
them in an Error-Correcting Output Codes (ECOC) framework [13]. Then, H1

outputs correspond to a multi-limb classification prediction.
An example of the body part tree-structure defined taking into account the

nature of human body parts is shown in Fig. 2(a). Notice that classes with
similar visual appearance (e.g.upper-arm and lower-arm) are grouped in the
same meta-class in most dichotomies. In addition, dichotomies that deal with
difficult problems (e.g.d5) are focused only in the difficult classes, without taking
into account all other body parts. In this case, class c7 denotes the background.

In the ECOC framework, given a set of K classes (body parts) to be learnt, m
different bi-partitions (groups of classes or dichotomies) are formed, and n binary
problems over the partitions are trained [3]. As a result, a codeword of length
n is obtained for each class, where each position (bit) of the code corresponds
to a response of a given classifier d (coded by +1 or −1 according to their class
set membership, or 0 if a particular class is not considered for a given classifier).
Arranging the codewords as rows of a matrix, we define a coding matrix M ,
where M ∈ {−1, 0,+1}K×n. During the decoding (or testing) process, applying
the n binary classifiers, a code c is obtained for each data sample x in the test
set. This code is compared to the base codewords (yi, i ∈ {1, ..,K}2) of each
class defined in the matrix M , and the data sample is assigned to the class with
the closest codeword [13].

We use the problem dependent coding matrix defined in [8] in order to allow
the inclusion of cascade of classifiers and learn the body parts. In particular,
each dichotomy is obtained from the body part tree-structure. Fig. 2(b) shows
the coding matrix codification of the tree-structure in Fig. 2(a).

In the ECOC decoding step an image is processed using a sliding windowing
approach. Each image patch x, is described and tested. In our case, each patch is
first rotated by main gradient orientation and tested using the ECOC ensemble
with Haar-like features and cascade of classifier. In this sense, each classifier d

2 Observe that we are overloading the notation of y so that yi corresponds to the
codeword of the matrix associated with class i, i.e.it is the i-th row of the matrix,
M(i, :).
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Fig. 1. Method overview. (a) Abstract pipeline of the proposed MSSL method where
the outputs Y ′

i of the first multi-class classifier H1(x) are fed to the multi-scale de-
componsition and sampling function J(x) and then used to train the second stacked
classifier H2(x) which provides a binary output Ŷ. (b) Detailed pipeline for the MSSL
approach used in the human segmentation context where H1(x) is a multi-class clas-
sifier that takes a vector X of images from a dataset. As a result, a set of likelihood
maps Y ′

1 . . . Y
′

n for each part is produced. Then a multi-scale decomposition with a
neighborhood sampling function J(x) is applied. The output X′ produced is taken as
the input of the second classifier H2(x), which produces the final likelihood map Ŷ,
showing for each point the confidence of belonging to human body class.
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Fig. 2. (a) Tree-structure classifier of body parts, where nodes represent the defined
dichotomies. Notice that the single or double lines indicate the meta-class defined. (b)
ECOC decoding step, in which a head sample is classified. The coding matrix codifies
the tree-structure of (a), where black and white positions are codified as +1 and −1,
respectively. c, d, y, w, X, and δ correspond to a class category, a dichotomy, a class
codeword, a dichotomy weight, a test codeword, and a decoding function, respectively.

outputs a prediction whether x belongs to one of the two previously learnt meta-
classes. Once the set of predictions c ∈ {+1,−1}1×n is obtained, it is compared
to the set of codewords of the classes yi from M , using a decoding function
δ(c, yi) and the final prediction is the class with the codeword with minimum
decoding, i.e.arg mini δ(c, yi). As a decoding function we use the Loss-Weighted
approach with linear loss function defined in [13]. Then, a body-like probability
map is built. This map contains, at each position the proportion of body part
detections for each pixel over the total number of detections for the whole image.
In other words, pixels belonging to the human body will show a higher body-
like probability than the pixels belonging to the background. Additionally, we
also construct a set of limb-like probability maps. Each map contains at each
position (i, j) the probability of pixel at the entry (i, j) of belonging to the body
part class. This probability is computed as the proportion of detections at point
(i, j) over all detection for that class. Examples of probability maps obtained
from ECOC outputs are shown in Fig. 3, which represents the H1(x) outputs
Y ′1 . . . Y

′
n defined in Fig. 1 (a).

2.2 Stage Two: Fusing Limb Likelihood Maps Using MSSL

The goal of this stage is to fuse all partial body parts into a full human body
likelihood map (see Fig. 1 (b) second stage). The input data for the neighborhood
modeling function J(x) are the body parts likelihood maps obtained in the first
stage (Y ′1 . . . Y

′
n). In the first step of the modeling a set of different gaussian

filters is applied on each map. All these multi-resolution decompositions give
information about the influence of each body part at different scales along the
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(a) RGB Image (b) Head (c) Torso (d) Arms

(e) Forearms (f) Thighs (g) Legs (d) Full Body

Fig. 3. Limb-like probability maps for the set of 6 limbs and body-like probability
map. Image (a) shows the original RGB image. Images from (b) to (g) illustrate the
limb-like probability maps and (h) shows the union of these maps.

space. Then, a 8-neighbor sampling is performed for each pixel with sampling
distance proportional to its decomposition scale. This allows to take into account
the different limbs influence and their context. The extended set X ′ is formed
by stacking all the resulting samplings at each scale for each limb likelihood
map (see the extended feature set X ′ in Fig. 1(b)). As a result, X ′ will have
dimensionality equals to the number of samplings multiplied by the number of
scales and the number of body parts. In our experiments we use eight neighbor
sampling, three scales and six body parts. Notice that contrary to the MSSL
traditional framework, we do not fed the second classifier H2 with both the
original X and extended X ′ features, and only the extended set X ′ is provided.
In this sense, the goal of H2 is to learn spatial relations among body parts
based on the confidences produced by first classifier. As a result, second classifier
provides a likelihood of the membership of an image pixel to the class ’person’.
Thus, the multiple spatial relations of body parts (obtained as a multi-class
classifier in H1), are labelled as a two-class problem (person vs not person) and
trained by H2. Consequently, the label set associated to the extended training
data X ′ corresponds to the union of the ground truths of all human body parts.
Although, within our method any binary classifier can be considerer for H2, we
use a Random Forest classifier to train 50 random trees that focus on different
configurations of the data features. This strategy has shown robust results for
human body segmentation in multi-modal data [25]. Fig. 4 shows a comparative
between the union of the likelihood maps obtained by the first classifier and
the final likelihoods obtained after the second stage. We can see that a naive
fusion of the limb likelihoods produce noisy outputs in many body parts. The
last column shows how second stage clearly detects the human body using the
same data. For instance, Fig. 4 (f) shows how it works well also when two bodies
are close one to other, splitting them accurately, preserving the poses. Notice
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that in Fig. 4 (f) a non zero probability zone exists between both silhouettes,
denoting the existence of a handshaking. Finally in Fig. 4 (c) we can see how the
foreground person is highlighted in the likelihood map, while in previous stage
(Fig. 4 (b)) it was completely missed. This shows that the second stage is able
to restore body objects at different scales. Finally, the output likelihood maps
obtained after this stage are used as input of a post-process based on graph-cut
to obtain final segmentation

Original H1 joint output map H2 maps

(a) (b) (c)

(d) (e) (f)

Fig. 4. Comparative between H1 and H2 output. First column are the original im-
ages. Second column are H2 output likelihood maps. Last column are the union of all
likelihood map of body parts

3 Experimental Results

Before present the experimental results, we first discuss the data, experimental
settings, methods and validation protocol.

3.1 Dataset

We used HuPBA 8k+ dataset described in [1]. This dataset contains more than
8000 labeled images at pixel precision, including more than 120000 manually
labeled samples of 14 different limbs. The images are obtained from 9 videos
(RGB sequences) and a total of 14 different actors appear in those 9 sequences.
In concrete, each sequence has a main actor (9 in total) which during the se-
quence interacts with secondary actors portraying a wide range of poses. For
our experiments, we reduced the number of limbs from the 14 available in the
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dataset to 6, grouping those that are similar by symmetry (right-left) as arms,
forearms, thighs and legs. Thus, the set of limbs of our problem is composed
by: head, torso, forearms, arms, thighs and legs. Although labeled within the
dataset, we did not include hands and feet in our segmentation scheme. In Fig. 5
some samples of the HuPBA 8k+ dataset are shown.

Fig. 5. Different samples of the HuPBA 8k+ dataset.

3.2 Methods

We compare the following methods for Human Segmentation: Soft Body Parts
(SBP) detectors + MSSL + Graphcut. The proposed method, where the
body like confidence map obtained by each body part soft detector is learned by
means of MSSL and the output is then fed to a GraphCut optimization to ob-
tain the final segmentation. SBP detectors + MSSL + GMM-Graphcut.
Variation of the proposed method, where the final GraphCut optimization also
learns a GMM color model to obtain the final segmentation as in the GrabCut
model [23]. SBP detectors + GraphCut. In this method the body like confi-
dence map obtained by aggregating all body parts soft detectors outputs is fed
to a GraphCut optimization to obtain the final segmentation. SBP detectors
+ GMM-GraphCut. We also use the GMM color modeling variant in the
comparison.

3.3 Settings and validation protocol

In a preprocessing step, we resized all limb samples to a 32×32 pixels region. Re-
gions are first rotated by main gradient orientation. In the first stage, we used the
standard Cascade of Classifiers based on AdaBoost and Haar-like features [27]
as our body part multi-class classifier H1. As model parameters, we forced a 0.99
false positive rate and maximum of 0.4 false alarm rate during 8 stages. To detect
limbs with trained cascades of classifiers, we applied a sliding window approach
with an initial patch size of 32× 32 pixels up to 60× 60 pixels. As result of this
stage, we obtained 6 likelihood maps for each image. In the second stage, we per-
formed 3-scale gaussian decomposition with σ ∈ [8, 16, 32] for each body part.
Then, we generated a extended set selecting for each pixel its 8-neighbors with σ
displacement. From this extended set, a sampling of 1500 selected points formed
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the input examples for the second classifier. As second classifier, we used a Ran-
dom Forest with 50 decision trees. Finally, in a post-processing stage, binary
Graph Cuts with a GMM color modeling (we experimentally set 3 components)
were applied to obtain the binary segmentation where the initialization seeds
of foreground and background were tuned via cross-validation. For the binary
Graph Cuts without a GMM color modeling we directly fed the body likelihood
map to the optimization method. In order to assess our results, we used 9-fold
cross-validation, where each fold correspond to images of a main actor sequence.
As results measurement we used the Jaccard Index of overlapping (J = A

T
B

A
S

B )
where A is the ground-truth and B is the corresponding prediction.

3.4 Quantitative Results

In Table 1 we show overlapping results for the HuPBA 8K+ dataset. Specifically,
we show the mean overlapping value obtained by the compared methods on 9
folds of the HuPBA 8k+ dataset. We can see how our MSSL proposal consistently
obtains a higher overlapping value on every fold.

GMM-GC GC

MSSL Soft Detect. MSSL Soft Detect.

Fold Overlap Overlap Overlap Overlap

1 62.35 60.35 63.16 60.53

2 67.77 63.72 67.28 63.75

3 62.22 60.72 61.76 60.67

4 58.53 55.69 58.28 55.42

5 55.79 51.60 55.21 51.53

6 62.58 56.56 62.33 55.83

7 63.08 60.67 62.79 60.62

8 67.37 64.84 67.41 65.41

9 64.95 59.83 64.21 59.90

Mean 62,73 59,33 62,49 59,29
Table 1. Overlapping results over the 9 folds of the HupBA8K+ dataset for the pro-
posed MSSL method and the Soft detectors post-processing their outputs with the
Graph-Cuts method and GMM Graph-Cuts method.

Notice that MSSL proposal outperforms in the SBP+GC method in all folds
(by at least a 3% difference), which is the state-of-the-art method for human
segmentation in the HuPBA 8k+ dataset [8].

3.5 Qualitative Results

In Fig. 6 some qualitative results of the compared methodologies for human
segmentation are shown. It can be observed how in general SBP+MSSL+GMM-
GC obtains a better segmentation of the human body than the SBP + GMM-
GC method. This improvement is due to the contextual body part information



title running 11

encoded in the extended feature set. In particular, this performance difference
is clearly visible in Fig. 6(f) where the human pose is completely extracted from
the background. We also observe how the proposed method is able to detect a
significative number of body parts at different scales. This is clearly appreciated
in Fig. 6(c), where persons at different scales are segmented, while in Fig. 6(b) the
SBP+GMM-GC fails to segment the rightmost person. Furthermore, Fig. 6(i)
shows how the proposed method is able to recover the whole body pose by
stacking all body parts, while in Fig. 6(h) the SBP+GMM-GC method just
detected the head of the left most user. In this pair of images also we can see how
our method is able to discriminate the different people appearing in an image,
segmenting as background the interspace between them. Although, it may cause
some loss, specially in the thinner body parts, like happens with the extended
arm. Due to space restrictions, a table with more examples of segmentation
results can be found in the supplementary material. Regards the dataset used, it
is important to remark the large amount of segmented bodies (more than 10.000)
and their high variability in terms of pose (performing different activities and
interactions with different people), size and clothes. The scale variations are
learnt by H2 through spatial relationships of body parts. In addition, although
background is maintained across the data, H2 is trained over the soft predictions
from H1 (see the large number of false positive predictions shown in Fig. 3), and
our method considerably improves those person confidence maps, as shown in
Fig. 4.

4 Conclusions

We presented a two-stage scheme based on the MSSL framework for the seg-
mentation of the human body in still images. We defined an extended feature
set by stacking a multi-scale decomposition of body part likelihood maps, which
are learned by means of a multi-class classifier based on soft body part detec-
tors. The extended set of features encodes spatial and contextual information
of human limbs which combined enabled us to define features with high order
information. We tested our proposal on a large dataset obtaining significant seg-
mentation improvement over state-of-the-art methodologies. As future work we
plan to extend the MSSL framework to the multi-limb case, in which two multi-
class classifiers will be concatenated to obtain a multi-limb segmentation of the
human body that takes into account contextual information of human parts.
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Fig. 6. Samples of the segmentation results obtained by the compared approaches.


