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Abstract 

Still image based activity recognition is a challenging problem due to changes in appearance of 

persons, articulation in poses, cluttered backgrounds, and absence of temporal features. In this 

paper, we proposed a novel method to recognize activities from still images based on transductive 

non-negative matrix factorization (TNMF). TNMF clusters the HOG-descriptors of each human 

pose in the training images into fixed number of groups meanwhile learns to represent the 

HOG-descriptor of test image on the concatenated bases. Since TNMF learns these bases on both 

training images and test image simultaneously, it learns a more discriminative representation than 

original NMF. We developed a multiplicative update rule to solve TNMF and proved its 

convergence. Experimental results on both laboratory and real-world datasets demonstrate that 

TNMF consistently outperforms NMF. 

Keywords: Activity recognition on still images, non-negative matrix factorization, transductive 

learning 

 

1. Introduction 

Activity recognition aims to recognize actions and goals of one or more individuals from a series 

of observations on the individuals’ actions and the environmental conditions. It has found many 

applications in human-computer interaction, user interface design, robot trajectory planning, and 

surveillance thanks to the convenience of capturing videos through cameras [1][2][3]. Until now, 

activity recognition is an open and challenging problem due to changes in appearance of persons, 

articulation in poses, cluttered backgrounds, and camera movements. 

Recognizing actions from benchmark videos has achieved promising performance because of 

the dynamic features, but it is difficult to recognize actions recorded in still wild images, e.g., 

images collected from Internet, because the dynamic features cannot be extracted from still images. 

To recognize actions from still images, it is important to extract representative cues including both 

high-level and low-level cues. Traditional video-based activity recognition can directly use the 

low-level cues such as the spatiotemporal interest point [20] extracted from space-time volume, 

but the still image-based activity recognition usually cannot because only the spatial information 

is available on single images. The high-level cues can be characterized by various low-level 

features, e.g., color names [18], and different high-level cues can be combined to enhance the 

performance, e.g., combining pose and context information [17]. Interested readers can refer to 

[21] for a systematic survey. 

To construct high-level cues, it is an important pre-processing step to detect human bodies, 



 

 

body parts and objects. However, it is quite challenging because existing object detection methods 

usually work unsatisfactorily. Therefore, it is necessary to avoid explicitly reasoning about the 

body components [19]. In this paper, we constructed a high-level cues by clustering human poses 

with non-negative matrix factorization (NMF, [7]). Non-negative matrix factorization (NMF, [7]) 

is a popular data representation method which can extract intrinsic structure of dataset and boost 

the performance of subsequent processing. Different from conventional data representation 

methods, e.g., principal component analysis (PCA, [11]) and Fisher’s linear discriminative 

analysis (FLDA, [12]), which learns holistic representation, NMF can learn parts-based 

representations from non-negative datasets. For example, it can extract several versions of facial 

components such as ‘noses’, ‘eyes’, and ‘mouth’ from frontal face image datasets. It is therefore 

reasonable to believe that NMF can automatically extract body poses from bounding boxes. 

 Thurau and Hlavac [4] proposed static Histogram of oriented gradient (HOG)-based features 

for activity recognition on still images by clustering a set of training human poses with NMF and 

utilizing histograms of the clustered poses to represent each action. At the classification stage, they 

concatenated the pose clusters of all actions and features of background, and calculated the 

histogram of each test image on concatenated features and determined the label by classification. 

Since then, many works utilize NMF in activity recognition. Agarwal and Xia [5] applied NMF to 

3D poses recovery problem since NMF can effectively represents local features of human body. 

According to [5], background usually has a negative influence on action recovery because its 

changes are usually misunderstood as human actions. NMF is suitable for recovering poses from 

single image because it can significantly separate background from action poses. Waltner et al. [6] 

utilized NMF to recognize actions from a small amount of video frames. Different from [4] and 

[5], their method considers HOG of both appearances and motions. The discriminative power of 

the learned poses is improved by motions, but it is far from enough because aforementioned 

methods [4][5][6] ignore test samples during training. 

In this paper, we propose a novel method to recognize actions from still images by using 

transductive NMF (TNMF). TNMF jointly learns a dictionary of features on both training images 

from different actions and the test image to be recognized. In particular, TNMF has two types of 

objectives: 1) it minimizes the distance between the HOG-descriptors of the training poses of each 

action and the product of its features and encodings, and 2) it minimizes the distance between the 

HOG-descriptor of test image and the product of dictionary concatenated by those features of all 

actions and an encoding vector. Intuitively, since the dictionary of features learned by TNMF 

contains the visual features from both training images and test image, it can more accurately 

recover the pose in single still image, and thus boost the recognition performance. TNMF balances 

both objectives by a positive parameter and utilizes a multiplicative update rule (MUR) to learn all 

features and the corresponding encodings. In this paper, we proved the convergence of the 

MUR-based algorithm for TNMF. Experiment results on both laboratory datasets and real-life 

datasets confirm that TNMF significantly outperforms NMF in still image-based activity 

recognition. 

This paper is organized as follows: Section 2 surveys both NMF and its application in 

activity recognition; we introduce the TNMF model and its MUR based algorithm in Section 3; 

Section 4 verifies the method on both laboratory and real- world datasets and Section 5 concludes 

this paper. 

2. Related Works 



 

 

2.1 Non-negative Matrix Factorization 

Given a non-negative dataset, i.e.,     
   , NMF decomposes it into the product of two 

lower-rank matrices, i.e.,     
    and     

   , where           , by solving the 

following problem 

   
       

       
         

Usually,   and   can be considered as features and encodings, respectively. It is obvious that 

NMF represents each sample by only additive, non-subtractive combination of features. Therefore, 

NMF yields parts-based representation. 

Since such parts-based representation has strong evidence in human brain, NMF has been 

widely applied in many real-world applications such as text mining [8][9] and hyper-spectral 

imaging [10]. 

2.2 Transductive NMF 

Recently, Guan et al. [13] have proposed transductive NMF (TNMF) to simultaneously learn from 

multiple tasks, i.e.,   , where      . TNMF combines both training stage and test stage 

together to simultaneously learn single features for each task and coefficient of test sample on 

concatenated dictionary. The objective function of TNMF is 

   
                     

            
 

 

   

            
          

where             , and         is a positive tradeoff parameter. When    , TNMF 

reduces to NMF on each task separately. 

2.3 NMF-based Activity Recognition 

Taking the advantage of the parts-based representation of NMF, Thurau and Hlavac [4] proposed a 

static HOG-based NMF method for activity recognition on still images since the HOG-descriptor 

of an image is non-negative. Given training HOG-descriptors of all actions, i.e.,    for the  -th 

action of totally   actions, they utilized NMF to learn features    and encodings    by 

   
         

          
         

By concatenating features of all actions together, they constructed a dictionary of features, i.e., 

            , and projected the HOG-descriptors of test image, i.e.,   , onto    by 

         
   

         
         

where    is the encodings of   . 

 At the classification stage, they calculated the histogram of each action based on          , 

and the histogram of the test image based on   , followed by classification with the nearest 

neighbor (NN) classifier. Since the training stage of learning the features of each action (see the 

formula (3)) and the classification stage of learning the encodings on the dictionary of 

concatenated features (see the formula (4)) are separate, NMF usually suffers from overfitting 

problem. 

3. TNMF-based Activity Recognition on Still Images 

In still image-based activity recognition, most actions have sufficient training images but some 

actions has rare images because the training images are widely collected from Internet and the 

activities are performed separately by different individuals. In this case, NMF cannot accurately 



 

 

learn features on limited training images due to the overfitting problem. 

Since TNMF leverages the test set to enhance representing the training samples, it learns 

more representative dictionary and reduces the influence of overfitting by jointly learning from 

both training set and test set. In other words, TNMF has better generalization ability than NMF. In 

this paper, we taken this advantage of TNMF to solve the overfitting problem in still image-based 

activity recognition [4]. In particular, we applied TNMF to jointly learn a dictionary on both 

training HOG-descriptors    from different actions and HOG-descriptors    of the probe image. 

Since TNMF transduces the training poses to the learned dictionary by incorporating the second 

term in (4), it represents the probe poses more accurately and overcomes the deficiency of NMF. 

Experimental results confirm that TNMF greatly boosts the recognition performance. 

Although the objective function of TNMF is jointly non-convex with respect to all variables 

                    , it is convex with respect to each of them separately. According to [14], 

we utilized the majorization minimization (MM) method to derive a multiplicative update rule 

(MUR) for solving TNMF (2). MUR updates   ,   , and   , respectively, by 

      
    

        
 

      
          

         

      
  

   

  
     

        

and 

      
     

       
        

where   signifies the element-wise multiplication operator, and     is the  -th component of    

that corresponds to   , i.e.,        
       

   . MUR alternatively updates all variables until 

they do not change the objective value of (2). The stopping condition of MUR is given as follows: 

         

       
          

where           
   

   
  

                 
  signifies the objective value at the  -th 

iteration round (   ), and   signifies the tolerance, i.e.,       . We summarized the total 

procedure of MUR for TNMF in Algorithm 1. 

 Algorithm 1: MUR for optimizing TNMF 

 Input:          ,   , and   

 Output:          ,          , and    

1. Initialize          ,          , and    randomly 

2. Set              and     

 Repeat 

    For         

3. 
      Update   

    with   
      

  
    

  
       

  

  
   

   
  

             
   

4. 
      Update   

    with   
      

  
  

    
  

  
    

  
     

 
 

    End For 

5.    Update          
        

     

6. 
   Update       with           

        
  

        
          

 



 

 

7. 
   Split       into           

    
      

    
 
 
 

8.    Update       

 Until {The stopping condition (8) is satisfied} 

9. Return    
      

  ,    
      

  , and     

It is easy to verify that (6) and (7) decrease the objective function by using the auxiliary 

function technique in majorization minimization [14]. The auxiliary function is defined in 

Definition 1 and has the property shown Lemma 1. By using the auxiliary function, Proposition 

1 proves that the multiplicative update rule (5) decreases the objective function. We can easily 

construct the histograms of training actions and test image according to [4] and recognizing the 

action of the test image by the nearest neighbor (NN) classifier. 

Definition 1. Given   , the function         is an auxiliary function of     , if              

and               . 

Lemma 1. If         is an auxiliary function of     , then      is non-increasing under the 

update rule                    . 

Proof.                                  .   □ 

Proposition 1. The multiplicative update rule (5) decreases the objective function of (2). 

Proof. At the  -th iteration round, we expect to prove that the update of    can decrease the 

objective function  

          
   

   
 

 

   

         
   

                
    

       
   

  

with all variables except    fixed. Since the first term does not influence   , it is only necessary 

to prove that (5) decreases the following objective function 

f             
   

                
    

       
   

         

 To this end, we constructed its auxiliary function as follows: 

       
       

         
        

    
  

   
   

  
           

  

  
        

             

where      
        

       
  

                
  

, and      signifies the element-wise 

square of a matrix. Since it is obvious that     
    

       
  , we only need to show       

       
   for any   . 

 To do this, we have the Taylor series expansion of       at   
 , and the objective function 

with respect to the      -th element of    is 

               
            

                
     

     
   

  
 
  

      
    

  
 
  

            
     

 
         

Since   
    and   

   , we have 

   
   

  
 
  

 

    
       

   
  

 
  

 

   
    

 

   
   

   
  

 
  

   
    

         

Since    
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   , we have 

    
    

  
 
  

 

    
        

    
  

 
  

 

   
    

 

   
    

    
  

 
  

   
    

 

          
  

 
  

   
    

         



 

 

where the last inequality comes from the fact that           
    

  
      

    
  and 

   
    

  
     . 

By substituting (12) and (13) into (11), we can easily verify that              
  , and 

thus        
   is an auxiliary function of       according to Definition 1. By setting 

        
  

       
   and substituting      

        
       

  
                

  
, we have 

   
   

   
  

 
  

      
  

 
  

            
  

 
  

        
  

 
  

 

   
   

   
  

 
  

            
  

 
  

   
    

           
         

It is equivalent to 

      
  

 
  

        
  

 
  

 

   
   

   
  

 
  

            
  

 
  

   
    

                

From (14), we have the minimum of        
   with respect to the      -th element of    as 

follows: 

   
        

    

     
  

 
  

        
  

 
  

   
   

   
  

 
  

            
  

 
  

         

By rewriting (14) in a matrix form, we have 

  
    

  
    

  
       

  

  
   

   
  

           
    

By setting   
      

 , we know that     
         

   according to Lemma 1. This 

completes the proof.   □ 

 The above proof procedure also suggest the generalization ability of TNMF. By simple 

algebra, the formula (9) is equivalent to the following minimization: 

   
    

          
   

where                       
    

    and       
       

  . It means that TNMF learns 

features both from training examples and test examples. In other words, TNMF achieves better 

generalization ability than NMF only on training examples. 

TNMF provides a flexible framework for recognizing actions from still image due to its 

simplicity. By further incorporating constraints or regularizations on either features or encodings, 

interesting readers can easily extend it for their own purposes in the future works. 

4. Experiments 

Although the NMF-based method performs well on laboratory video frames [4], it is difficult to be 

applied to some tasks especially when some actions have insufficient examples, e.g., web images 

collected Internet. This is because the pose clusters learned for some actions containing rare 

examples may be ill-posed. 



 

 

 

Fig. 1. Examples of web images returned by Google image search, where the action names from top to bottom are 

‘run’, ‘walk’, ‘skip’, ‘jump’, ‘pjump’, ‘wave’, ‘jack’, and ‘bend’ (a), and (b) the flow chart of generating the HOG 

descriptor. 

Figure 1(a) depicts some web images corresponding to human actions ‘run’, ‘walk’, ‘skip’, 

‘jump’, ‘pjump’, ‘wave’, ‘jack’, and ‘bend’. For each action, e.g., ‘run’, we searched images on 

Google image search engine by using the keywords ‘run people’, ‘running people’, ‘run person’, 

and ‘running person’, and manually filtered all irrelevant images. For each of the retrieved images, 

we used an effective human detector [15] to detect people in different poses and aligned the 

detection rectangle by positioning the human head in its top-middle. Each of the detected human 

images is cropped and resized to a       color image. Based on the same image retrieval 

procedure for eight actions, we obtained a set of web images and extracted the HOG-descriptor for 

each cropped image. The HOG-descriptor for each image of each action is reshaped to a 

1296-dimensional long vector and treated as a pose example. Figure 1(b) shows the flow chart of 

generating the HOG descriptors of the Google web images. We constructed the Google dataset to 

include all the collected pose examples of web images. 

We conducted the same procedure on Weizmann video frames [1] which contains nine 

actions and formed another Weizmann pose dataset (or simply Weizmann dataset). Table I 

summarizes the two datasets. It shows that actions ‘bend’ and ‘jack’ of the Google dataset contain 

a small number of training examples, and actions ‘run’, ‘skip’, and ‘jump’ of the Weizmann 

dataset contain a small number of training examples. Thus, the numbers of training examples for 

all actions are imbalanced and performing NMF on the training examples of individual actions 

cannot obtain ‘effective’ primitive poses. 

Table I. Statistics of the Google and Weizmann dataset, and ‘tr/ts’ means that the numbers of training poses and 

test poses are tr and ts, respectively. 

Action Name ‘run’ ‘walk’ ‘skip’ ‘jump’ ‘pjump’ ‘wave’ ‘jack’ ‘bend’ ‘side’ 

Google 201/202 285/286 67/68 118/119 109/109 52/53 43/44 30/30 - 

Run:

Skip:

PJump:

Walk:

Jump:

Wave:

Jack:

Bend:

Key Words

Google Image 

Search

Manual 

Filtering

Human 

Detector

Head 

Alignment

Cropping and 

Resizing

HOG 

Descriptor

(a) (b)



 

 

Weizmann 30/165 129/238 30/184 30/140 103/167 283/326 90/206 97/84 96/124 

In this experiment, we employed TNMF to overcome this deficiency by jointly learning 

features of all actions. We are motivated by the intuition that human poses of common actions 

such as ‘run’ and ‘walk’ are combined by some basic articulations. Although different actions have 

imbalanced training examples, primitive poses (bases) obtained by simultaneously learning from 

different actions are more effective than those obtained by separately learning from individual 

actions [4]. To evaluate the effectiveness of TNMF, we compared the recognition accuracy of its 

learned poses with those learned by NMF. 

According to [16], we first set the number of features for each action to 5 based on the 

number of common viewpoints for each action (2 for lateral views, 2 for views      and 1 for 

frontal/back view), and cross-validated the trade-off parameter on a set                        . 

Then we fixed the trade-off parameter to the best one, and cross-validated the number of features 

on a set                  . To evaluate the effectiveness of TNMF, Figure 2 gives the highest 

accuracies of NMF and TNMF obtained by cross-validation. Figure 2(a) and (b) show that TNMF 

outperforms NMF on Google dataset when varying   and   in wide ranges of         and 

         . It shows that TNMF performs best when       and     . From Figure 2(c) and 

(d), we can see that MT-NMF outperforms NMF on Weizmann dataset when varying   and   in 

wide ranges of        and          , and it performs best when       and     . 

 

Fig. 2. Cross-validation of the number of features   and trade-off parameter   of TNMF on the Google and 

Weizmann datasets, (a) accuracy versus   when       and (b) accuracy versus   when     on the 

Google dataset; (c) accuracy versus   when       and (b) accuracy versus   when      on the 

Weizmann dataset. The highest accuracies of NMF are included for comparison. 

Table II depicts the average accuracy of NMF and TNMF on both Google and Weizmann 

datasets. It shows that TNMF outperforms NMF on the Google dataset because it leverages the 

training examples and test examples, and learns better pose clusters for actions whose training 

examples are insufficient. The experimental results on the Weizmann dataset are consistent with 

this observation. It confirms the effectiveness of TNMF in action recognition on still images. 

Table II. Accuracy (%) of NMF and TNMF on the Google and Weizmann dataset. 

Algorithms NMF TNMF 

Google 74.66 78.09 

Weizmann 88.30 91.17 

In summary, the experimental results of both laboratory dataset and real-world dataset 

demonstrate that the transductive learning trick in TNMF significantly improves the performance 
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of action recognition on still images. 

5. Conclusion 

This paper proposes a novel method for activity recognition on still images called transductive 

non-negative matrix factorization (TNMF). TNMF can transduce the visual features from training 

HOG-descriptors to the learned encoding of test image. Therefore, TNMF boosts the performance 

of activity recognition especially on the datasets that contain imbalanced number of images among 

different actions. Experiments on both laboratory and real-world datasets demonstrate that TNMF 

consistently improves the performance of NMF. 
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