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Abstract. Previous work on human action analysis mainly focuses on designing hand-crafted local 

features and combining their context information. In this paper, we propose using supervised feature 

learning as a way to learn spatio-temporal features. More specifically, a modified hidden conditional 

random field is applied to learn two high-level features conditioned on a certain action label. Among 

them, the individual features can describe the appearance of local parts and the interaction features can 

capture their spatial constraints. In order to make the best of what have been learned, a new 

categorization model is proposed for action matching. It is inspired by the Deformable Part Model and 

the intuition is that actions can be modeled by local features in a changeable spatial and temporal 

dependency. Experimental result shows that our algorithm can successfully recognize human actions 

with high accuracies both on the simple atomic action database (KTH and Weizmann) and complex 

interaction activity database (CASIA). 

Keywords：Human action recognition; Spatio-temporal features; HCRF; changeable spatial-temporal 

constraint model (CSTCM); Feature learning 

1 Introduction 

For human action recognition, there are two important issues: feature extraction and efficient 

classification. The former is to extract discriminative and robust features to describe actions. The latter 

is to choose the best category model that uses such type features for corresponding classification. In 

this paper, we solve the two problems with a unified framework. 

In recent years, some “conceptually weaker” models such as applying spatio-temporal descriptors 

[1] to “bag-of-features” (BOF) [2] have achieved promising results on object detection and even 

human action recognition. However, one obvious limitation is that interactional information of local 

features is neglected in such model. An interest point is not isolated but surrounded by its 

spatio-temporal context. Nowadays, several methods aim to integrate some hand-designed contextual 

features into it. Bregonzio [3] treats the interest points in a sub-volume as point “cloud”.  A histogram 

in [4] which is called “featuretype×featuretype×relationship” is proposed to capture both appearance 

and relationship between pairwise visual words. A hierarchical model [5] including three context 

levels: point-level, intra-trajectory and inter-trajectory, is present to structure the spatio-temporal 

constraint of interest points. A video is modeled using a collection of both global and segment-level 

features in [20]. A weakness of such approaches is they must apply specific features, so that it is 

difficult to extend these features to other datasets. Another disadvantage is that after extracting the 

designed features, no suitable algorithm is proposed for corresponding classification. The common 



way is just to concatenate these multiple features to generate a new feature vector for action matching.  

Such simple concatenation may make them submerge each other. Therefore, in this paper we not only 

replace the hand-crafted features by learned features with a supervised feature learning algorithm, but 

also propose a new changeable spatial-temporal constraint categorization model (CSTCM) to make the 

utmost of what have been learned. We also provide evidence that our feature learning method 

generalizes to different domains and achieves promising results both on atomic action dataset and 

multi-persons activity dataset.   

Hidden conditional random field (HCRF) is allowed to relax the assumption of conditional 

independence of the observed data, so any flexible spatial constraints among local features can be 

modeled. Due to its strong capability of description to spatial interaction, HCRF is widely used to 

build the structure of local patches in object detection. For action recognition, Wang Y et al. [6, 7] use 

HCRF to model each frame in the video sequence independently and then obtain the class label for the 

whole video by majority voting of the labels of its frames. Because action is a natural and continuous 

process, it is certainly not desirable to describe the action with only one frame. Instead of making a 

decision for the whole video, a modified HCRF is just applied to learn two compact and semantic 

representations called individual features and interaction features. 

Deformable Part Model (DPM) [8] is now treated as the best method for object detection, which 

can achieve a two-fold improvement in average to the state-of-the-art. The intuition that objects can be 

modeled by parts in a deformable configuration provides an elegant framework for representing object 

categories. Inspired by it, a new categorization model (CSTCM) is proposed which can make use of 

the two high-level features without submerging each of them. Similar to objects, actions are modeled 

by local features in a changeable spatial-temporal constraint in this paper. Therefore, our classification 

model measures not only how similar the appearances of local parts are, but also how much their 

dependencies change.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1.Overview of our approach. 
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The overview of our approach is illustrated in Fig.1. For the atomic action, space-time interest 

point [1] with HOG\HOF [2] is as the original descriptor. For the interactional activity, five trajectory 

based motion features [9] are extracted. In the training stage, two high-level features are learned by a 

modified HCRF. In the testing stage, the individual features are used to measure the similarity of 

appearance, while the interaction features are applied to estimate the change of constraint through the 

CSTCM. Both the changes in spatial and temporal domain are calculated for the final action matching.  

 

2 Feature Learning 

Hidden conditional random field was first proposed for speech classification and then has been applied 

to gesture [11] and object recognition [10]. In this section, a feature learning algorithm is introduced. 

By the means of a modified-HCRF, we convert the hand-designed features to data-adaptive descriptors 

which are more structured and semantic. But most of all, the learned features have the fixed dimension 

which is convenient for action matching. 

Now we describe how to model the t-th video frame. x is the original feature vector of the t-th frame 

and y be the corresponding frame label which is a member of a finite possible action label set Y. Our task 

is not to get a mapping from x to y, but to learn a series of high-level representations conditioned on the 

class label y. For atomic action recognition, the feature vector x composes of a set of local observations 

{x1, x2,….., xN}. When the task is to analysis interaction activity, it contains motion features of N persons. 

For any frame x, we also define a vector of hidden states h = {h1, h2, ..., hN} corresponding to the N local 

patches, where each hi takes values from a finite possible state set H. These variables are not observed, 

and each of them will assign a state label to the corresponding xi in training stage. The hidden variables 

can capture certain underlying spatial structure of these local parts, so they are used as the basic 

elements to generate two sets of high-level feature descriptors  1 1 1

1 2 n
,  ,   ,O O O  

and 2 2 2

1 2 m
,  ,   ,O O O .  

 

Fig.2. Illustration of the modified-HCRF.  
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The new modified-HCRF is illustrated in Fig.2. Each circle denotes a variable and each square 

represents a potential factor. The circles with white are hidden variables, the blacks mean they can be 

observed and the grays are the high-level features which can be learned from the model. In the graph G 

= (E, V), {h1, h2, ..., hN} are considered to be vertices and edge (i, j)E represents the constraint 

between hi and hj. Given {x, y} of t-th frame, the modified- HCRF is defined as:   
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Where  is a set of model parameters and (y,h, ; ) x  refers to potential function which can 

measure the compatibility among a class label, a set of observations and a configuration of hidden 

variables.  

 

2.1 Potential function 

In this paper, the potential function is defined in Eq. (2) which is similar to [6, 7]. Note that the potential 

is linear in the model parameters { (x , ), ( , ), ( , , )}
i i i ji h y h y h h    . f(xi) refers to original feature of the 

node i; f(hi) is the feature corresponding to the hidden node i; f(hi,hj) denotes the feature depending on 

the edge between node i and j. The details are described in the following. 
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Feature-hidden potential (x ) (x , )i i if h : 

We use (x , )
i i

h  to refer to the parameter that measures the compatibility between a hidden state hi and 

an observational feature f(xi). The feature-hidden potential describes how likely the local patch xi is 

assigned as state hi. It is formulated as:
 

 

                    
{h = }(x ) (x , ) (x ) 1 (x , )

ii i i i i iH
f h f h

 


                        (3) 

 

Different types of original features are extracted to represent atomic action and interaction activity 

separately. For simple atomic action, f(xi) denotes the feature vector describing the appearance of the 

local patch xi. Like in [2], we use the Harris 3D detector to detect the local interest points and 

employ histograms of oriented gradient (HOG) and histograms of optical flow (HOF) to describe the 

local appearance. Some trajectory based features are applied for complex activity, and now f(xi) denotes 

the feature vector describing the motion of the person xi . Two features in [9] are used here. The moving 

speed is calculated by Eq. (4) and the motion intensity can be got through Eq. (5). 
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    Where L1(x, y) and L2(x, y) refer to the locations of one person at time t1 and t2. We use the optical 

flow to represent the whole motion in the rectangle box of a person, which is defined as the magnitude 

of the average optical flow speed. It includes two parts, global moving and local motion. The motion 

intensity I in Eq. (5) is defined as only induced by strong local motions, so we need minus the global 

moving from the whole motion. 

Hidden-label potential ( ) ( , )
i i

f h y h : 

We use ( , )
i

y h  to denote the parameter that measures the compatibility between a hidden state hi and 

an action label y. The hidden-label potential represents how likely the t-th frame contains a local patch 

with state hi conditioned on action label y. It can be formulated as:  

 

{h = } { = },
( ) ( , ) 1 1 ( , )

ii i y iH Y
f h y h y h  

 
 
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Edge-label potential ( , ) ( , , )
i j i j

f h h y h h : 

As the same, ( , , )
i j

y h h corresponds to the parameter for modeling the compatibility between action 

label y and the edge between nodes i and j. The edge-label potential represents how likely the t-th frame 

contains a pair of local patches with states hi and hj conditioned on action label y. It is formulated as: 
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Similarly, atomic action and interaction activity have different pairwise features. For the atomic 

action, if (i, j)E, f(hi, hj) is set to 1; otherwise it is set to 0. For complex activity, three pairwise 

features are extracted, including distance, intersection angle of moving orientations and difference of 

moving speeds between the two persons.  

 

2.2 Two high-level features 

The output of this modified-HCRF is two sets of high-level features conditioned on a certain action label 

rather than a decision made only by this one frame. The spatial constraints among local patches can be 

completely captured by the two features. The learned hidden state {h1, h2 ... hN} is used as the basic 

elements to generate these high-level representations due to its compact and semantic. The individual 

features and the interaction features are defined as follows. 

Individual features: 
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Interaction features: 
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Where , H   refer to the hidden states. The ( )index  and ( , )index   are the indexes of 

individual features and interaction features separately which are according to the hidden states. In Eq. (8) 

and Eq. (9), the two marginal probabilities (h | y, , )
i

p   x and (h , h | y, , )
i j

p     x  can be 

calculated by belief propagation. No matter how the number of local patches or persons changes among 

different frames, dimension of the two features is fixed. It is only related to the number of hidden states.  

Intuitively, the individual features are achieved by clustering similar features into a group. For 

example, to the action “walk”, these individual features may be used to characterize the movement 

patterns of the left and right legs. The interaction features capture certain spatial constraints between 

pairs of these individual parts. In the case of “walk”, two local patches at the left legs might have strong 

constraint that they tend to have the same state label, since both of them are characterized by the 

movement of the left leg. The two features cumulate the occurrence probability of each state and each 

interactional edge in a frame separately. Fig. 3 shows the visualization of the two high-level features in 

the KTH dataset. 

 

3 Changeable spatial-temporal constraint model 

After feature learning, a new changeable spatial-temporal constraint model (CSTCM) is proposed for 

action classification which can make the utmost of these learned features. Our classification strategy 

specifies a local part filter and a changeable constraint model. The filter measures the similarity of 

appearance of local parts contained in a video sequence or a frame. The constraint model calculates the 

changeable cost of context for each local part. Because human actions appear in 

the three-dimensional space, both the dependencies in spatial and temporal domain should be concerned. 

For two video sequences vi and vj, the matching score L(vi, vj) is the spatial score S(vi, vj) of the 

whole video sequence plus the sum of temporal score 
1 2( , v )
t t

i j
T v over frames. Due to varying in time or 

speed, dynamic time warping (DTW) is used to measure their temporal similarity. Specially, Ti and Tj 

are frame numbers of the two videos which can be unequal in Eq. (10).   

 

                 1 2

1 2
max(T ,T ) T , T

( , v ) S( , v ) ( , v )   
i j i j

i j i j

t t

i j
t t

L v v DTW T v
 

                     (10) 

 

Each of the scores includes two parts to describe the similarity of appearance and the change of 

constraint respectively. First, we define the spatial score between the two whole videos in Eq. (11). 
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(a) Boxing                  (b) Handclapping                (c) Handwaving 

 

 

  

 

 

 

  

(d) Jogging                     (e) Running                     (f) Walking 

 

Fig.3. Images show the high-level individual features and interaction features learned from the modified-HCRF in 

the KTH action dataset. Each circle corresponds to a local individual feature with a red number which is the 

assignment of hidden states. Each line corresponds to an interaction feature between two individual features and 

different grayscales of the line represent different labels of interaction features. 
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( , )m i j


is defined as a local part filter to measure the similarity of each individual features. It is 

something like the traditional BOF method, but we apply a feature learning algorithm to cluster local 

features. We all know that a local feature is not isolated but surrounded by its context. For example, 

when a local state occurs, another corresponding state always occurs as the same time. However, this 

relation may have some slight changes. Therefore, a constraint model 
,

( , )i jd
 

is used to calculate the 

changeable cost of interactional information for pair-wise local parts. ,
( , )

H
d i j
  represents the 

whole cost of contextual change for a local part  . Because only the spatial constraint is model here, 

the individual features and interaction features are cumulated over the whole video sequence.  

Next, we define the temporal score with the same form that the first term denotes the local part filter 

and the second term refers to the constraint model. Unlike the spatial score, the temporal score is 

computed on each frame rather than the whole video to describe the temporal dependencies.                               
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There are three advantages in this classification model. Firstly, it takes the two key elements of 

human action into account, which are spatial and temporal constraints. Secondly, separating of the 

individual features from the interaction features in Eq. (12) and Eq. (13) makes the model easy to use the 

two high-level features independently and avoid them submerge each other. Through combining them in 

Eq. (11), the mutual influence of the two different features can be completely represented as well. 

Thirdly, rather than simple rigid matching, our CSTCM can tolerate some changes of local parts both on 

the spatial and temporal domain which is more adaptive to recognize action. Finally, the total matching 

score is employed in KNN for action matching. 

 

4 Experiments 

In this section, we evaluate our model both on the simple atomic action database and complex 

interaction activity database. To evaluate its effectiveness, we compare our algorithm with some other 

similar action recognition methods and some well-designed contrast experiments. 

 

4.1 Databases 

To test our proposed method, we use three well-known benchmark action recognition databases 

including both simple atomic action and complex interaction activity. For the simple atomic action, the 

public dataset KTH [12] and Weizmann [17] are used. The KTH contains 6 types of actions that are 

boxing, handwaving, running, handclapping, walking and jogging, under four different scenarios. Each 

video is captured at 25HZ with a size of 160×120. The Weizmann contains 93 video clips from 9 

different actors. There are 10 different action categories: wave1, wave2, run, bend, walk, jump, side, 

jack, skip and pjump. Each video is captured at 25HZ with a size of 180×144. In these two datasets, each 

video contains only one actor performing a single action.  

For the complex interaction activity, a two-person activity datasets CASIA [13] is adopted. It 

contains 84 video clips from three different views: angle view, horizontal view and top down view. 

There are 7 different activity categories: fight, followalways, followtogether, meetapart, meettogether, 

overtake and rob. So each activity has 12 clips and each view has 4 clips. The meaning of each activity 

is illustrated as follows and Fig.4 shows some example frames of two-person activities in the CASIA 

dataset.  

Fight: Two persons are close to and then fight each other. 

Followalways: One person follows another person and is behind him at a distance all the time. 

Followtogether: One person follows another person and then they walk together. 

Meetapart: Two persons are close to, then meet each other and depart at last. 

Meettogether: Two persons are close to, then meet each other and walk together at last. 



Overtake: One person is behind another person and then he overtakes. 

Rob: One person follows another person, then robs him and runs away at last. 

 

 

Fig.4. Example frames of two-person activities in the CASIA dataset. 

 

4.2 Details of our model 

For our model, the original input is the features directly extracted in videos. A 162 dimension vector 

including HOG (72) and HOF (90) around a local interested point is treated as the descriptor for the 

atomic action. For the interactional activity, five trajectory based features are applied. The size of 

possible hidden states in our modified-HCRF is 20, so we can learn 20 individual features and 400 

interaction features. Then, these learned high-level features are applied in CSTCM for action 

classification, and the parameter K in KNN is set to 1 for simply.  

A leave-one-out cross-validation strategy is used for Weizmann and CASIA. For KTH dataset, we 

use 16 actors for training and other 9 actors for testing like other papers’ setup.  

 

4.3 Recognition results 

Our proposal includes two parts: feature learning and CSTCM categorization. To evaluate the model 

completely, we test each of them separately.  

 

Evaluate feature learning 

Three contrast experiments are designed to evaluate our feature learning process, where the same 

descriptor is used as the original feature. Firstly, we classify every frame in a video sequence which is 

the standard HCRF method (per-frame recognition). Secondly, through the majority voting of the labels 

of its frames, the class label for the whole video sequence can be achieved (per-video recognition). 

Lastly, we use the two high-level features learned from the modified-HCRF to calculate histogram in the 

whole video sequence for action matching (histogram based method). Fig. 5 shows the visualization of 

the histogram based method in the CASIA dataset. Table 1 lists the recognition results of the three 

approaches on the KTH and CASIA dataset. It shows the following point:  

 

 The accuracy of per-frame approach is lower than the per-video method. Because action is a 

continuous process, it is not enough to represent the whole action with only one frame. For 

example, the frame with the pose of “stand” may occur in all kinds of actions. 

 



 The performance of the high-level features based approach (histogram based approach) is better 

than another two methods with low-level features (per-frame and per-video). It evidences that there 

is no much information lost and these learned features become more compact and semantic for 

action representation. 

 

Table1. A comparison of the three methods in feature learning part test on the KTH and CASIA dataset (%). 

 Per-frame Per-video Histogram based 

KTH 34.35 37.17 93.17 

CASIA 58.98 84.52 91.67 

 

Evaluate CSTCM 

There are a local part filter and a changeable constraint model in the CSTCM. And both the spatial and 

temporal dependencies are modeled. For evaluating the model completely, we design some contrast 

experiments to test each of them separately. Table 2 lists their recognition results on the KTH, CASIA 

and the meaning of each variant is illustrated as follows.   

Temporal score: the method only using temporal score to calculate the difference between two videos in 

the temporal domain. 

(a) Fight (c) Followtogether 

 

(b) Followalways 

(d) Meetapart 

 

(e) Meettogether 

 
Fig.5. Visualization of the histogram based method in the CASIA dataset. The histogram is cumulated by the 

high-level features learned from the whole video sequence. Elements on the primary diagonal are individual 

features and others denote the interaction features. 

(f) Rob  



Spatial score: the method only using spatial score to calculate the difference between two videos in the 

spatial domain and it is just the histogram based approach in Table 1.  

Spatial score1: the method only using the local part filter in the spatial domain to measure similarity of 

appearance of local parts contained in the two whole video sequences. It is something like the traditional 

BOF method.  

Spatial score2: the method only using the changeable constraint model in the spatial domain to calculate 

the changeable cost of context in the two whole video sequences. 

CSTCM1: the method using the local part filter both in the spatial-temporal domain which can 

completely evaluate contribution of the local part filter.  

CSTCM2: the method using the changeable constraint model both in the spatial-temporal domain which 

can completely evaluate contribution of the changeable constraint model.  

CSTCM: the whole model proposed in this paper which contains the local part filter and changeable 

constraint model and both the differences in spatial-temporal domain are measured.  

Table2. A comparison of some variants with our proposal test on the KTH, CASIA dataset (%) and the 

mathematically definition of their matching scores.  

 Matching score ( ( , v )
i j

L v =) KTH CASIA 

Spatial score1 ( , )
H

m i j  82.33 89.29 

Spatial score2 
,,

( , )
H

d i j    92 90.48 

Spatial score S( , v )
i j

v  93.17 91.67 

Temporal score 1 2

1 2
max(T ,T ) T , T

( , v )   
i j i j

t t

i j
t t

DTW T v
 

  78 45.24 

CSTCM 1 2

1 2
max(T ,T ) T , T

S( , v ) ( , v )   
i j

i j i j

t t

i j
t t

v DTW T v
 

  96.17 92.86 

CSTCM1 1 2

1 2
1max(T ,T ) T , T
( , v ),  ( )  +

i j i j

t t

i jH t t
DTW T vm i j  

   88.67 90.48 

CSTCM2 1 2

1 2
, 2, max(T ,T ) T , T

( , v )   ( , )++
i j i j

t t

i jH t t
DTW T vd i j    

   92.17 91.67 

 

Note that when we evaluate contribution of the local part filter, only the individual features are used. 

While when the constraint model is test, only the interaction features are applied. From the table, it 

indicates following points.  

 The performance of changeable constraint model is better than local part filter no matter in the 

spatial or temporal domain. Because changeable constraint model allows some non-rigid 

matching and the interaction features also contain more information for classification.   

  

 The methods combining local part filter and changeable constraint model achieve a higher 

accuracy than using the two independently. Because when only using local part filter, the 



interactional constraint is lack and vice versa. It proves that each part can play a complementary 

role in most cases.   

 

 No matter for the local part filter or changeable constraint model, when calculating both in the 

spatial and temporal domain, it can reach a better recognition result. It illustrates that human 

action has the characteristics of space and time. Both of them should be modeled.  

 

Compare with other methods 

Finally, we compare our proposal with some other similar algorithms and it is summarized in Table 3. 

These similar approaches contain HCRF based methods (eg. [6], [7]); graphical model based methods 

for activity recognition (eg. [9], [14]); hand-designed contextual features methods (eg. [3], [15], [16], 

[19]); unsupervised feature learning approach [18]; and specially [2] is the traditional BOF. Note that the 

original local features and motion features adopted in our model are the same as [2, 15, 9], where it can 

fully evidence the effectiveness of our feature learning. From this table, we can find our recognition 

accuracy outperforms or is similar to all previous published results. Though the best result on Weizmann 

is just slightly higher than ours, the performance of our model on KTH and CASIA is much better. The 

results obtained by our proposed method on the KTH, Weizmann and CASIA dataset are reported in 

Fig.6 in detail which are the confusion matrixes for action classification. 

Table3. A comparison of our proposal with other algorithms test on the KTH, Weizmann and CASIA dataset (%). 

 

It is significantly inspired that through replacing hand-designed features by learned features and 

adopting a corresponding classification model CSTCM, we achieve a huge improvement both on simple 

atomic action database and complex interaction activity database. That is to say, our model not only 

proposes an effective feature leaning method, but also finds a way to make the best of what have been 

learned.  

Algorithm Weizmann KTH CASIA 

Wang et al.[6] 97.22 87.6 — 

Wang et al.[7] 100 92.51 — 

Guo et al. [9] — —        83.28 

Brand et al. [14] — — 76.14 

Bregonzio al.[3] 96.6 93.17 — 

Jiang et al. [15] — 93.8 — 

Wu et al. [16] — 94.5 — 

Fathi et al.[19] 100 90.5 — 

Dollar et al. [2] — Over 80 — 

Quoc et al. [18] — 93.9 — 

Our model 98.89 96.17 92.86 



5 Conclusions  

The paper proposes a unified framework for human atomic action and interaction activity recognition. A 

supervised way is introduced to replace traditional hand-designed features by high-level learned features 

with the modified-HCRF. A new categorization model is used for corresponding classification which 

can make the utmost of the individual features and interaction features. The CSTCM specifies a local 

part filter and a changeable constraint model. In the spatial and temporal domain, the similarity of local 

appearance is measured by the former, while the change of dependency is estimated by the latter.  

Therefore in this paper, actions can be modeled by local features in a changeable spatial-temporal 

constraint. Our method is evaluated on the KTH, Weizmann and CASIA dataset with significant 

improvement results.  

   

 

(a) The confusion matrice of KTH dataset   (b) The confusion matrice of CASIA dataset. 

 

(c) The confusion matrice of Weizmann dataset. 

Fig.6. The confusion matrices for action classification on KTH (a), CASIA (b) and Weizmann (c). 
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