
Analysis of sampling techniques for learning
binarized statistical image features using

fixations and salience

Hamed R.-Tavakoli, Esa Rahtu, Janne Heikkilä
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Abstract. This paper studies the role of different sampling techniques
in the process of learning Binarized Statistical Image Features (BSIF).
It considers various sampling approaches including random sampling
and selective sampling. The selective sampling utilizes either human eye
tracking data or artificially generated fixations. To generate artificial fix-
ations, this paper exploits salience models which apply to key point local-
ization. Therefore, it proposes a framework grounded on the hypothesis
that the most salient point conveys important information. Furthermore,
it investigates possible performance gain by training BSIF filters on class
specific data. To summarize, the contribution of this paper are as follows:
1) it studies different sampling strategies to learn BSIF filters, 2) it em-
ploys human fixations in the design of a binary operator, 3) it proposes
an attention model to replicate human fixations, and 4) it studies the
performance of learning application specific BSIF filters using attention
modeling.

Keywords: Binary operators, visual attention, salience modeling.

1 Introduction

The research on image descriptors is a well-studied area in computer vision. In
general, image descriptors describe the visual characteristic (e.g., shape, color,
texture, motion) of the image. They are the building blocks of many vision
related tasks such as image retrieval, recognition tasks (e.g., texture, object,
face), action recognition, facial expression analysis, and etc.

Today, the computer vision domain is replete with image descriptors. Some
descriptors are more generic, e.g., SIFT [10], SURF [1], BRIEF [2], DAISY [18]
and their variants, compared to other operators such as LBP [12], LPQ [13]
which are mostly developed for class specific applications (e.g., texture clas-
sifications, and face recognition). Nonetheless, they are somehow linked by a
common framework of Filtering, Labeling and Statistics (FLS) which provides
a unique implementation for LBP and SIFT like features [4].

Adopting the concepts of [4], one can write the LBP operator as the thresholded-
quantized-mapped response of a series of multi-directional filter banks. While



2 H. R.-Tavakoli, et al.

traditionally the filters are hand tuned, intrigued to improve quality of filters,
[9] proposed to learn the filters using image statistics in which the premise is
that statistically learned filters convey image information better. Nonetheless,
such an approach poses a new challenge by requiring effective training of the fil-
ters. Thus, this paper tries to seek a suitable answer by investigating the domain
of salience modeling and visual attention. Initially, it exploits human fixations
to train BSIF filters from natural image statistics in order to analyze possible
relation between informative regions and training of filters.

Afterwards, motivated by the success of learning based methods, e.g. [16], in
which a set of filters specific to a class category is learned, this paper explores
learning the filters from application specific data sets and particular class cat-
egories. However, it faces a difficulty in using human fixations because there is
no such a data set available. To compensate, it develops an attention model to
replicate human fixations during the learning process.

Eventually, the performance of the sampling strategies is studied in several
applications such as texture classification and face recognition. It will be demon-
strated that learning of filters somehow benefits from selective sampling and the
proposed framework for attention-based learning of filters improves the perfor-
mance of face recognition.

1.1 Related work

This paper targets domain of binary patterns such as LBP [12]. Such operators
treat the relation of each pixel and its surrounding as a binary code string. Con-
sequently, an image is represented by the probability distribution of binary code
strings obtained in terms of histograms. Thus, the paper adopts the binarized
statistical image features (BSIF) to investigate the role of underlying data set
information in the process of learning statistical representations.

BSIF binarizes the response of a set of statistically learned filters with a
threshold at zero, in which each filter response is in correspondence with a dif-
ferent filter. The filters are learned by maximizing the statistical independence
of the filter responses using Independent Component Analysis (ICA) [6].

In a few words, given an image I and a filter wi of size l×l, the filter response
is

si = wi ∗ I, (1)

where si is the response of the i-th filter, and ∗ is the convolution operator. For
a specific pixel x, BSIF derives a binarized filter response such that bi,x = 1 if
si > 0 at x, otherwise bi,x = 0. Thus, in presence of n filters a binary string of
length n describes each pixel.

BSIF learns the filters using independent component analysis. To this end,
it forms a training set of image patches by taking random samples from natu-
ral images. Afterwards, it employs a canonical preprocessing step and performs
Principal Component Analysis (PCA) to obtain dimension-reduced whitened
data samples. Eventually, it utilizes a standard ICA algorithm [6] to obtain a
set of linearly defined filters.
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2 Fixations and BSIF

In order to learn the filters, BSIF requires several sampled image patches. It ob-
tains them by randomly sampling image patches from natural images. Nonethe-
less, there are arguments and evidence that supports the fact that random sam-
pling does not necessarily provide the best informative image patches. For in-
stance [8] proposed taking image patch samples from the most salient regions
to make descriptors in a recognition task and demonstrated the success of the
attention based learning.

Intrigued to investigate application of informative regions in training of BSIF,
the filters are learned using patches extracted around human fixation points on
natural image statistics. The learning procedure is as follows: 1) The images are
converted to grayscale, 2) The patches are selected around the fixation points of
observers, 3) the DC-component (i.e., mean value) of each image patch is dis-
carded, 4) The patches are dimension reduced and whitened, 5) the independent
components are estimated. In mathematical terms, for an image patch, {x}, of
size l × l centered at x, one can apply ICA algorithm to estimate the indepen-
dent components, i.e., the n × l2 filter matrix W. The filter matrix includes n
vectorized filters, wi, of length l2. Knowing that the all-in-one response of the
filters on a patch can be formulated as s = W{x}, one can write

s = Uz, (2)

where z = V{x}, U is a n × n matrix which is estimated via ICA. The matrix
V conveys the PCA whitening procedure which facilitates estimation of the
orthogonal matrix U using the fact that z = U−1s. Eventually, by estimating
V and U, it obtains W = UV.

2.1 Fixations’ replicate

In order to boost the performance of the operator, one may suggest learning
the filters tuned for a specific data set, e.g. learning the filters from face images
for a face recognition task. In this context, the aforementioned methodology for
learning filters has one disadvantage which is the requirement of human fixations.
Access to reordered fixations on class specific data is not always possible due to
expensive gathering procedures. To compensate, this section introduces an arti-
ficial mechanism of fixation selection. The mechanism relies on a salience map,
which is obtained using natural image statistics, and application of inhibition of
return (IOR) procedure in selection of most salient region.

To compute the salience map, the proposed framework utilizes the filters
learned from the previous step and intensity of an image. For each filter, it
employs the Saliency Using Natural statistics (SUN) [21] to derive a conspic-
uousness map. SUN defines bottom-up salience as P (F )−1 in which F indi-
cates wi learned as described before. It approximates P (F ) as the generalized
Gaussian distribution (GGD) estimate of unidimensional distributions such that
P (F = f) =

∏
i P (fi), where fi is the i-th element in f , and
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P (fi) =
θi

2σiΓ(θ−1
i )

exp

(
−
∣∣∣∣ fiσi
∣∣∣∣θi
)
, (3)

Fig. 1. ICA filter response, left column depicts an image and 10 ICA filters and on the
right side the corresponding filter responses are visualized.

The discriminative power of ICA filters are even enhanced by nonlinear
weighting of each dimension of f using GGD fit to their responses [15]. Fig. 1
depicts the conspicuousness maps obtained from 10 of the ICA filters. Tradi-
tionally these conspicuousness maps are combined with equal weights to derive
a central saliency map (e.g. [21, 8]). Contrarily, the proposed framework treats
them as features and employs linear Support Vector Machines (SVM) to combine
the conspicuousness maps and intensity features to produce a salience map. To
this end, it learns a linear SVM on a groundtruth consisting of human fixation
density maps in which top 10% salient regions form positive set and top 10%
non-salient regions form negative set. Thus, given a training set of n points with
the feature input xi ∈ Rn and the corresponding target label yi ∈ {−1,+1}, the
SVM is defined as a linear scoring function with a prediction rule such that

ŷ(xi) = sign(ωTxi + β), (4)

where β is the bias and ω is a weight vector. The weight vector ω is obtained
via a minimization problem as follows

min .
ω

1

2
ωTω + λ

n∑
i=1

ζi

s.t. ŷ(ωTxi + b) = 1− ζi
ζi ≥ 0 i = 1 . . . n

(5)

where λ is a smoothing regularization parameter balancing the trade-off between
error and margin. Consequently, the saliency map is defined as the score obtained
by combining the features using ω. In other words, for a feature vector of f , the
saliency Sal is defined as Sal = ωT f . Fig. 2 depicts saliency maps produced
using the described technique.
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Fig. 2. Salience maps produced using the described technique. As depicted, more
salient regions are somehow meaningful to human, e.g. eyes and mouth regions of
the face.

To select fixations, the proposed method applies an inhibition of return (IOR)
like mechanism. As depicted in Fig. 3, it implements an iterative scheme con-
sisted of 1) it picks randomly among the salient locations, 2) it attenuates the
salience map response at the selected fixation proportional to a Gaussian kernel.
The procedure is repeated until enough number of fixations are obtained which
replicate the human fixations. Fig. 4 visualizes samples taken by such a process,
as depicted, samples taken using artificial fixations are concentrated on more
meaningful parts of the image compared to random samples.

Compute salience Get a
salient location

n+1
delay

n

Sample
image patch

patches

Modify
salience map

Fig. 3. Sampling image patches using an artificial fixation generation mechanism. For
an image, a saliency map is generated and fixations are taken by considering the salient
locations. Each time, a location among salient locations is selected randomly and its
corresponding image patch is extracted. Afterwards, the salience map is modified and
the current fixation location is attenuated to reflect its selection. The process continues
over time until enough samples are taken

3 Experimental Analysis

This section assesses the aforementioned scenarios. The analysis covers experi-
ments on texture and faces. Initially, it discusses the texture classification exper-
iments. Afterwards, it continues with the experiments on face recognition which
is followed by a discussion.
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Fig. 4. Sampling using artificial fixations, from left to right, original image, saliency
map, samples taken using artificial fixations, random sampling.

3.1 Texture classification

The texture experiments assess two sampling strategies for learning the BISF
filters. It compares filters learned from patches taken randomly with the filters
learned from patches centered on human fixations. The filters are learned using
natural images provided by MIT [7] database. It consists of 1,003 images along
with the eye movement statistics, particularly fixations, of 15 viewers at a dis-
tance of 48cm. The image set includes natural indoor and outdoor images; each
image is presented for 3 second. In order to learn the filters, the images are con-
verted to gray-scale and 500,000 image patches are sampled either randomly or
using human fixations. The image patches are of the sizes 3×3, 5×5, and 7×7,
as bigger patch sizes are demonstrated not to perform well on the textures [9,
20], which are learned at different number of bit levels (i.e. ICA filters) ranging
from 5 to 11.

To perform texture analysis, this study utilizes CUReT [3], Outex [11] datasets.
The Columbia-Utrecht (CUReT) dataset consists of 61 texture classes, each ob-
served with almost 205 viewing and illumination combinations (more than 12,000
images in total). The categories include a variety of surfaces such as specular,
diffuse, isotropic, and etc. The Outex database consists of several test suits. This
study utilizes test suits TC 00002 and TC 00012. Each of them consists of 24
classes of texture, while TC 00002 has no rotation and contains only one illumi-
nant, TC 00012 has three illuminants and considers 7 rotation orientations1.

The classification procedure is chosen to be consistent with the protocols
used in [9]. In other words, texture classification is carried out using nearest
neighbor classifier in which the distance measure is X 2 using l1-normalized fea-
ture histograms. To classify the CUReT textures, the images are grouped into
non-overlapping train and test sets and the procedure is repeated 100 times as
described in [19]. The Outex experiments utilizes the provided partitions of [11].

Fig 5 depicts the results of the two differently trained filters on the CUReT
database. There seems to be a small difference between the two sampling ap-
proaches. Nonetheless, the filters learned using the fixation sampled images per-
form marginally better than randomly learned ones meanwhile achieving maxi-
mum accuracy of 96.6.

Fig. 6 visualizes the results of the Outex database. As depicted in 6(a), sim-
ilarly the Outex TC 00002 results indicate slight improvement in training the

1 Please see: http://www.outex.oulu.fi/index.php?page=classification for detailed information
on test suits.
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Fig. 5. CUReT, performance analysis of filters trained randomly compared to filters
trained on human fixations.
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(a) TC 00002
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(b) TC 00012

Fig. 6. Outex, performance analysis of filters trained randomly compared to filters
trained on human fixations.

filters using patches sampled at fixation points. On the other hand, the perfor-
mance analysis of Outex TC 00012, showed in 6(b), reveals a 4% performance
improvement using fixations to train the BSIF filters (5 × 5-7 bits performing
66.4% vs. 5× 5-6 bits performing 64%).

Comparing the results on Outex TC 000122 with TC 00002 and CUReT con-
veys that the selective training of filters boosts the performance of operator in
handling data carrying more information. Thus, this study motivates the assess-
ment of sampling strategies on more complicated scenarios and data. Intrigued
to have a better understanding, this paper performs a series of analysis on face
recognition task.

2 TC 00012 is difficult because it contains several rotations and illuminants.
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3.2 Face recognition

This section considers face recognition task in order to study the role of sampling
in training of BSIF in a more challenging task. It extends the sampling mecha-
nism by incorporating faces in the learning process. To learn the filters from face
images, it adopts a cropped version of the Labeled Faces in the Wild (LFW) [5],
recognized as LFWcrop [17]3. It consists of more than 13,000 images of faces
which are cropped to prevent the recognition by getting advantage of the back-
ground information. However, it does not have any eye tracking data available.
Therefore, the artificial fixation generation scheme mentioned above is employed
in order to select the location of each image patch selectively. Eventually, this
section analyzes a set of 4 different filters: the filters learned on face data using
random sampling and artificial fixation selection mechanism and the two filters
applied in the texture analysis study. The same parameters and configurations
applied in the learning of the filters on face data.

The experiments are carried out on the FERET database [14] using the
frontal profile images. The images are partitioned into gallery (fa) and fb probe
images. The gallery consists of 1196 images, and the probe consists of 1195
images with varying facial expressions. Fig. 7 depicts some of the face images.
It is expected that the performance will be somehow related to the amount of
information the filters would be able to encode and the data of the experiments.

Fig. 7. Sample images from FERET data base.

The recognition procedure initially crops the images using the location of
subjects’ eyes to have the complete frontal face in the center of frame. After-
wards, the images are normalized to a canonical size of 128 × 128. It divides
the face image into 8× 8 non-overlapping rectangular regions and computes the
BSIF descriptor independently for each segment. Concatenation of l1 normalized
descriptors makes an image descriptor. The classification uses nearest neighbor
and X 2 distance measure.

Fig. 8 depicts the results of the face recognition task. The 7× 7 filters with
12 coding bits achieve the performance of 94.23%. The comparison of curves
somehow expresses that the number of coding bits (i.e. information) has a direct
relationship with using selective sampling approach in the learning process of
ICA filters. It is worth-noting that while learning small filters does not benefit
from training on class specific data, bigger windows and higher number of bits

3 Download link: http://conradsanderson.id.au/lfwcrop/
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Fig. 8. Face recognition and sampling strategies using different window sizes.

get advantage of such data. Nonetheless, the behavior of curves raises some
questions which this study tries to address in the next section.

3.3 Discussion

The variation in the curves depicting performance of texture and face recognition
raises some questions. Why there is a marginal contribution in adapting
selective sampling for texture? The texture often consists of simple repeating
patterns which makes them difficult to discriminate. Nonetheless, the learning
of such simple structures are somehow easily doable by having enough num-
ber of samples via ICA. As depicted in Fig. 4, the filters learned from natural
image statistics consists of similar structures which are probably enough to rep-
resent the textures. Nonetheless, the significance of selective sampling becomes
apparent in applying a rotation variant operator (i.e. BSIF) to rotated texture
samples; referring to Fig. 6(b), one realizes that selectively trained filters per-
form 4% better than randomly trained filters in the task of the recognition of
TC 00012 textures.

(a) 3× 3 Filters of 7 bits

(b) 5× 5 Filters of 12 bits (c) 7× 7 Filters of 12 bits

Fig. 9. Visualization of the ICA filters learned using different sampling strategies, from
left to right: randomly learned from natural images, learned from fixations using natural
images, learned randomly from face images, and learned using artificial fixations from
face images.

The sampling strategies and learning are not limited to selective sampling.
Face recognition included filters learned on class specific trained filters, i.e. filters
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learned on faces. Is there any benefit in training the filters on class
specific data sets? As depicted in Fig. 8, the maximum face recognition rate
is achieved using the filters which are trained on class specific data and convey
more information. In other words, learning ICA filters from class specific data
becomes useful as the amount of information required to perform a task increases.
To find grounds for such a behavior, Fig. 4 visualizes the ICA filters learned
using various sampling techniques and data. As shown, in case of small filters
of size 3× 3, the filters learned on natural statistics present a structure similar
to gradient filters, which effectively encodes almost any data in such a small
neighborhood. Consequently, natural image statistics somehow perform better
for that specific scale. Contrarily, as the filter size and number of bits increase,
one can observe – e.g., from Fig. 9(c) – that the filters trained from class specific
data are absolutely different, probably reflecting the underlying data better. The
performance even slightly improves using the artificial fixation based sampling
meanwhile it seems that more complicated filters are learned using fixation.

What is the verdict? The conducted experiments reveals that there is
a relation between the amount of information conveyed by the BSIF filters,
sampling strategies and learning filters from class specific data. The conclusion
is that depending on the amount of information embedded in the data, reaching
the optimum operation point may benefit from learning on class specific data and
selective sampling.

4 Conclusion

This study examined different sampling strategies for learning ICA filters used
by BSIF operator. These strategies include random sampling and selective sam-
pling. The study employed two techniques for taking the samples selectively, first
it utilized fixation points on natural image statistics, second it developed an ar-
tificial fixation generation scheme to replicate human fixations in the process of
learning the filters.

To generate artificial fixations, it proposed an attention model. The atten-
tion model derives a salience map using natural image statistics responses and
linear support vector machine. Afterwards, it implements an inhibition of return
mechanism to replicate the human fixations. Consequently, the proposed loca-
tions of image patches are more concentrated on meaningful areas of the image.
The mechanism is particularly applied in the process of learning ICA filters for
the task of face recognition. Eventually, the proposed mechanism is applied to
replicate human fixations in the process of learning from face data.

The experiments suggest that using selective sampling and class specific data
in learning the filters affects the performance of the BSIF operator. Nonethe-
less, the improvement is somehow dependent on the assigned task because it is
affected by the the amount of information required to represent the image.
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