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Abstract. Multiple human 3D pose estimation from multiple camera
views is a challenging task in unconstrained environments. Each individ-
ual has to be matched across each view and then the body pose has to
be estimated. Additionally, the body pose of every individual changes
in a consistent manner over time. To address these challenges, we pro-
pose a temporally consistent 3D Pictorial Structures model (3DPS) for
multiple human pose estimation from multiple camera views. Our model
builds on the 3D Pictorial Structures to introduce the notion of temporal
consistency between the inferred body poses. We derive this property by
relying on multi-view human tracking. Identifying each individual before
inference significantly reduces the size of the state space and positively
influences the performance as well. To evaluate our method, we use two
challenging multiple human datasets in unconstrained environments. We
compare our method with the state-of-the-art approaches and achieve
better results.

Keywords: human pose estimation, 3D pictorial structures, part-based
pose estimation.

1 Introduction

The problem of human pose estimation has drawn the attention of computer vi-
sion researchers for many years. Determining the body pose of multiple human
has a wide range of potential applications such as motion capture, activity recog-
nition and human interaction. In every application, the human motion remains
consistent over time. Different approaches have been proposed for multiple hu-
man pose estimation on 2D [1, 4, 10, 24] or 3D space [5, 6, 14, 20, 21]. Nevertheless,
the utility of temporal consistency for pose estimation has not been sufficiently
addressed yet.
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Defining the body pose as a constellation of parts has become the standard
model in human pose estimation using image data [4, 24, 25]. Pictorial structures
is the most common part-based model for estimating the 2D body pose of single
human [3, 11, 13]. The model has been extended to the 3D space, in order to
cope with mutli-view camera setups as well [2, 9, 16]. Recently, pictorial struc-
tures have been successfully modelled for multiple human 3D pose estimation [6].
However, the temporal consistency, between the estimated body poses of differ-
ent individuals among subsequent frames, has never been addressed within the
framework of pictorial structures. This property is of high importance in mul-
tiple human pose estimation, where the trajectory of each individual is directly
connected to the body pose.

In this work, we propose a temporally consistent 3D Pictorial Structures
model (3DPS) for multiple human pose estimation from multiple camera views.
We build our model on a Conditional Random Field (CRF), which is composed
of unary and pairwise potential functions. The unary potentials incorporate the
observation to our model and the pairwise model the human body as a prior. In
addition, we introduce the temporal function based on an additional potential
that ensures temporal consistency between the human poses over time. In order
to propagate the inferred poses with the correct identity, we rely on a multi-
view state-of-the-art human tracker [7], which delivers the trajectory of each
individual.

Our contributions are summarised as follows: We propose a temporally con-
sistent 3DPS model which is applied to multiple human pose estimation. Our
model takes input from a multi-object tracker, but it is not subjected to a partic-
ular one. Given the track of each individual, we signicantly reduce state space of
each joint, which leads to much faster inference. On two challenging datasets for
multiple human pose estimating from multiple views, we obtain the best results
in comparison to previous work [6].

Camera 1 Camera 3 Camera 5

Fig. 1. Shelf dataset result: The 3D estimated body poses are projected across the
camera views. The identity of each individual is derived by the tracker.
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2 Related Work

The problem of multiple human pose estimation has been studied from a 2D
and 3D perspective. Moreover, it has often been coupled with human tracking.
We review the most related work and focus on multiple human pose estimation
from multiple views. We refer the reader to [22, 26] for a more in-depth analysis
of human pose estimation.

Part-based models have proved to be a powerful solution for 2D pose estima-
tion [1, 4, 10, 24]. Among many of the proposed models, pictorial structures is the
most widely used one [3, 11, 13]. In [24], the main focus has been articulated hu-
man tracking with manual initialization, based on the pictorial structures. Simi-
larly in [4], pictorial structures have been integrated into a tracking-by-detection
framework. More oriented towards pose estimation, the human interaction has
been modelled using the pictorial structures framework in [10]. However, each
frame has been treated independently without considering the temporal compo-
nent. Recently, a segmentation approach has been combined with a part-based
model for estimating the human pose from stereo data [1]. Despite the available
3D information, the final pose is in the 2D space.

In the 3D space, the problem of multiple human pose estimation has been
addressed using monocular [5, 18, 28], stereo [14, 23] or multi-camera input in-
formation [21, 20]. In [28] and [18], the monocular 3D pose estimation has been
combined with tracking. Both approaches rely on a blob detector, which can
be unreliable for individuals with similar appearance. Richer appearance mod-
els have been introduced in [5] by building on the pictorial structures. Since
the approach is monocular, the final 3D pose is inferred by 2D pose lifting. In
[14], a two-stage algorithm is applied on stereo data for detecting human and
recovering their pose. Similar to our framework, a multi-view system has been
employed in [20, 21]. In [21], the proposed method can estimate the pose up to
two people in a studio environment. Our model does not have such limitations
and it is mainly applied to unconstrained environments. Finally, a model fitting
approach has been proposed in [20]. The learned body model is fitted into a
voxel representation.

The 3DPS model for multiple human pose estimation [6] is similar to our
model. In this approach, a model for inferring multiple human body poses with-
out knowing their identity has been proposed. However, keeping all the individ-
uals in a common state space results in additional computations. Furthermore,
the model does not consider the temporal consistency of the inferred poses and
consequently cannot identify the individuals. In our method, we first recover the
identity of each individual using tracking and afterwards infer the pose. More-
over, we introduce a temporal term for regularising our solution. This term keeps
the inferred poses consistent over time. In the experiments we directly compare
to [6] and observe that these differences lead not only to a significantly reduced
state space and thus faster inference, but also to significantly improved per-
formance. Finally, our model is advisable for multiple human pose estimation,
where there are different individuals.
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3 Method

In this section, we introduce the temporally consistent 3D pictorial structures
(3DPS) model. We build our model on a Conditional Random Filed (CRF) that
is composed of unary and pairwise potential functions. The unary potentials
include geometric and appearance features, as well as temporal features that
encode the identity and pose of the individuals. The pairwise potentials impose
physical constrains and act as a body prior. In the following subsections, we
present our model, the state space, the potential function (Subsection 3.1) and
conclude with the inference of multiple human 3D poses (Subsection 3.2).

Body model Pairwise factors

Fig. 2. Graphical model of the human body: We used 14 variables in our graph to
represent the body joints. On the left, the undirected graphical model that corresponds
to the human body is presented. On the right, the pairwise factor graph is illustrated
with different colours. The kinematic constrains are presented with red (translation)
and green (rotation) edges (factors). The collision constrains are represented with yel-
low edges.

3.1 Temporally Consistent 3DPS Model

In the temporally consistent 3D pictorial structure (3DPS) model, the body is
represented as an undirected graphical model, wherein each node corresponds
to a body joint (Figure 2). The edges of the graph denote relation between
the body joints. In comparison to the original pictorial structure model, we
have interchanged the notion of the body parts with the joints to avoid the
foreshortening effect [2]. Let the random variable Yi denote a joint location in
the global 3D coordinate system, i.e., Yi = [δi, πi, ϑi]

T ∈ R3. The body pose is
then defined by the configuration Y = (Y1, Y2, . . . , Yn), where n is the number of
joints. Each random variable Yi takes its values from a state space Λi ∈ Λ, where
Λ is the global state space. We model the observations and interaction between
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the variables using a factor graph [17]. The factors are divided into unary and
pairwise ones (Figure 2). The unary factors describe the relation between the
state space and the random variables. The pairwise factors are categorized into
kinematic and collision ones. The kinematic factors model the body prior, while
the collision factors model the relation between symmetric body joints.

The posterior probability of the body configuration y ∈ Λ given an obser-
vation instance x ∈ X and the temporal body pose p ∈ P of an individual is
defined as:

p(y | x,p) = 1

Z(x)

n∏
i

φconf
i (yi,x) ·

n∏
i

φrepr
i (yi,x) ·

n∏
i

φvis
i (yi,x) ·

n∏
i

φtemp
i (yi, pi)·

∏
(i,j)∈Ekin

ψtran
i,j (yi, yj) ·

∏
(i,j,k)∈Ekin

ψrot
i,j,k(yi, yj , yk) ·

∏
(i,j)∈Ecol

ψcol
i,j (yi, yj) (1)

where Z(x) is the partition function, Ekin and Ecol are the edges corresponding to
the kinematic factors and the collision factors, respectively. The temporal body pose
P corresponds to inferred poses from a previous time step. A set of joints forms the
temporal pose P of an individual. The unary terms include the detection confidence
φconf
i (yi,x), reprojection error φrepr

i (yi,x), joint multi-view visibility φvis
i (yi,x) and

the temporal consistence potential functions φtemp
i (yi, pi). The pairwise potential func-

tions are divided into the translation ψtran
i,j (yi, yj), rotation ψrot

i,j,k(yi, yj , yk) and colli-
sion ψcol

i,j (yi, yj) potential functions. Next, we first define the state spaceΛ, then explain
the potential functions and temporal consistency that we obtain by using tracking.

State space generation The state space Λi of a variable Yi comprises the values
that correspond to a candidate joint location in a discretised 3D space. In order to be
computationally efficient, we discretise the 3D space using 2D body joint detectors. We
first sample 2D joint locations for each view using a body joint detector [2]. Next, we
create the 3D locations by triangulation of the corresponding 2D body joints detected
in all combinations of view pairs. Our only assumptions are that the camera system is
calibrated and there is at least one true positive detection of each joint from a view pair.
Finally, the global state spaceΛ =

{
Λ1, Λ2, . . . Λn

}
includes locations which correspond

either to true or false positive body joints. The false positive candidate locations usually
occur by triangulating one or two false positive joint detections. Knowing the identity
of each individual significantly reduces the cardinality of the state space in comparison
to [6].

Unary potentials Given the state space, we extract a set of features for each candidate
joint 3D location. These features form the observation X, which is provided to the
unary potential functions. The first feature is the detection confidence, which is used
by φconf

i (yi,x). It corresponds to the mean confidence of the joint detector in the two
views that have been used during triangulation. Note here, we consider all combinations
of two views. To account for the errors of triangulation between two views [15], we
introduce the reprojection error function φrepr

i (yi,x), which is defined as follows:

φrepr
i (yi,x) =

1

1 + exp(C(yi))
(2)

where C(yi) is the reprojection error in two views, which is computed using the Eu-
clidean distance similar to [6]. The first two potential functions reason about combina-
tions of two views. To also profit from the multi-view setup, the multi-view visibility
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function φvis
i (yi,x) computes the number of views in which a candidate has been cor-

rectly detected. To that end, we project the candidate joint 3D location to each view
and search for a detection instance in a small radius (5 pixels) around the projected
location. We then accumulate the number of visible views and normalize the result
with respect to the total number of cameras. Thus we obtain a score between 0 and
1, which we take as φvis

i (yi,x). Note that, candidates that resulted from ambiguous
views or false positive detections are implicitly penalised by obtaining a low visibility
score.

Temporal consistency The features of the observation are extracted from a single
frame and thus do not account for temporal consistency. To assure consistency between
the inferred joints, we introduce the temporal consistence function φtemp

i (yi, pi). This
is a potential that relies on a temporal body joint location pi and acts as a regulariser.
The aim of this function is to impose temporal consistency between the inferred poses.
For this reason, it penalises candidates that geometrically differ significantly from the
temporal joint. As temporal pose, we choose the inferred pose from the previous frame
and assume small changes between two subsequent frames. However, the temporal
poses can include wrongly inferred joints or identity. To address these problems, the
geometric distance between the candidate and the temporal joint is not considered if
it exceeds a threshold. The distance is expressed as a score using a sigmoid function
and is given as follows:

φtemp
i (yi, pi) =

{
1

1+exp(d(yi,pi))
if d(yi, pi) < c

ε otherwise
(3)

where ε is a small constant for numerical stability and d(yi, pi) is the Euclidean dis-
tance between the candidate 3D joint location and the temporal joint and c the dis-
tance threshold, which we set to 10cm. The temporal prior is another observation in
our posterior (1). We choose this computationally inexpensive formulation instead of
formalising the problem using a dynamic CRF [27].

Pairwise potentials The pairwise potential functions model the interaction between
the random variables Y = (Y1, Y2, . . . , Yn) of our model. The interaction is interpreted
as a body prior with kinematic and collision constraints. In the kinematic constraints,
we impose physical constraints between the body joints. For that purpose, we define
two types of transformation: translation and rotation. The collision constraints are
introduced to mainly handle false positive detections. This phenomenon is usually
observed in the symmetric joints where the classifier is occasionally triggered for the
wrong joint.

The translation potential yTij models a joint i in the local coordinate system of a
joint j, which is defined using a multivariate Gaussian distribution:

ψtran
i,j (yi, yj) = N (yTij | µT

ij , Σ
T
ij), (4)

where µT
ij is the mean and ΣT

ij is the covariance. We keep the covariance as a diagonal
matrix for relaxing the computations.

The rotation transformation potential yRijk denotes the rotation between two body
parts. To model the transformation, a triad of joints is initially chosen. Then two
vectors with the same origin are created. The origin corresponds to a hinge joint (1



Temporally Consistent 3D Pictorial Structures 7

DoF) and the vectors to body parts. Since a hinge joint allows the rotation only along
one axis, we model the rotation potential using a univariate Gaussian distribution:

ψrot
i,j,k(yi, yj) = N (yRijk | µR

ijk, σ
R
ijk), (5)

where µR
ijk is the mean and σR

ijk the variance. The von Mises distribution is the actual
distribution for the rotation but using a Gaussian has been proven to generalise well
in [6]. For that reason, we follow the same formulation.

The collision constraints are introduced to ensure the spatial exclusion between
joints. To force body joints not to collide and respect a minimum distance, we introduce
the collision function ψcol

i,j (yi, yj). The joints are modelled as spheres and the collision
function estimates if there is intersection between the spheres:

ψcol
i,j (yi, yj) =

{
1 if inter(yi, yj) = 0

ε otherwise
(6)

where ε is again a small constant for numerical stability and inter(yi, yj) ∈ {0, 1}
is the sphere-sphere intersection function [19]. This is a hard constraint, but in our
experiments it functioned well.

In our model, we have cancelled the notion of the global coordinate system and
express every variable relation in a local coordinate system. This is the principle of the
original work on the pictorial structures [11, 13]. For this reason, our prior model is
applicable to any multi-view setup independently of the system calibration. To learn
the prior model, we have used ground-truth data from a single training dataset. Then
in the experimental phase, we apply this prior model on different setups.

3.2 3D Pose Inference and Tracking

The last step for obtaining the pose of different individuals is the inference. We seek
to maximize the posterior probability in (1) for each individual h, given as follows:

yh
∗ = argmax

y
p(y | xh,ph) (7)

where yh
∗ are the configurations that maximize the posterior and h is the identity of

each individual. To recover the identity, we introduce a human tracker in our framework.
We rely on the work of [7] to derive the tracks of each individual. As as result, each
individual has its own observation xh and lies in its own state space using the tracking
information. In addition, the identity of the inferred body poses ph is propagated over
time using the tracking output. Knowing the identity of each individual reduces the
computations in the temporal consistence function. Theoretically, relying exclusively
on the tracking information can result in drifts. Nevertheless, in practice the tracker
performed very reliably in our experiments.

Our graphical model includes loops and thus the inference is performed with loopy
belief propagation using the sum-product algorithm [8]. Finally, the MAP estimate for
each individual gives the body pose. In addition, we profit from tracking and obtain
the trajectory of each individual.
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4 Experiments

Multiple human 3D pose estimation from multiple camera views in unconstrained en-
vironments is an active research topic, which is still growing. For that reason, the
number of evaluation datasets is limited. To evaluate our method, we have used two
challenging datasets [6], Campus and Shelf, which are the only available datasets for
this problem to the best of our knowledge. The Campus dataset has 3 cameras and
involves 3 individuals, while Shelf has 5 cameras and includes 4 individuals. Since one
individual is mostly occluded and invisible from most of the views, we evaluate on the
other three, as in [6].

Our model is composed of 14 body joints (Figure 2). We use the joint detector from
[2] and learn the body prior using the ground-truth data from the KTH Multiview
Football II dataset [9]. The evaluation is divided into three tasks: analysis of the state
space, evaluation on the human detection and the body pose estimation. Since the
method of [6] is closely related to our work, we compare our results with it for each
experiment.

4.1 State Space Analysis

One of our main contributions is to impose the temporal consistence to the model.
This is achieved by taking people tracking results as input. Given the identity of each
individual, we can significantly reduce the number of candidates for each joint state
space. This reduction results in faster inference. Our algorithms runs at 1 fps, given
the tracks, for inferring up to 3 individuals in comparison to [6], which runs at 1 fps for
single human pose estimation, given the detections. In Figure 3, we show the number
of 3D candidates of a body joint versus the number of 2D joint detection samples.

Campus dataset Shelf dataset

Fig. 3. State space size: We show the number of recovered 3D candidates versus the
number of 2D detection samples on both datasets. The number of 3D candidates is
computed by summing up the triangulation instances of all combinations of all view
pairs. The number of candidates is significantly lower than [6], because of the unknown
identity of each individual.

The number of recovered 3D candidates is the aggregation of the triangulation
instances of all combinations of view pairs, given different number of 2D body joint
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detection. In the case of [6], the triangulation is performed between all the individuals
due to the unknown identity. This results in a much larger state space where inference
is computationally more expensive.

4.2 People Detection

In our framework, we consider the task of people detection separately from pose es-
timation. Therefore, our model is dependent on the detection result. By taking the
advantage of tracking, we not only improve the people detection results, but also ob-
tain the identity of each individual in comparison to frame-by-frame detection [6]. To
evaluate the people detection results, we employ the PCP evaluation score [12]. For
each individual, we define a line in the centre of the ground-truth cube which is perpen-
dicular to the ground. It corresponds to the height of each individual in the 3D space.
In the evaluation stage, we derive the same line from the inferred pose by fitting a cube
and estimate the PCP score. From our experiments, we have found that the results of
this mean of evaluation is equivalent to cube intersection but the computation of the
PCP score is way faster. The results are summarised in Table 1.

Campus Shelf
Belagiannis et al. [6] Our method Belagiannis et al. [6] Our method

Recall 98.05 99.30 90.50 97.82
Table 1. Detection results:The detection recall is estimated using the PCP score.
The threshold α is set to 0.5 for both methods.

In both datasets, the recall is quite high for both methods. However, the temporal
consistence of our method gives an improvement of around 10% in the Shelf dataset
over the frame-by-frame detection of [6]. The only failures that we have observed were
small drifts over time. The precision of our method is totally corrected using the tracker
information and thus we do not include it in the comparison.

Camera 1 Camera 2 Camera 3

Fig. 4. Campus dataset result: The 3D estimated body poses are projected across
the camera views. The identity of each individual is derived by the tracker.
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4.3 Body Pose Estimation

In our last task, we evaluate the final accuracy of pose estimation on the two datasets,
both of which include several individuals and have been captured in unconstrained
environments. We compare our results with the ones of a related work [6], which is
a state-of-the-art approach. Unlike our model, the human model in [6] does not con-
sider the temporal consistence over time. Furthermore, the unknown identity of each
individual results in more false positive candidates. These differences between the two
methods are reflected in their performance, presented in Tables 2. Below, we discuss
the results for each dataset separately.

Campus Shelf
Belagiannis et al. [6] Our method Belagiannis et al. [6] Our method

Actor 1 82 83 66 75
Actor 2 72 73 65 67
Actor 3 73 78 83 86
Average 75.6 78 71.3 76

Table 2. Pose estimation results: The PCP score are presented for both datasets.
The threshold α is set to 0.5 for both methods.

Campus dataset: In this dataset, we achieve substantially better results for the Actor
3 and slightly better for the other two individuals. The results are demonstrated in
Figure 4. The support of the tracker facilitates the pose recovery of the Actor 3 who
often undergoes occlusions. For the same reason, there is a small predominance for the
other two individuals. The reduced state space and the temporal consistence of our
model improve the precision of the inferred poses, as it is depicted in Figure 5.

Shelf dataset: In this dataset, our method again achieves better results on all in-
dividuals. In particular, there is a big difference between our method and [6] in the
result of Actor 1, thanks to the temporal consistence. False positive candidates are pe-
nalised by the temporal potential function, and therefore the performance is improved.
Qualitative results are presented in Figure 1 and Figure 5.

5 Conclusion

We have presented a temporally consistent 3D pictorial structures model. Our model
applies to unconstrained environments for multiple human pose estimation from mul-
tiple views. We have introduced tracking and temporal consistency to our formulation
for recovering the 3D human pose. Knowing the identity of each individual results in
a small state space which allows efficient inference. Moreover, the temporal consis-
tency helps to penalise false positive candidates of the state space. To demonstrate the
advances of our model, we have evaluated on two challenging datasets and achieved
state-of-the-art results.
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Fig. 5. Qualitative comparison: We show the results of our method on the top row,
and those from [6] on the bottom row. We have chosen different frames and camera
views from the Campus and Shelf datasets to illustrate the advances of our model. In
all cases, the inferred poses of our model are more precise due to the regularisation of
the temporal potential function and the reduced state space.
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