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Abstract. This paper addresses the problem of recognizing human in-
teractions with close physical contact from videos. Different from con-
ventional human interaction recognition, recognizing close interactions
faces the problems of ambiguities in feature-to-person assignments and
frequent occlusions. Therefore, it is infeasible to accurately extract the
interacting people, and the recognition performance of an interaction
model is degraded. We propose a patch-aware model to overcome the
two problems in close interaction recognition. Our model learns discrim-
inative supporting regions for each interacting individual. The learned
supporting regions accurately extract individuals at patch level, and ex-
plicitly indicate feature assignments. In addition, our model encodes a set
of body part configurations for one interaction class, which provide rich
representations for frequent occlusions. Our approach is evaluated on the
UT-Interaction dataset and the BIT-Interaction dataset, and achieves
promising results.

1 Introduction

Automatic understanding human actions in videos is important to several real-
world applications, for example, video retrieval, video annotation, and visual
surveillance. These videos often contain close interactions between multiple peo-
ple with physical contact (e.g., “hug” and “fight”). This raises two major chal-
lenges in understanding this type of interaction videos: the occlusion of body
parts and the ambiguity in feature assignments (features such as interest points
are difficult to be uniquely assigned to a particular person in close interactions).

Unfortunately, the aforementioned problems are not addressed in existing in-
teraction recognition methods [11, 1, 12, 24]. Methods in [11, 1] use trackers/detectors
to roughly extract people, and assume interactions do not contain close physical
contact (e.g., “walk” and “talk”). Their performance are limited in close interac-
tions since the feature of one single person may contain noises from background
or the other interacting people. Feature assignment problem is avoided in [12,
24] by treating the interaction people as a group. However, they do not utilize
the intrinsic rich context of the interaction. Interest points have shown that they
can be mainly associated with foreground moving human bodies in conventional
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Fig. 1: Example of the inference results of our patch-aware model. Our model
recognizes human interaction and discriminatively learns the supporting regions
for each interacting people.

single-person action recognition methods [13, 21]. However, since multiple peo-
ple present in interactions, it is difficult to accurately assign interest points to
a single person, especially in close interactions. Therefore, action representa-
tions of people are extremely noisy and consequently degrade the recognition
performance.

In this paper, we propose a novel patch-aware model for solving the aforemen-
tioned problems in close human interaction recognition from videos (Figure 1).
Our model learns discriminative supporting regions for each interacting per-
son, which accurately separate the target person from background. The learned
supporting regions also indicate the feature-to-person assignments, which con-
sequently help better represent individual actions. In addition, each interaction
class associates with a variety of supporting region configurations, thereby pro-
viding rich and robust representations for different occlusion cases.

We propose a rich representation for close interaction recognition. Specif-
ically, we introduce a set of binary latent variables for 3D patches indicating
which subject the patch is associated with (background, person 1 or person 2),
and encourage consistency of the latent variables across all of the training data.
The appearance and structural information of patches is jointly captured in our
model, which captures the motion and pose variations of interacting people. To
address the challenge of an exponentially large label space, we use a structured
output framework, employing a latent SVM [6]. During training, the model learns
which patterns belong to the foreground and background, allowing for better la-
beling of body parts and identification of individual people. Results show that
the learned supporting patches significantly facilitate the recognition task.

Our work differs from [11, 2, 1, 14] in that they can only deal with interac-
tions that do not contain close physical contact (e.g. “queueing” and “talking”)
while our method specifically aims at recognizing close interactions. Different
from [24, 19, 17] which treat the interacting people as a group, our model pro-
vides fine-grained supporting regions for each interacting person, which allows
us to recognize individual action. Although methods in [18, 22] can roughly ex-
tract each interacting person using a tracker or detector, they do not model 3D
patches and background, and cannot accurately separate people. Our method,
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in contrast, captures different importance of 3D patches in interaction classes
and thus can accurately separate people.

2 Related Work

Multi-person activity recognition has been receiving much attention in computer
vision community. Methods in [2, 11] studied the collective activity recognition
problem using crowd context. People in a collective activity have no close physical
contact with each other and perform similar action, e.g. “crossing the road”,
“talking”, or “waiting”. Specifically, Choi et al.[2] utilized human pose, velocity
and spatiotemporal distribution of individuals to represent the crowd context
information. They further developed a system that can simultaneously track
multiple people and recognize their interactions [1]. Lan et al.[11] represented
crowd context by action co-occurrence of interacting people. Odashima et al.[14]
proposed the Contextual Spatial Pyramid to detect the action of multiple people.

Human interactions, e.g. “hug”, “push”, and “hi-five”, usually involve fre-
quent close physical contact. Perez et al.[15] investigated interaction recognition
between two people in realistic scenarios. They adopted a human detector to
extract individual in videos. However, the ambiguities in feature-to-person as-
signments during close physical contact remains a problem. Ryoo and Aggarwal
[18] utilized body part tracker to extract each individual in videos and then
applied context-free grammar to describe spatial and temporal relationships be-
tween people. To avoid the extraction of individual people, approaches in [19,
24, 12] treat interacting people as a group and recognize their interactions based
on group motion patterns.

Human-object and object-object interaction have also been investigated in
recent work. Gupta et al.[8] incorporated rich context derived from object class,
object reaction, and manipulation motion into Bayesian models for recognizing
human-object interaction from videos and static images. Mutual context of ob-
jects and human poses was explored by Yao and Fei-Fei [23]. Their work showed
that using mutual context, human pose estimation and object detection can
greatly benefit each other. Gong and Xiang [7] proposed a dynamically multi-
linked Hidden Markov Model for recognizing group actions in-volving multiple
objects. Desai et al.[3] encoded geometric configurations of objects and human
pose in contextual models for recognizing human-object interactions (e.g. tennis-
serve and tennis-forehand).

3 Interaction Representation

Our approach takes advantage of 3D space-time local features to jointly recog-
nize interaction and segment people in the interaction. Given a video, we first
use a tracker to extract interacting people from each other, and also differentiate
them from the background at a patch-level. In each bounding box, spatiotem-
poral interest points [5] and tracklet [16] are computed within each 3D patch,
and described using the bag-of-word model [5, 12, 13] (Figure 2). Spatiotemporal
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Fig. 2: Illustration of feature representation. We extract both interest points and
tracklet from 3D patches.

patches are obtained by decomposing a video of size R × C × T into a set of
non-overlapping spatiotemporal 3D patches, each of which is of size r × c × t.
Similar to action representation based on histograms of video words [5, 17, 13],
we describe each patch by the histogram of video words within the patch.

Noted that the detected interest points and tracklet are mainly associated
with salient regions in human body; few of them are associated with background.
This results in an inexpressive representation for background. Our aim in this
paper is to extract each interacting people from the interactions and thus the
background must be described.In this paper, we augment virtual video words
(VVWs) to describe background.

The idea of VVWs is to build a discriminative feature for background so that
background and foreground can be well differentiated. Consider the features of
patches as data points in a high-dimensional space. Then patch features associ-
ated with foreground are distributed subjecting to an unknown probability. We
would like to define some virtual data points for background and make them as
far as possible from those foreground data points in order to make these two-
class data points well separated. Since we use linear kernel in the model, the
best choice for virtual data points is the one that can be linearly separated from
foreground data points). In our work, we use origin point for virtual data points,
i.e. all the bins in the histogram of a 3D patch which have no video words in it
are set to 0.

4 Patch-aware Model

Given the representation of an interaction video, our goal is to determine the
interaction class (e.g.“push”) as well as infer supporting regions for each inter-
acting person. These 3D regions in this work can be associated with background
or one of the interacting people.

Suppose we are given N training samples {x(i), y(i)}Ni=1, where x ∈ RD de-
notes the video feature and y ∈ Y is the interaction class. Our purpose is to learn
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a discriminative function fw : x → y, which infers the interaction class for an
unknown interaction video. To model the supporting regions for each interact-
ing person, we introduce a set of auxiliary binary latent variables {hj}Mj=1 ∈ H
(hj ∈ {0, 1}), each of which associates with one patch. hj = 0 denotes that the
j-th patch is associated with the background and hj = 1 means it is with fore-
ground. Note that intra-class variability leads to different patch configurations
in certain interaction classes. For instance, in “handshake”, some people would
like to pat the other people while shaking hands with the people but some do
not like that. We solve this problem by treating regions as latent variables and
inferring the most probable states of latent variables in training. An undirected
graph G = (V, E) is employed to encode the configurations of these patches.
A vertex hj ∈ V (j = 1, · · · ,M) corresponds to the j-th patch and an edge
(hj , hk) ∈ E corresponds to the dependency between the two patches.

We define the discriminative function as

f(x; w) = arg max
y

[
max
h

F (x,h, y; w)

]
(1)

where h is vector of all latent variables. The scoring function F (x,h, y; w) is used
to measure the compatibility between between the video data x, the interaction
class y and the latent patch labels h.

We model the scoring function F (·) as a linear function F (x,h, y; w) =
〈w,Φ(x,h, y)〉 with w being model parameter and Φ(x,h, y) being a feature
vector. Specifically, the scoring function F (·) is defined as the summation of four
components:

F (x,h, y; w) =
∑
j∈V

αTψ(xj , hj , y) +
∑
j∈V

βTθ(xj , hj)

+
∑
j∈V

γTj η(hj , y) + λTπ(x, y), (2)

where w = {α, β, γ, λ} is model parameter, xj is the feature extracted from the
j-th patch.

Class-specific Patch Model αTψ(xj , hj , y) models the agreement between
the observed patch feature xj , the patch label hj and the interaction class y.
The definition of the feature vector ψ(xj , hj , y) is given by

ψ(xj , hj , y) = 1(y = a) · 1(hj = 1) · f(xj), (3)

where f(xj) denotes the local feature of the j-th patch and 1(·) is an indicator
function. In our work, f(xj) encodes both appearance information and struc-
tural information of the j-th patch: f(xj) = [fa(xj), fs(xj)]. The appearance
information fa(xj) is the distribution of words in the patch, and the structural
information fs(xj) is the location of the patch. To compute the structural feature
fs(xj), we discretize the bounding box into M patches and the spatial location
feature of a patch xj is a vector of all zeros with a single 1 for the bin occu-
pied by xj . We apply a template α of size (D + M) × H × Y on the feature
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function ψ(xj , hj , y) to weigh the different importance of elements in the feature
function, where Y is the number of interaction classes, and H is the number of
patches labels. Each entry in αyhcm can be interpreted as, for patch of state h,
how much the model prefers to see a discriminative word in the m-th bin when
the codeword is c and the interaction label is y. The class-specific patch model
αTψ(xj , hj , y) can be regarded as a linear classifier and scores the feature vector
ψ(xj , hj , y).

The model encodes class-specific discriminative patch information which is
of great importance in recognition. Note that the patch label h is unobserved
during training and the feature function defined above models the implicit rela-
tionship between an interaction class and supporting regions. During training,
the model automatically “aware” the supporting regions for an interaction class
by maximizing the score F (x,h, y; w).

Global Patch Model βTθ(xj , hj) measures the compatibility between the
observed patch feature xj and the patch label hj . We define the feature function
θ(xj , hj) as

θ(xj , hj) = 1(hj = b) · f(xj), (4)

where f(xj) is the local feature of the j-th patch used in the class-specific patch
model. This model encodes shared patch information across interaction classes.
It is a standard linear classifier trained to infer the label (0 or 1) of the j-th patch
given patch feature xj . The parameter β is a template, which can be considered
as the parameter of a binary linear SVM trained with data {xj , hj}Mj=1.

Essentially, the global patch model encodes the shared patch information
across interaction classes. For example, since we use a tracker to obtain a bound-
ing box of an interacting person, this person tends to appear in the middle of
the box and thus the patches in the middle of the box are likely to be labeled as
foreground. This information is shared across all interaction classes and can be
elegantly encoded by our global patch model.

Class-specific Structure Model γTj η(hj , y) encodes the structural infor-
mation of patches in one interaction class. Intuitively, human poses are different
in various interaction classes. Although this information are unobserved in train-
ing samples, we treat them as latent variables so that they can be automatically
discovered during model training. The class-specific structure model is given by

η(hj , y) = 1(hi = b) · 1(y = a). (5)

Clearly, the label of a patch is related to its location. Therefore, we use a set of
untied weights {γ}Mj=1 for the j-th patch, each of which is of size H × Y , where
M is the number of patches. The class-specific structure model expresses the
prior that, without observing any feature, given an interaction class a, which
state of the j-th patch is likely to be.

The class-specific structure model expresses the idea that, without observing
any low-level feature, given an interaction class a, which state of the j-th patch
is likely to be. The model shows its preference by scoring the feature vector
η(hj , y) using a weight vector γj . Since the feature vector is a 0− 1 vector, if an



Modeling Supporting Regions for Close Human Interaction Recognition 7

entry in γj(b, a) is positive, the model encourages labeling the j-th patch as b
when current interaction class is a.

Global Interaction Model λTπ(x, y) is used to differentiate different in-
teraction classes. We define this feature vector as

π(x0, y) = 1(y = a) · x0, (6)

where x0 ∈ Rd is a feature vector extracted from the whole video. Here we use a
statistical bag-of-words style representation for the whole video. This potential
function represents a standard linear model for interaction recognition without
considering other components. If we ignore other potential functions in Eq.(2)
and only consider the global interaction potential function, the parameter λ can
be obtained by training a standard multi-class linear SVM.

Discussion. The proposed patch-aware model is specifically designed for in-
teraction recognition with close physical contact. Compared with exiting inter-
action recognition methods [22, 17, 11, 2, 18, 24, 19, 1, 14], our model accounts for
motion at a fine-grain patch level using the three components, the class-specific
patch component, the global patch component, and the class-specific structure
component. These three components model the appearance and structural in-
formation of local 3D patches and allow us to accurately separate interacting
people at patch-level. To our best knowledge, our work is the first one that pro-
vides supporting patches for close interaction recognition, which can be used to
separate interacting people.

5 Model Learning and Testing

Learning. The latent SVM formulation is employed to train our model given
the training examples D = {x(n), y(n)}Nn=1:

min
w,ξ

1

2
‖w‖2 + C

∑
n

(ξn + σn) (7)

s.t. max
h

wTΦ(x(n),hy(n) , y(n))−max
h

wTΦ(x(n),h, y) (8)

> ∆(y, y(n))− ξn,∀n, ∀y,
π(hy(n) , y(n),hy, y) 6 σn,∀n,∀y, (9)

where w denotes model parameter, ξ and σ are slack variable that allow for
soft margin, and C is the soft-margin parameter. ∆(y, y(n)) represents the 0-1
loss function. π(hy(n) , y(n),hy, y) in Constraint (9) enforces the similarity over
latent regions for training videos. Our assumption is that, for videos in the
same category, they are likely to have the same latent variable values. We define
π(hy(n) , y(n),hy, y) as

π(hy(n) , y(n),hy, y) =
1

M
d(hy(n) ,hy) · 1(y = y(n)), (10)
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where d(·, ·) computes the Hamming distance between the two vectors. The
optimization problem (7-9) can be solved using the latent SVM framework [6].

Computing subgradient. The above optimization problem can be effi-
ciently solved by the non-convex cutting plane algorithm [4]. In a nutshell, the
algorithm iteratively builds an increasingly accurate piecewise quadratic approx-
imation to the objective function. During each iteration, a new cutting plane
is computed by the subgradient of the objective function and added to the
quadratic approximation. The key two steps of the algorithm are to compute
the empirical loss R(w) =

∑
n(ξn + σn) and the subgradient ∂R

∂w .
The computation of a subgradient is relatively straight-forward, assuming

the inference over h can be done. Denote the empirical loss R(w) as R(w) =∑
nR

n(w), then the subgradient can be computed by

∂R

∂w
= Φ(x(n),h∗, y∗)− Φ(x(n),h′, y(n)), (11)

where (h∗, y∗) and h′ are computed by

(h∗, y∗) = arg max
y,h

wTΦ(x(n),h, y) +∆(y(n), y), (12)

h′ = arg max
h

wTΦ(x(n),h, y(n))− π(hy(n) , y(n),h, y). (13)

Testing. Given an unknown interaction video, we assume that the interac-
tion region in the video is known. Our aim is to infer the optimal interaction
label y∗ and the optimal configurations of 3D patches h∗:

max
y

max
h

wTΦ(x,h, y). (14)

To solve the above optimization problem, we enumerate all possible interaction
classes y ∈ {Y} and solve the following optimization problem:

h∗y = arg max
h

wTΦ(x,h, y),∀y ∈ Y. (15)

Here, the latent variables h are connected by a lattice. In this work, we adopt
loopy belief propagation to solve the above optimization problem.

Given the latent variable vector h∗y, we then compute the score fw(x,h∗y, y) =

wTΦ(x,h∗y, y) for all interaction classes y ∈ Y and pick up the optimal interac-
tion class y∗ which maximizes the score F (x,h∗y, y; w).

6 Experiments

6.1 Datasets

We test our method on the UT-Interaction dataset [20] and the BIT-Interaction
dataset [9]. UT dataset consists of 6 classes of human interactions: handshake,
hug, kick, point, punch and push. The UT dataset was used for the human
activity recognition contest (SDHA 2010) [20], and it has been tested by several
state-of-the-art methods [24, 17, 19]. BIT dataset consists of 8 classes of human
interactions: bow, boxing, handshake, high-five, hug, kick, pat, and push. Each
class contains 50 videos, to provide a total of 400 videos.
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Fig. 3: Confusion matrix and classification examples of our method on UT
dataset.

6.2 Experiment Settings

We extract 300 interest points [5] from a video on both datasets. Gradient de-
scriptors are utilized to characterize the motion around interest points. Principal
component analysis algorithm is applied to reduce the dimensionality of descrip-
tors to 100 and build a visual word vocabulary of size 1000. We use a visual
tracker to obtain a bounding box for each interacting people. Then a 3D volume
computed by stacking bounding boxes along temporal axis is split into non-
overlapping spatiotemporal cuboids of size 15 × 15 × 15. We use the histogram
of the video words in a 3D patch as the patch feature.

We adopt the leave-one-out training strategy on the UT dataset. The split
training strategy is applied on BIT dataset to train our model. 272 videos are
randomly chosen for training our patch-aware model and the remaining videos
are used for testing.

6.3 Experimental Results

Results on UT-Interaction dataset. On UT dataset, we first evaluate the
recognition accuracy of our method and report supporting region results. Then
we compare with state-of-the-art methods [24, 17, 11, 13, 10].

Recognition Accuracy. We test our method on UT dataset and show the
confusion matrix in Figure 3. Our method achieves 88.33% recognition accuracy.
Confusions are mainly due to visually similar movements in two classes (e.g.
“push” and “punch”) and the influence of moving objects in the background.
Classification examples are illustrated in Figure 3.

Eq.(5) defines a class-specific structure model for all classes. It would be
interesting to investigate the performance of a shared pose prior. We replace
the class-specific structure prior in Eq.(5) with a shared one which is defined
as η(hj , y) = 1(hi = b). Results are shown in Table 1. The accuracy difference
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Fig. 4: The learned supporting regions on the UT dataset.

between the two priors is 5%. This is mainly due to that motion variations in
individual actions are significant. The model with class-specific prior is able to
learn pose under different classes, and benefits the recognition task.

Table 1: Accuracies of different pose prior on UT dataset.

Pose prior shared class-specific

Accuracy 83.33% 88.33%

Supporting Regions. The learned supporting regions on the UT dataset
are shown in Fig. 4. Our model can accurately discover supporting regions of
interacting people. This is achieved by finding the most discriminative regions
(e.g. hand and leg) that support an interaction class. Note that some videos in
the UT dataset have background motion, e.g.,“point”, which introduces noise in
the video. However, our model uses the structure prior component in Eq. (5) and
the consistency Constraint (9) to enforce a strong structure prior information on
the patches, and thus can determine which patches are unlikely to be associated
with foreground. This leads to accurate patch labeling results. Some of the patch
labels are incorrect mainly due to intra-class variations. People in an interaction
class may behave differently according to their personal habits. This increases
the difficulty of learning class-specific pose prior.

Comparison Results. We evaluate the value of components in the proposed
model, including the global interaction model, the structure prior model, and the
patch models. We remove these from our patch-aware model respectively, and
obtain three different methods: the no-GI method that removes global interaction
potential λTπ(x, y), the no-SP method that removes the structure prior potential
γTj η(hj , y), and the no-CGP method which removes both class-specific and global

patch model αTψ(xj , hj , y) and βTθ(xj , hj) from the full model.
We compare our full model with previous methods [17, 24, 11, 13], the no-GI

method, no-SP method and no-CGP method, and adopt a bag-of-words repre-
sentation with a linear SVM classifier as the baseline. Results in Table 2 show
that our method outperforms all the comparison methods. It should be noted
that our method learns supporting regions, which can be used to separate people
while the methods in [17, 24, 11, 13] cannot achieve this goal.
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Table 2: Recognition accuracy (%) of methods on the UT dataset.

Methods Function handshake hug kick point punch push Overall

bag-of-words only Rec. 70 70 80 90 70 70 75
no-GI method Rec. and Seg. 20 30 40 30 10 20 25
no-SP method Rec. and Seg. 70 80 70 70 80 80 75
no-CGP method Rec. and Seg. 80 90 70 90 80 80 81.67
Liu et al.[13] only Rec. 60 70 100 80 60 70 73.33
Lan et al.[11] only Rec. 70 80 80 80 90 70 78.33
Yu et al.[24] only Rec. 100 65 75 100 85 75 83.33
Ryoo & Aggarwal [17] only Rec. 80 90 90 80 90 80 85
Our method Rec. and Seg. 90 90 80 100 80 90 88.33

Results in Table 2 show that our method outperforms [24, 17, 11, 13]. The
baseline bag-of-words method simply uses low-level features for recognition. By
comparison, our method treats cuboid variables as mid-level features and utilize
them to describe local motion information. With rich representation of interac-
tion, our method achieves superior performance. Our method outperforms the
method proposed in [17]. Their method uses structural information between in-
terest points to aid recognition. In this work, we adopt a different scheme to
encode structure information of interest points. The information is encoded by
the location of spatiotemporal cuboids which contains the interest points. Be-
sides, the learned supporting regions in our model can also be used to separate
people in interactions while their method cannot. Lan et al.[11] utilized action
context to recognize interactions. We argue that action context may not able
to capture complex action co-occurrence since individual motion could be to-
tally different in an interaction class. Thus modeling the action context may not
capture significant motion variations in individual actions. We infer an interac-
tion based on the mid-level patch features. The mid-level features we build can
provide detailed regional motion information of interactions and thus improve
recognition results. Compared with [24], our method learns supporting regions
to separate people while [24] treats interacting people as a group and do not
consider separation.

Evaluation on BIT-Interaction Dataset. We conduct two groups of experi-
ments on BIT dataset. First, we test the recognition performance of our method,
and show the results on supporting regions and the structure prior. We then test
the effectiveness of each component in our patch-aware model.

Recognition Results. In the first experiment, we test the proposed method
on BIT dataset. The confusion matrix is shown in Figure 5(a). Our method
achieves 85.38% accuracy in classifying human interactions. Results show that
the method can recognize interactions in some challenging situations, e.g. par-
tially occlusion and background clutter (Figure 5(b)). This is mainly due to the
modeling of the supporting regions. In such challenging scenarios, the supporting
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Fig. 6: The learned supporting regions on the BIT dataset.

regions of each interacting people can be accurately inferred by the patch-aware
model according to their appearance and structural information. If the region
belongs to the interacting people, the model would assign high weights to the
feature extracted from that region and thus more trust the region. If not, the
feature extracted from the region will receive low weight and thus play trivial
role in interaction recognition.

Most of the misclassifications are due to the visual similarity, e.g. “boxing”
and “push”, “pat” and “boxing”. In addition, some temporal segments in the
classes of “boxing” and “push” are shared with other classes. For example, in
“boxing”, some early segments are visually similar to some “hug” segments. Both
of them are “stretching out hand”. Since we adopt voting strategy for classifi-
cation, these misclassified segments would result in the misclassification of the
video. Moreover, some of misclassifications are due to significant occlusion in
which the extracted interest points are no discriminative enough for differenti-
ating interactions.

Supporting Regions. Results in Figure 6 show that our model can accu-
rately find supporting regions for interacting people in close interactions. For
example, in “hug” interaction (Figure 6(e)), the supporting regions of two close
people can be accurately labeled. Our model essentially conducts a refinement
in the bounding box. It utilizes both appearance and structure information of
patches, and learns latent pose prior for each interaction class. The optimal patch
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label configuration (supporting regions) that maximizes the score of an interac-
tion class are automatically discovered in the learning procedure. The learned
supporting regions overcome the problem of ambiguity in feature assignments
and thus facilitate the recognition task. Some of the labels are incorrect. This is
mainly due to intra-class variations. People in an interaction class may behave
differently according their personal habits. This increases the difficulty of learn-
ing class-specific pose priors. We do not fully use temporal information in our
model since the inference on a loopy graph is inefficient.

Structure Prior. We encode the shared structure prior potential function
into our patch-aware model (refer to as SS model) and compare it with the
proposed model defined in Eq.(2) (called full model). Results in Table 3 indicate
that the full model outperforms the SS model. The reason can be explained from
the view of parameters. For j-th patch, a shared prior for the patch is associated
with parameter γj where γj is a vector of length H. This shared model is too
simple to capture pose variations among all the classes. By comparison, a class-
specific prior for the cuboid is associated with parameter γj where γj is a vector
of length Y ×H. With a more complex structure prior, the full model can easily
capture large pose variations and separate background and foreground for each
interaction class. Thus the recognition performance is improved.

Table 3: Accuracies of different pose prior on BIT dataset.

Pose prior shared class-specific

Accuracy 80.47% 85.38%

Comparison Results. In this experiment, we evaluate the value of compo-
nents in the proposed method, including the global interaction potential, the
structure prior potential, and the potential encoding appearance and struc-
ture information of observations. We remove these from our patch-aware model
respectively, and obtain three different methods: the no-GI method that re-
moves global interaction potential λTπ(x, y), the no-SP method that removes
the structure prior potential γTj η(hj , y), and the no-CGP method which removes

the appearance and structure information of observations αTψ(xj , hj , y) and
βTθ(xj , hj) from the full model. Our patch-aware model is compared with these
three methods as well as the baseline bag-of-words representation with a linear
SVM classifier.

Table 4 indicates that our method outperforms all the baseline methods.
Compared with the baseline bag-of-words method, the performance gain achieved
by our method is significant since our model is able to automatically infer the
supporting regions and treat them as mid-level features. As expected, our method
significantly outperforms the no-GI method, which emphasizes the importance
of global interaction potential in interaction recognition. The global interaction
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Table 4: Recognition accuracy (%) on the BIT dataset. R. and S. are short for
recognition and segmentation, respectively.

Methods Func. bow boxing handshake high-five hug kick pat push Overall

bag-of-words only R. 81.25 75 50 75 81.25 68.75 62.5 68.75 70.31
no-GI model R. & S. 20.31 20.31 25 18.75 37.5 18.75 31.25 18.75 23.83
no-SP model R. & S. 75 68.75 68.75 75 68.75 87.5 81.25 68.75 74.22
no-CGP model R. & S. 62.5 56.25 62.5 87.5 81.25 87.5 87.5 68.75 75
Lan et al.[11] only R. 81.25 75 81.25 87.5 87.5 81.25 81.25 81.25 82.03
Ours R. & S. 87.5 81.25 87.5 81.25 87.5 81.25 87.5 87.5 85.38

potential function can be considered as a standard linear model for interaction
recognition without considering other components. Without this potential, the
model mainly focuses on the cuboid features which would be not discriminative
enough. The results of the proposed method are higher than the no-SP method,
which indicates the effectiveness of the structure prior in recognition. Without
the structure prior, the no-SP method is unable to capture mid-level features
in cuboids. The information the no-SP model can capture is simply the noisy
low-level features rather than meaningful regional information. Since the seg-
mentation and recognition tasks are smoothly connected in our work, the lack of
semantic understanding of cuboids would influence the recognition results. As a
result, the recognition accuracy of the no-SP method is decreased. The full model
outperforms the no-CGP method. The appearance and structure information in
the full model serves as local features and complements the global interaction
information. The local features are able to describe local motion of interaction
and provide detailed information. With appearance and structure information,
our method can recognize more challenging interaction videos and thus achieves
higher results.

7 Conclusion

We have proposed a novel model for jointly recognizing human interaction and
segmenting people in the interaction. Our model is built upon the latent struc-
tural support vector machine in which the patches are treated as latent variables.
The consistency of latent variables are encouraged across all the training data.
The learned patch labels indicate the supporting regions for interacting people,
and thus solve the problems of feature assignment and occlusion. Experiments
show that our method achieves promising recognition results and can segment
people at patch level during an interaction, even in a close interaction.
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