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Abstract. This paper presents a novel method for hierarchically orga-
nizing large face databases, with application to efficient identity-based
face retrieval. The method relies on metric learning with local binary
pattern (LBP) features. One one hand, LBP features have proved to
be highly resilient to various appearance changes due to illumination
and contrast variations while being extremely efficient to calculate. On
the other hand, metric learning (ML) approaches have been proved very
successful for face verification ‘in the wild’, i.e. in uncontrolled face im-
ages with large amounts of variations in pose, expression, appearances,
lighting, etc. While such ML based approaches compress high dimen-
sional features into low dimensional spaces using discriminatively learned
projections, the complexity of retrieval is still significant for large scale
databases (with millions of faces). The present paper shows that learning
such discriminative projections locally while organizing the database hi-
erarchically leads to a more accurate and efficient system. The proposed
method is validated on the standard Labeled Faces in the Wild (LFW)
benchmark dataset with millions of additional distracting face images
collected from photos on the internet.

1 Introduction

In the present paper, we address the task of identity-based face retrieval: given
a query face image, retrieve the face(s) of the same person from a large database
of known faces with large changes in face appearances due to pose, expression,
illumination, etc. This task finds numerous applications, particularly in indexing
and searching large video archives and surveillance videos and in controlling
access to resources.

Many appearance features, based on highly localized pixel neighborhoods,
have been proposed in the recent literature [1–4]. All of them attempt to capture
the statistics of local pixel neighborhoods using either histograms [1, 2, 4] or
with higher order statistics [3]. While the more expressive features add some
extra performance, Local Binary Patterns (LBP) are attractive because of their
extreme computational efficiency. Such efficiency is especially desirable in the
case of limited computational capability e.g . embedded systems (see comparisons
for LBP computation times on different architectures [5]), or in that of very
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large datasets e.g . millions of faces. In the present paper, we propose to use
LBP features as our feature descriptor for the task of large scale identity based
face retrieval.

Metric learning based approaches [6–8] have shown that learned low dimen-
sional discriminative projections can be applied for the task of comparing faces
with good performances. Such metric learning can be seen as a global approach
where a single linear projection is learned to discriminate all types of faces.
Recently, the SVM-KNN method of Zhang et al . [9] has demonstrated (for vi-
sual classification task) that learning a collection of local (linear) discriminative
models leads to better performance. Also, recent Kumar et al .’s attribute-based
works on facial analysis [10, 11] hint towards the presence of local modes in
the (attribute transformed) space of faces. In the same way, Verma et al . [12]
proposed a novel framework to learn similarity metrics using class taxonomies,
showing that nearest neighbor classifiers using the learned metrics get improved
performance over the best discriminative methods. Inspired by these previous
works, we propose to organize large face databases hierarchically using locally
and discriminatively learned projections. More concretely, we propose a semi-
supervised hierarchical clustering algorithm, alternating between the two steps
of (i) learning local projections and (ii) clustering for splitting the faces into sets
of more localized regions in face space. Intuitively, we expect such a hierarchical
setup to capture coarse differences, e.g . gender, at the top levels and then spe-
cialize the different projections at the bottom levels to finer differences between
the faces. Fig. 1 gives an overview of our approach in contrast to traditional met-
ric learning. One big difference with [10, 11] or [12] is that our approach does not
need any face taxonomy nor predefined set of attributes. Both are automatically
discovered.

In the following, we set the context for our work in §2 and then describe our
approach in detail in §3. We discuss our approach in relation to the most closely
related works in §3.1. We then give qualitative and quantitative experimental
results validating our approach in §4 and conclude the paper in §5.

2 Context and related works

Comparing face images of different persons with large variations in appearance,
pose, illumination, etc., is a challenging problem. Locally computed features
like Local Binary Patterns (LBP), Local Ternary Patterns (LTP) and Local
quantized patterns (LQP) have been quite successful to address these kinds of
problems [13, 2, 14]. One of the recent state-of-art methods [15] on Labeled Faces
in the Wild (LFW) [16], the most challenging face verfication dataset, computes
very high dimensional LBP (of dimension as high as 100k). In the recent years,
several other variants of LBP have been introduced for different computer vision
tasks (e.g . [17–20]). In this paper, we use the standard LBP descriptor for a
good efficiency and performance trade-off.

Many other recent papers address the problem with novel approaches, e.g .
discriminative part-based approach by Berg and Belhumeur [21], probabilistic
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Fig. 1. Principle of the proposed method, in contrast with the traditional metric learn-
ing based approach. While the traditional approach learns a single projection (LML)
the proposed approach works hierarchically and learns different projection matrices
(LHn) for different nodes. See §3 for details.

elastic model by Li et al . [22], Fisher vectors with metric learning by Simonyan
et al . [7], novel regularization for similarity metric learning by Cao et al . [23],
fusion of many descriptors using multiple metric learning by Cui et al . [24],
deep learning by Sun et al . [25], method using fast high dimensional vector
multiplication by Barkan et al . [26] or robust feature set matching for partial
face recognition by Weng et al . [27]. Many of the most competitive approaches
on LFW combine different features, e.g . [28–30] and/or use external data, e.g .
[10, 31].

Metric learning has been recently shown to give good results on very diverse
computer vision tasks [32–36]. We refer the reader to Bellet et al . [37] for an
excellent survey on Metric Learning. More specifically, methods based on metric
learning have been reported to improve accuracy for face verification, either on
static images [23, 28, 8, 7] or on videos [38]. The key idea is to learn a Mahalanobis
like metric of the form D2

M (xi,xj) = (xi − xj)
>M(xi − xj), parametrized by

the symmetric positive semi-definite (PSD) matrix M , to compare any two faces
(described with some features) xi and xj . The learning is based on optimizing
some loss function which penalizes high distance between positives and small
distance between negative pairs (see [37] for a survey of different metric learning
methods/objectives). Since maintaining M as PSD is usually computationally
expensive, M is often factorized as M = L>L. Then the problem can be seen as
a linear embedding problem where the features are embedded in the row space
of L and compared with the Euclidean distance there:

D2
L(xi,xj) = (xi − xj)

>L>L(xi − xj) = ‖Lxi − Lxj‖22. (1)
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Local metric learning, e.g . learning a metric as a function of input vector, has
also been studied [39]. However, this is expensive, specially in large scale as
comparison with every instance will require projecting the query with a different
matrix vs. only one projection in the case of a global metric.

Closely related to our work, hierarchically organized (metric) learning sys-
tems have also been explored in the past, e.g . the works by Hwang et al . [40],
Deng et al . [41], Zheng et al . [42], Verma et al . [12]. However, they assume the
presence of a taxonomy (most often a natural semantic taxonomy), while here we
do not assume any such information. Our method is also related to clustering in
general and with side information in particular [43–46], the side information here
being in the form of (sparse) pairwise must-link and must-not-link constraints.
The goal of many of these works is to learn a metric to improve the performance
of clustering with an implicit assumption that the constraints relate directly to
the clusters. While in the current work, the metric learning with constraints
relates to a first level of embedding which can be thought of a person identity
space and then the clustering is done in such identity space. So, unlike previous
works, it will be normal in our approach that two must-not-link vectors (faces of
different persons) get assigned to same cluster as long as these different people
share similar facial traits.

We are interested in the problem of comparing faces using learned metrics.
In particular, we are interested in identity-based face retrieval with a focus on
accuracy and efficiency of the setup for large-scale scenarios, i.e. with hundreds
of thousands of distractors. As such, in addition to the above mentioned works
on facial analysis, our method is also related to the SVM-KNN method of Zhang
et al . [9] and to works on large scale image retrieval using product quantization
of Jégou et al . [47]. We postpone discussing our method in the context of these
methods to §3.1, after describing our method in the next section.

3 Approach

We work in the semi-supervised scenario where we have some annotated training
pairs A = {(xi,xj), yij} with xi,xj ∈ RD being features for face examples i, j
resp. (e.g ., Local Binary Patterns [1]) and yij = 1 if the image pairs are of
the same person and yij = −1 otherwise. We propose to learn a hierarchical
organization of the faces for efficient face retrieval. Note that we assume the
annotations are sparse, in the sense that only a very small fraction of pairs in
the database is annotated.

We aim at exploiting the similarities between faces of different persons. In
our hierarchical layout, we would like to first split the faces into groups based
on coarse appearance similarities, e.g . gender, and then, at finer level, we would
like to learn to discriminate between finer details in coarsely similar faces. We
now discuss the case of a binary tree but the method could be applied for ar-
bitrary k-ary trees. We start by taking all the faces into one node and learn a
discriminative subspace using margin maximizing metric learning: we minimize
a logistic loss function using the recently proposed Pairwise Constrained Prin-
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cipal Components (PCCA) [8] approach. In particular, we solve the following
optimization,

min
L

E(L) =
∑

{(i,j)}

`β
(
yi,j(D2

L(xi,xj)− 1)
)
, (2)

where `β(x) = 1
β log(1 + eβx) is the generalized logistic loss,

D2
L(xi,xj) = ‖L(xi − xj)‖22 (3)

is the distance in the row space of the projection matrix L and sum is taken
over all labeled face pairs. The intuition of such metric learning formulation is
that we would like to find a subspace (parametrized by the projection matrix
L) where the distance between the positive pairs is small and that between the
negative pairs is large.

We then obtain the projected features Xp = LX, where X = [x1, . . . ,xN ]
is the matrix of all face features in the database, and use k-means to cluster
Xp into two clusters in the projected space. By doing this we hope to cluster
the faces based on relatively coarse similarities. Once we have the clustering,
we create two child nodes of the root containing only the faces from the two
clusters respectively. We then repeat the process at each of the child nodes,
working with faces in the current node only. At each node we save the indices of
the faces which belong to the node along with the current projection matrix and
cluster centroids (for the non-leaf nodes). We continue the process until a certain
depth, which is a free parameter, is achieved. Algorithm 1 gives the pseudocode
for the learning algorithm.

Once the hierarchical structure is built, the retrieval for a new query face is
done by traversing the tree with the following decision rule at each node: if it is a
non-leaf node, project the face into its subspace and compare with the centroids
and move to the closest child node (recall there is a child node for every cluster).
If it is a leaf node, then project the face to its subspace and compare with all
the faces in that node (projected onto the same subspace) and return the list of
the nearest neighbors. Fig. 1 gives an illustration of the retrieval process.

3.1 Relation with closely related works

Recently, Zhang et al . [9] proposed the SVM-KNN method, which for a test
example creates on-the-fly a local discriminative support vector machine (SVM)
classifier, based on its nearest neighbors. The motivation is that a complex non-
linear decision boundary could be approximated with a piece-wise linear decision
boundary. Also recently, many works based on ‘local’ comparisons, e.g . attribute
based works of Kumar et al . [10, 11] where the faces are represented as vectors
of confidences for the presence of attribute like long hairs, open mouth, etc.,
have been shown to be important. We could imagine that the faces with such
attributes would occupy a local region (or perhaps manifold) in the full face
space and, thus, the success of such facial analysis system motivates us to work
locally in the face space. Also, the success of SVM-KNN reassures us of the merit
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Algorithm 1 Learning local metrics and organizing face database hierarchically.

1: Input: (i) Set of face features X = [x1, . . . ,xN ] ∈ RD×N , (ii) Sparse pairwise an-
notation A, (iii) Height of the tree h, (iv) Dimensions of local projection subspaces
at different depths/levels {D0, . . . , Dh}

2: Initialize: n← 0, idxs← (1, . . . , N), tree← ∅
3: queue.add(n, idxs) {Tree construction in a breadth-first manner}
4: while n < 2h − 1 do
5: n, idxs← queue.pop()
6: `← dlog2 ne {Current level/depth}
7: Ln ← learn metric(X[:, idxs],A[idxs], D`)
8: if ` < h then
9: C1, C2 ← cluster(LX[:, idxs], 2)

10: idxs1, idxs2 ← cluster assign(X[:, idxs], C1, C2)
11: queue.add(n + 1, idxs1)
12: queue.add(n + 2, idxs2)
13: else
14: C1, C2 ← ∅
15: end if
16: tree.add node({n,Ln, idxs, C1, C2})
17: end while

of a local strategy. In our case, such locality is automatically discovered in a data
driven way. In the upper levels of the tree, the Vonoroi cells, corresponding to the
clustering in the respective discriminative spaces of the nodes, can be interpreted
as such local regions where the faces are similar in a coarse way, e.g . one node
could be of female faces vs. another of that of males. While as we go down the
levels we expect such differences to become more and more subtle. We show
later that qualitative results support our intuition. Hence, we could hope that
concentrating on a local region (towards the bottom of the tree) where faces
differ very slightly could help us discriminate better, perhaps even at a cheaper
cost.

Another closely related but complementary stream of work is that of product
quantization by Jégou et al . [47]. They propose to learn, in an unsupervised
fashion, very compact binary codes to represent images and do very fast nearest
neighbor retrieval at large scale. The key point is that they assume/expect the
feature space to be Euclidean. However, face retrieval by directly comparing
the image representations with Euclidean distance is not optimal and learning
a Mahalanobis metric or equivalently a projection is required. Upon projecting
the faces to such a space, Euclidean distance can be used and hence product
quantization can be applied. As we have already discussed before, the proposed
method can be seen as learning different projections for different local regions,
we could use different product quantizations in corresponding different local
regions found by the proposed method. Hence, the proposed method and product
quantization are complementary to each other.

Finally, it worth comparing our approach to the recent work of Verma et
al . [12], who proposed a framework for learning hierarchical similarity metrics
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using class taxonomies. Interestingly, they show that nearest neighbor classifiers
using the learned metrics get improved performance over Euclidean distance-
based k-NN and over discriminative methods. Our approach bears similarity
with [12] as we also learn a hierarchy of similarity metrics. However, a notable
difference is that our approach does not require any taxonomy. This is a big
advantage as defining a taxonomy of faces would be more than challenging.
Providing sufficient training annotations (i.e. sufficient number of faces for each
level of the hierarchy) would be another complication.

4 Experimental results

Metric Used. We are interested in the task of identity based face retrieval, i.e.
given a query face images, retrieving face(s) of the same person from a large
database of known face images. Our objective is to find the same person and so,
for us, it suffices if at least one of the retrieved faces is of the same person. In
the ideal case, the top ranked retrieved face would be of the same person, but it
would make a practical system if the correct face is ranked in the top n images,
for a small value of n, as they can be manually verified by an operator. Hence,
we propose to evaluate the method for k-call@n [48] (with k = 1): the metric is
1 if at least k of the top n retrieved results are relevant. We average this over
our queries and report the mean 1-call@n.

Database and query set. We use the aligned version [29] of the Labeled Faces
in the Wild (LFW) database by Huang et al . [16]. The dataset has more than
13000 images of over 4000 persons. In addition to LFW, for large-scale experi-
ments, we add up to one million distractor faces that were obtained by crawling
Flickr.com and retaining face detection with high confidences. We select the per-
sons/identities in LFW which have at least five example images and randomly
sample one image each from them to use as our query set. We use all the LFW
images except the query set to learn our system. The results are reported as the
mean performance (1-call@n) over all the queries. All the evaluation is done with
LFW annotations and, as the distractor images are from personal image collec-
tions from the internet while LFW images are that of well-known/celibrities, it
is assumed that the distractors do not have the same identities as the query
images.

Image description. To describe the images we use the Local Binary Pattern
(LBP) descriptors of Ojala et al . [1]. We use grayscale images and centre crop
them to size 170 × 100 pixels and do not do any other preprocessing. We use
the publicly available vlfeat [49] library for LBP, with cell size parameter set
to 10, of dimension 9860 for a face image.

Baseline parameter. To set the dimension of the baseline projection matrix we
did preliminary experiments, with the standard protocol of LFW dataset, with
values in {16, 32, 64, 128} and found the performance (verification on LFW test
set) saturated for d greater than 32. Hence we fixed the projection dimension to
32.



8 Bhattarai, Sharma, Jurie and Pérez

Tree parameters. We fixed the learned tree to be a binary tree and also fixed
the dimension of the projection at successive levels to differ by a multiplicative
factor of 2. Thus, the two parameters for the proposed hierarchical organization
are the tree depth and the starting projection dimension. We report experiments
with depths of 3 and 4, and with starting projection dimension of 128 and 256,
leading to leaf nodes with dimensions 32 (same as baseline) in two cases and 16
(half of baseline) in one case. We discuss further in the §4.2.

4.1 Qualitative Results

Fig. 2 shows some example images from the 16 nodes obtained with a tree of
depth 4. The clusters shown correspond to the ordering of the leaf nodes at
the bottom, i.e. every odd cluster and its next neighbor were grouped together
in the previous level in the tree and so on. We can note how similar faces are
grouped together successively in the different levels of the tree. Cluster 1–12
are predominantly male faces, cluster 13–16 are females. Cluster 15 seems to
specialize to females with bangs (hair over the forehead) and 14 on short hair
and smiling females. Cluster 2 seems to have bald (or with very little hair)
males who wear glasses while cluster 11 has males with smiling faces. With
such semantically interpretable visual qualitative results, we conclude that the
method seems to perform an attribute-based clustering.

4.2 Quantitative Results

Fig. 3 shows the performances of the baseline vs. the proposed method for three
different configurations of (i) starting projection dimension 128 with tree depth
3, denoted ‘128-d3’, (ii) starting projection dimension 128 with tree depth 4,
denoted ‘128-d4’, and (iii) starting projection dimension 256 with tree depth 4,
denoted ‘256-d4’.

We note that the different configurations of the proposed method give dif-
ferent time complexities. The 128-d3 and 256-d4 trees have leaf node projection
dimensions of 32 (same as baseline) with 4 and 8 leaf nodes respectively while the
128-d4 tree has a projection dimension of 16 with 8 nodes. The time complexity
for the proposed method depends on (i) projection and Euclidean distance com-
putation with two centroids at non-leaf nodes (repeated (h− 1) times, where h
is the height of the tree) and (ii) projection and Euclidean distance computation
with all the database vectors in leaf nodes. The leaf nodes have about the same
number of database vectors and hence a tree with same leaf node projection
dimension (of 32) as baseline but with 4 (8) nodes is expected to be 4× (8×)
faster than baseline as the bottleneck in large-scale scenario is the computation
of Euclidean distances with a large number of (compressed) database vectors.

We observe that as more and more distractors are added the proposed method
performs better. In the presence of large number of distractors, 100 nearest neigh-
bor are expected to lie in a smaller region around the query points and hence an
explanation for the better performance of the method could be that it is better
adapted to local neighborhood. In the zero distractor case, we observe that the
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Fig. 2. Visualization the clustering obtained at leaf nodes for a tree of depth 4. The
clusters are ordered from left to right and top to bottom, i.e. top eight (bottom eight)
clusters together form the left (right) node at the first split. Images are randomly
selected.
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Fig. 3. The performance of the baseline method and that of the proposed method
for three different combinations of parameters (starting projection dimension and tree
depth) for different numbers of distractors (0, 100k, 500k and 1m) at different operating
points.

proposed method is better in the case of small n, i.e. it is able to do relatively
better retrieval when smaller neighborhoods are considered, while the baseline
performs better when n is large and hence larger neighborhoods are considered.
The success of the method in the presence of a large number of disctractors
underlines the need for locally adapted metrics for identity based face retrieval,
especially in a large scale scenario.

Time complexity. The proposed method is expected to be faster in the large
scale setting where the number of vectors in the database is greater than the
feature dimension. In that case the cost of projecting the query becomes negli-
gible compared to the cost of computing the nearest neighbors in the projected
space. Assuming the database vectors uniformly occupy the leaf nodes, a tree
with N leaves is then expected to give an N fold speed-up. We carried out all
our experiments on a computer with Intel Xeon 2.8 GHz CPU running linux.
Empirically we obtain speedups of about 2.8×, 5.9× and 10.2× for trees with
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4, 8 and 16 nodes respectively, with our unoptimized Python implementation for
the experiments with one million distractors, with all computations being timed
with data in RAM.

5 Conclusions

We presented a method for accurate and efficient identity based face retrieval,
which relies on a hierarchical organization of the face database. The method is
motivated by the recent works on local learning of discriminative decision bound-
aries and of metrics, and works based on attributes. We showed quantitatively
that organizing faces hierarchically, with automatically learned hierarchy, leads
to an attribute based clustering of faces. Further, we showed quantitatively that
the method is capable of better retrieval at a better time complexity compared
to the baseline method in large-scale setting.

Aknowledgements. This work was partly supported by European integrated
project AXES and by the ANR projects QCOMPERE/PHYSIONOMIE.
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