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Abstract. The popular approach for human action recognition is to ex-
tract features from videos as representation, followed by a classification
of these video representations. In this paper, we investigate and com-
pare hand-crafted and random feature representation for human action
recognition on YouTube dataset. The former is built on 3D HoG/HoF
and SIFT descriptors while the latter bases on random projection. Three
encoding methods: Bag of Feature(BoF), Sparse Coding(SC) and VLAD
are adopted. Spatial temporal pyramid and a two-layer SVM classifier
are employed for classification. Our results demonstrate that: 1) Sparse
Coding is confirmed to outperform Bag of Feature; 2) Using a model of
hybrid features incorporating frame-static can significantly improve the
overall recognition accuracy; 3)The frame-static features works surpris-
ingly better than motion features only; 4) Compared with the success of
hand-crafted feature representation, the random feature representation
does not perform well in this dataset.

Keywords: Action Recognition, Hand-crafted Feature, Random Rep-
resentation

1 Introduction

Recognizing human action is a significant branch of computer vision and attract-
ing increasing attentions due to its widely applications like crime monitoring
and human-computer interaction. Generally, the recognition task can be simply
viewed as a combination of two subtasks: extract features as representations from
video frame sequence, and subsequent classification of the video representations.
Among the two subtasks, one key point is to built such a feature representations,
which contain the main structure of an action and robust to background clut-
tering, illumination and scale changes etc. Substantial approaches of exploring
the feature representation have been proposed and proven successful, such as 3D
HoG [8], HoG/HoF [9], extended SURF [17]. These feature representations are
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all hand-crafted and need to be computed by a specific mathematical manner.
Recently, a method based on random feature representation has been popular in
texture recognition [14], face recognition [18], and medical image analysis [12].
However, little work has been reported on applying this representation into video
based action recognition. Therefore, in this paper, we evaluate and compare these
two different feature representations for action recognition task. We have three
main contributions: (1) a comparative study of different combinations of existing
schemes for video action recognition based on hand-crafted feature representa-
tion and report the best combination whose performance is competitive to one
of the state-of-art techniques on the same dataset; (2) Investigate the popular
random feature representation to see whether it is a feasible approach for video
based human action recognition; (3) Investigate the role of frame-static features
and motion features for action recognition on the popular YouTube dataset.

The rest of this paper is organized as follow: Section 2 reviews relevant liter-
ature of approaches for action recognition; Section 3 describes each component
of designed algorithm in details; Section 4 indicates the implementations and
experiment results; Conclusions and future work are given in Section 5.

2 Related Work

The approach for action representations can be generally divided into two cat-
egories: global representations and local representations. For the former, the
human body is first located in the image. Then the person referred as interest of
region (ROI) would be encode as a whole, resulting in the image descriptors. The
common approach is silhouettes [2] and optic flow [7]. Local representation is a
more popular approach which describes the observation as a collection of local
descriptors or patches. The cuboid descriptor [4], HoG/HoF descriptor [9], 3D
HoG descriptor [8] and extended SURF [17] are all robust in action recognition.

3 Method

Considering the large variation in realistic videos, static feature like a static pose
in a single image also contains important action contextual information, such as
boating in the water, riding in the street or on a grass land. Those can provide
strong cues and thus serve as a complementary of motion feature for action
recognition. Motivated by this observation, in this paper, we investigate both
feature representations, and build a hybrid model upon them. The flowchart
of our video based action recognition is shown in Figure 1. We will follow this
flowchart to describe our algorithm in details step by step.

3.1 Spatial-Temporal Interest Points Detection

Spatial-temporal interest points are the locations in space and time domain
where a significant variation occurs in the local neighborhood. We apply the
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Fig. 1. The flowchart of video based recognition.

extension of Gabor filter proposed by Dollar et al. [4] to extract the 3D interest
cuboids, which captures the most important characteristics of the movement
occurring in the video. The response function has the form:

R = (I ∗ g ∗ hev)2 + (I ∗ g ∗ hod)2 (1)

where g(x, y;σ) is the 2D Gaussian smoothing kernel for spatial dimensions, and
hev and hod are a quadrature pair of 1D Gabor filters applied temporally. They
are defined as:

hev(t; τ, ω) = −cos(2πtω)e−t
2/τ2

(2)

hod(t; τ, ω) = −sin(2πtω)e−t
2/τ2

(3)

where ω = 4/τ . The interest points are located in the local maxima correspond-
ing to the response function. The parameter σ and τ correspond to the spatial
and temporal scale of the detected cuboid. We set the size of the cuboid to 19
× 19 × 11 pixels. Some examples of interest cuboids detected by the 3D Gabor
detector on video frame sequence are shown in Figure 2.

(a)

(b)

Fig. 2. An example 3D interest cuboids detection. (a) original frames; (b) cuboids
detected by 3D Gabor filter. Best viewed in colour
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3.2 Hand-crafted Feature Representation

The visual content of a video segment can be represented by a set of descriptors
computed at every interest point position within its near cuboid region. It is
obvious that the oriented gradient can capture spatial information while optic
flow is able to catch the movement information. Therefore, we adopt the 3D
HoG/HoF descriptor similar to Laptev et al. [9], which computes histograms of
both oriented gradient and optic flow accumulated in spatial-temporal interest
cuboids.

Specifically, the 3D interest cuboid is firstly smoothed and divided into
3 × 3 × 2 grid of cells; for each cell, 4-bin histograms of gradient (HoG) and
5-bin histograms of optic flow (HoF) are calculated based on the oriented direc-
tion. Then the normalized histograms from each small grid are concatenated to
form the local descriptor. We employ PCA to reduce the dimensionality to 200
experimentally.

Using motion feature only may not be distinct enough, especially for the
unrestricted videos like YouTube action dataset. Intuitively, The static feature
can be viewed as a very strong complementary. To extract static feature, we
sample temporally at every 15 frames from the frame sequence of the video. For
each frame, dense sampling is applied to extract the interest points upon which
SIFT descriptors are built. Additionally, multi-scale static feature is achieved by
changing the size of the static image by multiplying 1/

√
2.

3.3 Random Feature Representation

We employ random projection to build random feature representation. The key
idea of random projection originated from the Johnson-Lindenstrauss lemma:
if points in a high dimension are projected onto a randomly selected subspace
of suitable dimension, then the distance between points are approximately pre-
served. In practice, the original d-dimensional data is projected to a k-dimensional
(k << d) subspace using a random matrix k × d matrix R whose columns have
unit lengths. It can be represented by:

XRP
k×N = Rk×dXd×N (4)

As before, we apply the random projection on both motion feature and static
feature to form the random feature representation. Specifically, for each extracted
cuboid, we first normalize the intensity of each pixel within the cuboid and then
uniformly divide the cuboid into 2× 2× 2 grids. Assume the size of each grid is
w × h× t pixels so for each grid we identify gray-scale vector v ∈ Rd(d = wht)
by stacking its columns; then random projection is applied on this gray-scale
vector to reduce dimensionality and form the random feature descriptor. The
random matrix R is defined as the Gaussian measurement matrix whose elements
are independent, zero-mean, unit-variance Gaussian random variables. Finally
the projected vectors for each sub-cuboid are concatenated to form the local
descriptor of the whole cuboid.
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Similarly for the static feature extraction, we use dense sampling as before on
each sampled video frame sequence. For each dense point, the patch whose size
is the same as that of SIFT descriptors is extracted and the gray-scale vector is
formed by stacking its columns. Then random projection is employed to generate
the local static random descriptors.

3.4 Descriptors Encoding

As the number of local descriptors extracted by the above methods varies from
each video, distinguishing these descriptors from different classes of action di-
rectly is not a straightforward task. A popular approach is to firstly learn a
codebook containing a fixed number of visual words based on the training de-
scriptors set, then encode the descriptors with the codebook.

A simple but effective method to learn the codebook is K-means clustering
algorithm. The main idea is to minimize the sum of squared Euclidean distances
between points xj and their nearest cluster vk:

arg min
V

k∑
i=1

∑
xj∈Vi

‖xj − vk‖2 (5)

where V = [v1, ...,vk]> are the target codebook with K cluster centers. We
propose 2-level K-means clustering to generate the codebook: for each class of
action, apply K-means for the first level clustering, then based on the first level
results, the K-means clustering is applied again to create the final codebook.
The size of codebook is set to 256.

We mainly evaluate two popular encoding methods: Bag of Feature and
Sparse Coding for both feature representations. Moreover, we extra evaluate
Vector of Locally Aggregated Descriptors (VLAD) for random feature
representation.

Bag of Feature Let X be a set of descriptors in a D-dimensional feature space,
X = [x1, ...,xM ]> ∈ RM×D. The Bag of Feature quantization problem can be
re-formulated into a matrix factorization problem:

min
U

M∑
m=1

‖xm − umV‖2

subject to Card(um) = 1, |um| = 1,um > 0,∀m

(6)

where U = [u1, ...,uM ]> is the cluster membership indicators and V is the pre-
calculated codebook. The cardinality constraint Card(um) = 1 means that only
one element of um is nonzero, and |um| indicates that the summation of the
absolute value of each element in um. After obtaining the encoded descriptor set
U, the video can be represented by frequencies of each visual word. Since the
number of visual words is fixed for all descriptors sets, a video with arbitrary
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number of descriptors is then converted into a single histogram vector whose
length equals to the number of visual words. This provides extreme convenience
for the future classification processing.

Sparse Coding The constraint for BoF model Card(um) = 1 is too restrictive
to reconstruction X with low error. We can relax the constraint by making um

to have a small number of nonzero element. Meanwhile, the number of nonzero
element is enforced to be minimum. Then the BoF is turned into another problem
known as Sparse Coding:

min
U,V

M∑
m=1

‖xm − umV‖2 + λ |um|

subject to ‖vk‖ 6 1,∀k = 1, 2, ...,K

(7)

Similar to BoF, in the training stage a set of training descriptors are used
to solve Equation 7 with respect to U and V. The conventional way for such a
optimization problem is to iteratively optimize either over U or V while fixing the
other. We set the initial codebook V of Sparse Coding as the result generated by
K-means algorithm described above instead of using a random initialization. This
processing can make the objective function more optimized when the number of
iteration is fixed.

Each column of U in Sparse Coding corresponds to the coefficients of all the
local descriptors to one specific visual word in the codebook V, we adopt the
max pooling function for SC, which has been well established by biophysical
evidence and empirically justified by many image categorization algorithms. It
can be represented by:

zj = max
{
|u1,j | , |u2,j | , ..., |uM,j |

}
(8)

where zj is the j-th element of z, ui,j is the matrix element at i-th row and j-th
column of U.

Vector of Locally Aggregated Descriptors Besides BoF and SC, we evalu-
ate another encoding method: vector of locally aggregated descriptors (VLAD)
[6] for random feature representation. Similar to BoF, we first learn a codebook
V = [v1, ...,vk]> by K-means clustering algorithm. The idea of the VLAD is to
accumulate the difference between each visual vi and the descriptor xi which is
assigned to that visual word. Therefore, if the local descriptor is d-dimensional,
the dimension D of VLAD would be D = k×d. A component ui,j of VLAD can
be obtained by summing over all the local random feature descriptors:

ui,j =
∑

x belong to vi

xj − vi,j (9)

where the indices i = 1...k and j = 1...d index the visual word and the local
descriptor component respectively.
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3.5 Spatial-Temporal Pyramid

All the encoding methods described above only capture the statistical character-
istic of the descriptors set. None of spatial and temporal layout of geometrical
features has been taken into consideration. Spatial Pyramid Matching (SPM)
proposed by [10] overcomes this limitation in still image classification. It works
by partitioning the image into increasingly fine sub-regions and computes his-
tograms of local descriptors over the resulting sub-regions. The final feature
vector is formed by concatenating histograms of each sub-region with the corre-
sponding weight of each level of pyramid.

The spatial pyramid is a simple and computationally efficient complement
of an orderless BoF image representation. It has shown significantly improved
performance over the standard BoF model as this method describes the obser-
vations as a collection of local representations, which are somewhat invariant to
changes in scale, illumination and partial occlusions. We extend this approach to
3D by adding subregions with respect to temporal domain. The spatial-temporal
pyramid is built by uniformly dividing the frame sequence of video into 2 × 2
×2 grids for the first level and 3 × 3 ×3 grids for the second level. The descrip-
tor set of each subregion is a set of descriptors whose corresponding interest
points are located within such a subregion. Then the local characteristics in to-
tally 36 subregions are calculated by BoF or SC or VLAD with corresponding
local descriptors set. Finally, for BoF or VLAD, STP concatenates histograms
or matrix of each subregion of video multiplied by the weights corresponding to
pyramid level to form a feature vector of the video, while for Sparse Coding,
the corresponding coefficients to the local descriptor sets in each subregion are
computed and concatenated, then the max pooling function is applied to form
such a vector of the video.

3.6 Support Vector Machine

The size of feature vectors of videos generated by Spatial-Temporal Pyramid
(STP) approach would be very large. For example, a feature vector of a video
constructed by 3-level uniformly distributed pyramid and 256 visual words would
have 9216 attributes. If these feature vectors are directly classified by SVM clas-
sifiers, it would be very computationally expensive on both training and testing
stage, especially for large dataset used which involves more than a thousand
videos.

We build a two-layer SVM classifiers system for classification processing. The
structure of the two-layer SVM classifiers system is shown in Figure 3. In the
first layer, the vectors produced by the same pyramid level in different videos
are classified separately using non-linear SVM classifiers. The decision values
outputted by the first layer for each video against the corresponding class label
can be viewed as an abstract descriptors of the particular pyramid level of videos.
Then the decision values from each pyramid level are concatenated and classified
again by another non-linear SVM classifier.
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Fig. 3. The two layer SVM classifier structure

The two-layer SVM classifiers have the following attractive properties: 1) The
decision values represent the descriptors set in a more concise way and are more
robust to the effect of noise. 2) The number of decision values only relate to the
number of action classes. For example, M action class would generate M(M −
1)/2 binary classifiers in each pyramid level for pairwise classification. It can
significantly reduce the dimensional of the descriptors as well as the computation
time. 3) The process of classification on each pyramid level are independent
which enables the parallelized computing for the whole process. 4) the second
layer SVM assigns weights based on action classes for each pyramid level instead
of assigning it to the visual words of different levels directly. This leads to better
results than the standard SPM method with traditional one-layer SVM classifier.

4 Experiments

4.1 Dataset

The video dataset we used is the YouTube action dataset from [13]. The videos
in this dataset are mostly collected from YouTube and captured under uncon-
trolled condition so they contain significant camera motion, background clutter,
illumination changes, viewpoint changes and objects scale changes. All these
properties of this video dataset make it closer to the realistic video data in our
daily life, but also push correct recognition more highly challenging.

YouTube action dataset contains 11 action categories: basketball shooting,
cycling, diving, golf swing, horse-back riding, soccer juggling, swinging, tennis
swinging, trampoline jumping, volleyball spiking and walking with a dog. In order
to remove the unfair effect of the same background in recognition, the videos
in each action are organized into 25 relatively independent groups, where each
group is taken in different actors, backgrounds, viewpoints. Our experiments
setup is the same as that proposed in [13]. There are totally 1168 videos for
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use. In the training phase, leave-one-out group cross validation is used. All the
colorful videos are convert into gray-level in advance before further processing.

4.2 Hand-crafted Feature Representation

Firstly, we evaluated BoF and SC encoding combined with spatial temporal
pyramid based on the motion feature only. The results are shown in Figure 4. As
expected, it can be observed that SC achieves higher accuracies in most classes
of action as well as the overall accuracy 64.98% than that 60.10% of BoF. We
explained this improvement as that SC can achieve a much lower reconstruction
error due to the less restrictive constraint, although it is more computationally
expensive.

Fig. 4. The classification accuracies generated by BoF and SC based on the motion
feature only.

The number of static local descriptors can be tens of thousands. Because of
the high memory requirement, the static feature is built by only BoF due to its
low computational complexity. The overall accuracy based on static feature built
on original frames is 65.33%, while the accuracy based on static feature built
on multi-scale frames is 66.52%. There is no significant improvement between
multi-scale and original static feature. Therefore, we discard multi-scale static
feature for reducing the computational complexity and use the original static
feature only for the rest experiments.

We also evaluated the motion model, static model and hybrid model. The
motion model is only based on motion feature encoded by SC while the static
model is only based on static feature encoded by BoF. The hybrid model is
to combine the motion feature and static feature. The results are shown in Fig-
ure 5. Intuitively, motion feature and static feature are complementary for action
recognition. And this has been proven by our experiment that the accuracy of
hybrid model is higher than both motion and static model in every class of action
recognition as well as the overall accuracy, which is 75.51%, 64.98%, 65.33% for
hybrid, motion and static model respectively. The hybrid model has the better
performance over 10% than both motion and static model, which is impressive.
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Hence, it can be concluded that the hybrid model can achieve the best results,
and not only motion feature but also static feature plays a significant role in
action recognition. It can be also observed that the static features works sur-
prisingly better than motion features only. We explain this improvement by the
fact that the dense feature outperforms the feature based on interest points. The
confusion table for classification using our proposed hybrid model can be seen
in Figure 6.

Fig. 5. The classification accuracies generated by motion, static and hybrid model.

.64 .03 .00 .04 .01 .04 .03 .05 .00 .10 .06

.00 .81 .00 .01 .04 .00 .01 .00 .00 .00 .13

.01 .02 .92 .00 .01 .00 .02 .00 .00 .01 .01

.03 .00 .00 .88 .00 .02 .00 .05 .00 .00 .02

.01 .10 .00 .01 .67 .01 .00 .00 .00 .00 .20

.04 .08 .02 .07 .00 .53 .04 .02 .01 .02 .17

.00 .24 .01 .00 .00 .02 .66 .00 .04 .00 .03

.12 .09 .00 .13 .03 .01 .00 .62 .00 .00 .00

.00 .02 .02 .00 .00 .01 .04 .00 .86 .00 .05

.02 .00 .01 .02 .01 .00 .00 .01 .00 .93 .00

.00 .15 .00 .05 .01 .02 .01 .00 .00 .00 .76

basketball

biking

diving

golf swing

horse riding

soccer juggling

swing

tennis swing

trampoline jumping

volleyball spiking

walking

basketball

biking
diving

golf swing

horse riding

soccer juggling

swing
tennis swing

trampoline jumping

volleyball spiking

walking

Fig. 6. The confusion table for classification using hybrid model.
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Lastly, we compared our method based on hand-crafted feature representa-
tion with the state-of-art on the same dataset (see Table 1). It can be clearly
seen that our method is competitive with the state-of-art. Specifically, our frame-
work is quite similar with Liu et al. [13] but our overall accuracy (75.51%) is
higher than theirs (71.2%). Note that the highest accuracy (85.4%) proposed by
Wang et al. [16] is much higher (over 10%) than all other methods because they
adopted the dense trajectories feature on building motion feature, which is very
computational intensive and memory consuming.

Liu et al. (2009) [13] 71.2%
Ikizler-Cinbis and Sclaroff (2010) [5] 75.21%

Brendel and Todorovic (2010) [3] 77.8%
Le et al. (2011) [11] 75.8%

Bhattacharya et al. (2011) [1] 76.5%
Wang et al. (2013) [16] 85.4%

Our method 75.51%

Table 1. The comparison between our method and the state-of-art.

4.3 Random Feature Representation

The parameter settings for building random feature representation is almost the
same as building the hand-crafted feature representation described above. We
also evaluated the algorithms on a range of parameter values to search appropri-
ate parameters to achieve the highest possible accuracies. Firstly, we searched for
the appropriate projected dimension n. The sub-feature vector is projected into
25, 50, 100, 200 dimensions so that the dimensionality of the final local descriptor
would be 200, 400, 800 and 1600 respectively. Note that for the descriptors with
1600 dimensionality, we sampled 400 descriptors from each video to generate the
codebook due to the high memory requirement. Another parameter we try to
optimize is the size of the cuboid, the size employed in building hand-crafted
feature representation (19× 19× 11 pixels) is taken as the benchmark.

The results based on the descriptors projected to diverse dimensions by ran-
dom projection on the extracted cuboid are shown in Figure 7. It can be seen that
the accuracies over diverse dimensions of descriptors are all fluctuated around
50% and there is no significant difference between each dimensionality. In ad-
dition, no obvious tendency of improvement or decreasing over the diverse di-
mensions can be observed. Therefore, we conclude that the projected dimension
is not an important fact that affects the final classification accuracy. The pro-
jected dimension is then fixed to 200 as same as hand-crafted descriptors due to
its lower computational complexity and for the sake of comparisons.

To investigate the effect of size of cuboid, we conducted a set of experiments
based on 3 different spatial size and 2 different temporal size. The results of total
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Fig. 7. The accuracies based on the descriptors projected to 200, 400, 800 and 1600
dimensions by random projection on the extracted cuboid with the size of 19× 19× 11
pixels.

6 experiments with different cuboid sizes are shown in Table 2. Again, all the
results fluctuated around 50% and there is no significant improvement among
them. The best result we got is 51.97% with the 19 × 19 × 11 pixels cuboid
size. Therefore, changing the size of the extracted cuboid would not improve the
performance.

In addition, the result applying VLAD encoding method is 55.65% based on
the 200 dimension random descriptors and 128 visual words, which is similar to
that of using SC (55.31%). As expected, the result of VLAD is better than BoF
(51.97%) and the computational time is much less than Sparse Coding but at
the cost of consuming memory.

11 × 11 × 11 11 × 11 × 23

50.26% 45.89%

19 × 19 × 11 19 × 19 × 23

51.97% 48.03%

39 × 39 × 11 39 × 39 × 23

44.09% 46.40%

Table 2. The results based on different sizes of the cuboid with a fixed projected 200
dimension.

4.4 Comparisons

We also evaluated the random descriptors on the static model and the hybrid
model. Again, the hybrid model can achieve about 8% improvement on overall
accuracy over the motion and static model. The best results we obtained for
random feature representation and the corresponding results generated by the
hand-crafted feature are list in Table 3.
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Method Random Feature Hand-crafted Feature

motion - BoF 51.97% 60.10%

motion - SC 55.31% 64.98%

static - BoF 51.54% 65.33%

Combined 62.50% 75.51%

Table 3. The comparison between the random feature and the hand-crafted feature
representation.

From the Table 3, we can see that there is a big difference between results
from the two proposed feature representations. For each evaluation of encoding
method, the performance of hand-crafted feature is over 10% higher than that of
random feature. As the framework, encoding and classifiers parameter settings
are totally the same for evaluating both feature representation, we can conclude
that the random feature representation does not perform well in this YouTube
action dataset although it is simple to be implemented and successful in other
recognition domains like texture recognition. Recall that random projection is
a power tool in dimensionality reduction and should be beneficial in the cases
where the distances of the original high dimensional data are meaningful. There-
fore, we explained this failure of random feature representation for possibly one
reason that the original distance or similarities information contained by the
extracted cuboids are themselves suspect so that the random feature descriptors
are not distinct enough to be classified.

5 Conclusions

In this paper, we investigate and compare two different feature representations
for video based human action recognition: hand-crafted and random feature rep-
resentation. The former is built by 3D HoG/HoF descriptors for motion feature
and SIFT descriptors for static feature while the latter is based on random pro-
jection. Three popular approaches of encoding descriptors: BoF, SC and VLAD
are all applied in our experiments. Additionally, spatial temporal pyramid and
a two layer SVM classifier are employed for classification processing.

For the motion feature of both representations, we evaluated both BoF and
SC encoding methods. The results confirms that SC outperforms BoF as indi-
cated in object recognition community. Based on the performance of the motion,
static and hybrid model, we found that using hybrid features of motion and static
can significantly improve the overall recognition accuracy which only uses mo-
tion features. It can be concluded that as complementary of the motion feature,
the static feature plays an essential role in action recognition on this dataset,
which should be paid more attention to in future relevant researches. Compared
with the success of the popular hand-crafted feature representation such as 3D
HoG/HoF, SIFT descriptors for action recognition, the proposed random fea-
ture representation based on random projection does not perform well in this
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dataset. This is probably due to the suspect of original information contained
by the extracted cuboids as well as the random error.

The overall accuracies over YouTube action dataset based on random features
is far behind the state-of-art performance. For the future work, the random
feature based approach would be experimented on other datasets, such as KTH
action dataset [15] and Hollywood movie dataset [9].
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