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Abstract. In this work, we have proposed a learning paradigm for
obtaining weight-optimal local binary patterns (WoLBP). We first re-
formulate the LBP problem into matrix multiplication with all the bitmaps
flattened and then resort to the Fisher ratio criterion for obtaining the
optimal weight matrix for LBP encoding. The solution is closed form
and can be easily solved using one eigen-decomposition. The experimen-
tal results on the FRGC ver2.0 database have shown that the WoLBP
gains significant performance improvement over traditional LBP, and
such WoLBP learning procedure can be directly ported to many other
LBP variants to further improve their performances.

Keywords: Local Binary Patterns (LBP), Weight-optimal Local Binary
Patterns (WoLBP).

1 Introduction

In the field of computer vision and pattern recognition, local binary patterns
(LBP) and its variants have been widely used throughout many applications.
The LBP has gained its prominence due to its discriminative power and compu-
tational simplicity. The simple yet very efficient operator labels the pixels of an
image (patch) by thresholding the neighborhood of each pixel and converts the
result as a binary number.

The LBP was invented in 1992, with the idea that two-dimensional textures
can be described by two complementary local measures: pattern and contrast
[21]. By separating pattern information from contrast, invariance to monotonic
gray scale changes can be obtained. The first published work using LBP for
face recognition is done by Ahonen et al. in 2004 [1], where they divided the
face image into several regions from which the LBP features are extracted and
concatenated into an enhanced feature vector to be used as a face descriptor.
Following this, LBP and its variants have been widely used in the field of bio-
metrics for face recognition [26], face detection [3], facial expression recognition
[23], gender classification [24], and iris recognition [25]. Recently, Pietikäinen et
al. [21] have summarized the state-of-the-art LBP in the field of computer vision
and pattern recognition. More face recognition and analysis related work using
LBP variants can be found in [6, 4, 8, 9, 5, 10, 11, 13, 12, 7].

Recently, many efforts are devoted to learning optimal local binary patterns
for various applications. For example, Lei et al. [14] (an extended work of [15])
have learned discriminant face descriptor by first learning the discriminant im-
age filters; second, soft determining the optimal neighborhood sampling strategy;
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and third, statistically constructing the dominant patterns. Their method is iter-
ative and relies on 2D-LDA type of formulation, which is quite computationally
expensive. Shan [22] uses AdaBoost to select discriminative LBP features for
gender classification. Liao et al. [17] again applies AdaBoost to select the most
effective uniform multi-scale block LBP for enhanced face recognition. Only this
time, the computation is done based on average values of block subregions, in-
stead of individual pixels. Maturana et al. [18] consider the following method.
Within any square neighborhood given by r, there are (2r + 1)2 − 1 possible
pixel comparisons. They wish to select a subset n of those comparisons of size S
that maximizes the discriminability of the output histograms. To achieve this,
an iterative heuristic approach called stochastic hill climbing is adopted for ob-
taining an approximate solution, since the exact solution is intractable due to
the combinatorial nature of the problem.

The related work is either relying on boosting algorithm for the selection of
the optimal LBP features or iterative method for solving optimization with heavy
computational cost. In this work, however, we propose an inexpensive, closed-
form solution for learning weight-optimal local binary patterns (WoLBP), which
can be easily extended to many LBP variants and should lead to performance
boost. For this very reason, we only benchmark our proposed WoLBP against
traditional LBP implementation.

2 Weight-optimal Local Binary Patterns

In this section, we will first review the formulation of traditional local binary
patterns and then detail the formulation of the proposed weight-optimal local
binary patterns.

2.1 Traditional Local Binary Patterns

We start by formulating the traditional LBP operator first introduced by Ojala
et al. [19]. The basic idea of this approach is demonstrated in Figure 1. Here we
have shown both the 3×3 patch and 5×5 patch. All neighbors that have values
higher than the value of the center pixel are given value 1 and 0 otherwise. The
binary numbers associate with the neighbors are then read sequentially to form
an binary bit string. The equivalent of this binary number (usually converted to
decimal) may be assigned to the center pixel to characterize the local texture.

The LBP texture for center point (xc, yc) can be represented as:

LBP (xc, yc) =

L−1∑
n=0

s(in − ic)2n (1)

where in denotes the intensity of the nth surrounding pixel, ic denotes the in-
tensity of the center pixel, L is the length of the sequence, and s = 1 if in ≥ ic,
otherwise, s = 0. In the case of a N × N neighborhood, there are N2 − 1 sur-
rounding pixels, so the bit string is of length N2 − 1.
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Fig. 1. (a) 3 × 3 neighborhood, (b) LBP encoding, the 8-bit representation for the
center pixel is 10110010 and 178 in decimal, (c) 5 × 5 neighborhood, and (d) LBP
encoding using both radii around the center pixel.

During the formulation of the LBP feature, there are many knobs one can
play with and result in totally different LBPs. For example, the ordering of the
bit string matters if it is converted to a decimal number, the choice of the pivot
point (center point), and the choice of bases. More discussions can be found in
[13].

Varying Base One can vary the base used for forming the decimal number from
the bit string. Instead of using base 2 for conversion as is universally adopted
[21], fractional bases (e.g., 1.6, 0.76) or other integer bases (e.g., 3, 4) can also
be used. Unleashing the restriction of using only base 2 for decimal conversion,
much more diversity can be achieved when encoding LBPs.

Varying Pivot/Center In the case of 3 × 3 neighborhood, the center pixel
for thresholding neighbors is usually the physical center of the neighborhood.
However, one can vary the center in a larger neighborhood as shown in Figure 2.
Each pivot (thresholding center) gives different bit string, so varying the center
will also provide much more diversity.

Varying Ordering If the neighborhood size and the thresholding center are
both fixed, different ordering of the neighbors (or the weighting of each bit) gives
different decimal outputs. One can easily vary the ordering of the neighbors as
shown in Figure 2, and thus lead to different formulation of the LBPs.

2.2 Weight-optimal Local Binary Patterns

All the possible variations mentioned above can be determined empirically, for
instance, the choice of center point, the base, and the ordering of the neighbors.
In this work, we propose to reformulate the problem of LBP encoding by using
a learning framework for obtaining the optimal weights.

First, we need to reformulate the LBP encoding problem into matrix multi-
plication. The traditional way of encoding LBP feature is to use a 3× 3 window
to scan through the entire image. At each 3 × 3 patch, perform the encoding
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Fig. 2. Example of the LBP encoding scheme [13]: (a) 7 × 7 neighborhood with
the thresholding center denoted as C , (b,c) 2 ordering schemes of (a), (d) 7× 7 neigh-
borhood with different thresholding center, and (e,f) 2 possible ordering schemes of (d).
Different choices of the thresholding center and ordering schemes result in different LBP
code.

using Equation 1. However, such formulation is neither efficient, nor provides
insight towards an optimal weight learning scheme.

Instead of scanning through the entire image using small window and com-
pare the neighborhood values to its center point, a simple convolution of the
image with 8 difference masks, followed by simple binarization can achieve the
same goal. As shown in Figure 3, we can use 8 difference masks of size 3 × 3
to convolve with the face image. The 8 resulting bitmaps are shown around the
original face image. The traditional LBP is simply a weighted sum of all the
bitmaps using the weight vector w = [27, 26, 25, 24, 23, 22, 21, 20]. Therefore, the
reformulation of the LBP can be shown as:

y =

8∑
i=1

σ(hi ∗ f) ·wi (2)

where f ∈ Rd is the original image, hi are the difference masks, σ is the bina-
rization operator, and y ∈ Rd is the resulting LBP image. Note that only the
binarization is non-linear operation.

Now, we are one step closer towards the formulation of the WoLBP. In the
context of N training images from K classes, we re-arrange them in the fol-
lowing way: the N training images are vectorized and becomes one column in
the data matrix F ∈ Rd×N , and for each image in F we apply convolutional
mask h1 to obtain X1 ∈ Rd×N . Then we repeat for h2 to h8 to obtain X2
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Fig. 3. Reformulation of the traditional LBP encoding using convolution.

to X8. Stacking all Xi’s would give us the new bitmap matrix X ∈ R8d×N .
The weight vector w is now re-written as weight matrix Ω ∈ Rd×8d, where
Ω = [Ω1,Ω2,Ω3,Ω4,Ω5,Ω6,Ω7,Ω8], and Ωi = wi · I. In this way, the LBP
image for all the N training images can be found in Y ∈ Rd×N using:

Y = ΩX (3)

As shown in Figure 4, the weight matrix of the traditional LBP is a horizontal
stacking of 8 diagonal matrices, each is a multiple of the identity matrix, and
the multiple is defined by the weight vector w. One generalization is as follows.
For each of the 8 diagonal weight matrices Ωi, we allow the diagonal to take
d different values corresponding to the d dimensions of each bitmap. A even
further generalization is allowing Ω to be a full matrix, as shown in Figure 5,
and when multiplied with the bitmap matrix X, the generated LBP image can
be somewhat optimal.

Here, the objective of the optimization is to make the LBP images Y have
the best class separation, and thus lead to better classification performance.
Fisher ratio is one way to characterize the class separability by simultaneously
maximizing the between-class scatter and minimizing the within-class scatter.
Note that the only non-linear part within the LBP formulation, binarization,
has been taken care of by stacking all the bitmaps in the matrix X, and a linear
method is sufficient to learn an optimal weight matrix Ω.

So we are trying to solve for the following optimization:

maximize
|SY

b |
|SY

w |
= maximize

Ω

|ΩSX
b Ω>|

|ΩSX
wΩ>|

(4)
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Fig. 4. Traditional LBP in matrix multiplication form.

whose optimality can be found by solving the eigenvalue problem:

ΩΛ =
(
(SX

w )−1SX
b

)
Ω (5)

where

SX
w =

K∑
i=1

∑
j∈Ci

(xj − µi)(xj − µi)
> (6)

SX
b =

K∑
i=1

(µi − µ)(µi − µ)> (7)

where µi are the mean vector of all the xi’s belonging to class i (denoted as Ci),
and µ is the global mean vector. x1 . . .xN are the columns of bitmap matrix X.

Solving Equation 5 would give the optimal weight matrix Ω which leads to
the highest Fisher ratio for the LBP image matrix Y. The optimal weight matrix
can be seen as a linear transformation matrix that reduces the dimensionality
from 8d to d. Please note that this WoLBP learning procedure is different from
regular Linear Discriminant Analysis (LDA) because in LDA, a transformation
matrix W is learned to reduce the dimensionality of Y from d to d′ where d′ < d.
Whereas in WoLBP procedure, the learning is restricted to feature encoding
which maps the dimension from 8d to d on the bitmap matrix X. In short, we
have carried out feature encoding learning in WoLBP, not subspace learning for
images.

3 Experiments

In this section, the effectiveness of the proposed WoLBP is validated in the
context of face recognition. We detail the database used in the experiments first,
and then the experimental setup and results.
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Fig. 5. Allowing Ω to be a full matrix and form the WoLBP.

3.1 Database

In this work, we utilize the largest frontal face database that is publicly avail-
able: NIST’s Face Recognition Grand Challenge (FRGC) ver2.0 database [20] to
validate the effectiveness of our proposed method, which is also adopted in [17].

The FRGC database is collected at the University of Notre Dame. Each sub-
ject session consists of controlled and uncontrolled still images. The controlled
full frontal facial images were taken under two lighting conditions under studio
setting with two facial expressions. The uncontrolled images were taken in var-
ious locations such as hallways, atria, or outdoors under varying illumination
settings also with two expressions, smiling and neutral, as shown in Figure 6.

(a1) (b1) (a2) (b2)

Fig. 6. Examples from the FRGC ver2.0 database: (a1,a2) controlled and un-
controlled still, (b1,b2) cropped full face.

The FRGC ver2.0 database has three components: First, the generic training
set is typically used in the training phase to extract features. It contains both
controlled and uncontrolled images of 222 subjects, and a total of 12,776 images.
Second, the target set represents the people that we want to find. It has 466
different subjects, and a total of 16,028 images. Last, the probe set represents
the unknown images that we need to match against the target set. It contains
the same 466 subjects as in target set, with half as many images for each person
as in the target set, bringing the total number of probe images to 8,014. All
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the probe subjects that we are trying to identify are present in the target set.
FRGC Experiment 1 is the largest experiment in the FRGC protocol which
involves over 256 million face matching comparisons.

One of the latest trends in face recognition community seems to be working
on unconstrained dataset such as the LFW [2], with pose variations, occlusions,
expression variations, and illumination variations. Though many algorithms have
been proposed that can perform fairly well on such datasets, given the complexity
of many of these algorithms, it remains unclear as to what underlying objective
each of them aim to achieve in the context of unconstrained face matching.
Although success on the LFW framework has been very encouraging, there has
been a paradigm shift towards the role of such large unconstrained datasets.
It has been suggested that the unconstrained face recognition problems can
be decoupled into subtasks where one such factor is tackled at a time [16].
Therefore in this work, we focus on a more constrained face recognition paradigm
where many such unconstrained factors have been marginalized out already.
The findings of this paper can be easily ported towards unconstrained cases
where the proposed feature descriptors can further improve the performance of
unconstrained face recognition.

3.2 Experimental Setup

In our experiments, we follow NIST’s FRGC Experiment 1 protocol which
involves 1-to-1 matching of 16,028 target images to themselves (∼256 million
pair-wise face match comparisons). The WoLBP training is carried out on the
generic training set. After obtaining the optimal weight matrix Ω, it is applied on
all the images in the target set. In this experiment, we do not resort to any sub-
space learning algorithms. The normalized cosine distance (NCD) measurement
is adopted to compute similarity matrix between target set images:

d(x,y) =
−x · y
‖x‖‖y‖

. (8)

Compared to other commonly used distance measurement such as `1-norm,
`2-norm, and the Mahalanobis distance, NCD exhibits the best result.

The result of each algorithm is a similarity matrix with the size of 16, 028×
16, 028 whose entry SimMij is the NCD between the feature vector of target
image i and target image j. The performance of WoLBP and traditional LBP is
analyzed using verification rate (VR) at 0.1% (0.001) false accept rate (FAR),
equal error rate (EER), and receiver operating characteristic (ROC) curves.

3.3 Experimental Results

The VR at 0.1% FAR and EER are shown in Table 1. ROC curves are shown
in Figure 7 for 32× 32 and 64× 64 image size respectively. As can be seen, the
WoLBP performs significantly higher than the traditional LBP which has hard-
coded encoding scheme. We have also found the same trend on other frontal face
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databases such as CMU Multi-PIE and YaleB+ database. However, the scale
of these databases are no comparison with the FRGC ver2.0 database which
involves more than 256 million face matches. Therefore, we do not report the
results and ROC curves for those databases for the sake of brevity.

Table 1. VR at 0.1% FAR and EER for the FRGC evaluation.

32 × 32 64 × 64

VR at 0.1% FAR EER VR at 0.1% FAR EER

WoLBP 0.807 0.040 0.801 0.042

LBP 0.516 0.131 0.496 0.137

Pixel 0.349 0.170 0.350 0.167
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Fig. 7. ROC curves on FRGC face images of size 32 × 32 (left) and 64 × 64 (right).

3.4 Discussions

The optimality discussed in this work is solely determined by Fisher ratio. Of
course, there can be other optimally obtained local binary patterns via other cri-
teria. It is also worth noted that in order to make Fisher ratio work properly, the
homoscedasticity property has to hold, meaning the training data from different
classes should all be uni-modal Gaussian distributed with equal covariance. For
natural images, this is most likely true. However, readers are encouraged to check
the homoscedasticity property when applying the WoLBP technique discussed
in this work.
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4 Conclusions

In this work, we have proposed a learning paradigm for obtaining weight-optimal
local binary patterns (WoLBP). We first re-formulate the LBP problem into ma-
trix multiplication with all the bitmaps flattened and then resort to the Fisher
ratio criterion for obtaining the optimal weight matrix for LBP encoding. The
solution is closed form and can be easily solved using one eigen-decomposition.
The experimental results have shown that the WoLBP gains significant perfor-
mance improvement over traditional LBP, and such WoLBP learning procedure
can be directly ported to many other LBP variants to further improve their
performances.
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