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Abstract. In this paper, we propose an algorithm for on-line, real-time
tracking of arbitrary objects in videos from unconstrained environments.
The method is based on a particle filter framework using different visual
features and motion prediction models. We effectively integrate a dis-
criminative on-line learning classifier into the model and propose a new
method to collect negative training examples for updating the classifier
at each video frame. Instead of taking negative examples only from the
surroundings of the object region, or from specific distracting objects,
our algorithm samples the negatives from a contextual motion density
function. We experimentally show that this type of learning improves
the overall performance of the tracking algorithm. Finally, we present
quantitative and qualitative results on four challenging public datasets
that show the robustness of the tracking algorithm with respect to ap-
pearance and view changes, lighting variations, partial occlusions as well
as object deformations.
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1 Introduction

We consider the problem of automatically tracking a single arbitrary object in
a video, where the algorithm is initialised in the first frame from a bounding
box around the object to track. No prior knowledge about appearance, shape, or
motion of the objects or the environment is used. Also, we focus here on on-line

tracking, i.e. at each time step, only past and present but no future information
is used. Applications for on-line visual object tracking are numerous, including,
for example, video indexation, Human-Computer or Human-Robot Interaction,
video-surveillance, traffic monitoring, or autonomous driving.

In real-world scenarios, this problem is challenging as the object to track
may change considerably its appearance, shape, size, and pose in the image
(like the articulated human body for example). Furthermore, the object can be
partially occluded by itself, other objects, or the environment. The object may
also move abruptly or in unpredictable ways. Finally, the environment, i.e. the
image background, may change considerably and rapidly in videos from moving
cameras and be affected by varying illumination.
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Recent works [7,1,2,13,9] propose to tackle this problem by a tracking-by-
detection framework, where a discriminative detector is trained with object and
background samples. At each frame of the video, this detector is applied in a
search window to estimate the current position of the object, and the model is
updated using this estimate. The advantage of this approach is that no specific
motion model needs to be designed and parameterised, and the output is deter-
ministic. Classical tracking algorithms are based on recursive Bayesian filters like
Kalman filters or particle filters [17,12,19]. These methods are able to estimate
the posterior state distribution of the tracked object and allow for maintaining
several state hypotheses. Usually, they explicitly integrate motion models used
to predict the next object state by defining a probabilistic transition function in-
dependent from the image observations. Some particle filter techniques use some
more advanced motion models, like [15], i.e. an optical flow-like dense para-
metric motion estimator with an affine model to propose new state values, as
we propose in this paper. Also similar to this paper, parametric motion models
have been used to estimate background (i.e. camera) motion [6] and segment
the object region from the background, e.g . [24].

Other recently proposed approaches have also included this type of contex-
tual motion information. For example, Yang et al . [23] introduced a method that,
throughout a video, continuously discovers objects that move in the same direc-
tion as the tracked object by performing a motion correlation analysis. These
auxiliary objects help to support and improve tracking by performing inference
in a star-structured graphical model that includes their state. Spatial context
has also been exploited by using supporters, i.e. other objects or feature points
around the target in the image. Grabner et al . [8], for example, extended the well-
known Implicit Shape Model by detecting feature points in the image that have
a correlated motion with the target. These supporters are matched from frame
to frame and their relative displacement vectors are updated on-line. Also, Wen
et al . [21] proposed a method that detects supporters (here called contributors),
i.e. interest points within a local neighbourhood around the target, in order to
improve the tracking performance. Similarly, the approach proposed by Sun et

al . [18] tracks “helper” objects using an on-line Adaboost detector, initialised
manually at the first frame. Their relative position is learnt on-line and used to
predict the target object’s position. Finally, Dinh et al . [3] proposed a method
using supporters as well as distractors, which are objects with similar appear-
ance to the target. The distractors help to avoid confusion of the tracker with
other similar objects in the scene, and they can possibly be used to reason about
the objects’ mutual occlusion. Supporters are not used directly for the target’s
state estimation but only to disambiguate between the target and its distrac-
tors. Hong et al . [10] recently proposed an approach based on the L1 tracker [13]
that deals with distractors by automatically learning a metric not only between
positive and negative examples but also within the collected negative examples,
effectively replacing the originally proposed Euclidean distance.

The disadvantage with using supporting and distracting objects is that sev-
eral objects need to be detected and tracked, which can be computationally
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expensive especially with a larger number of objects. Moreover, the success or
failure of data association or, in some methods, matching local features points
in successive video frames, heavily depends on the type of object to track and
the surrounding background. This process can be error-prone and, in some sit-
uations, may rather harm the overall tracking performance. Finally, modelling
the spatial, temporal, or appearance-based pairwise relationships between ob-
jects and/or interest points can lead to a combinatorial explosion and make the
inference on the state space difficult.

To alleviate this problem, in this work, we propose a probabilistic method
that dynamically updates the foreground and background model depending on
distracting objects or image regions in the scene background. This contextual
appearance information is extracted from moving image regions and used to
train on-line a discriminative binary classifier that, in each video frame, detects
the image region corresponding to the object to track.

Traditionally, these discriminative on-line classifiers used in tracking-by-de-
tection approaches learn negative examples extracted from the image region
surrounding the current target object region. This choice is motivated by the
fact that the object will move only slightly from one frame to the other w.r.t.
the background or other objects, and by computational speed. In contrast, our
method uses a stochastic sampling process to extract negative examples from
image regions that move. We call these: contextual motion cues (see Fig. 1). In
that way, regions that correspond to possibly distracting objects are detected
efficiently and early, i.e. without them having to be inside a search window and
without scanning the whole image at each point in time. The contributions of
this paper are the following:

– a method for on-line learning of a discriminative classifier using stochastic
sampling of negative examples from contextual motion cues in videos,

– the integration of this incremental discriminative model in an efficient adap-
tive particle filter framework combining effectively several visual cues,

– a thorough evaluation on difficult public benchmarks experimentally showing
the performance increase from this type of online learning as well as an
improvement over state-of-the-art tracking methods.

2 Tracking algorithm

Our tracking algorithm is based on a recursive Bayesian framework implemented
with a particle filter:

p(Xt|Y1:t) =
1

C
p(Yt|Xt)×

∫

Xt−1

p(Xt|Xt−1)p(Xt−1|Y1:t−1) dXt−1 , (1)

where C is a normalisation constant, Y1:t are observations from time 1 to t, and
Xt denotes the state at time t. Before describing the main contribution of the
paper in section 3, for the sake of completeness, we will first describe the main
elements of this model.
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Fig. 1. Illustration of different sampling strategies of negative examples (blue). Left:
traditional sampling at fixed positions within a search window around the object (red).
Middle: the motion probability density function m (Eq. 11). Right: the proposed neg-
ative sampling from m.

2.1 Object state representation and inference

The state X = (x, y, vx, vy, s, e) ∈ R
6 of the object to track is described by an

upright bounding box defined by the object’s centre (x, y) in the image, its speed
(vx, vy), scale (s), and eccentricity (e), i.e. the ratio of height and width. The
state X0 is initialised manually (for each particle) by a bounding box around the
object in the first frame. Then, for each video frame, the particle filter performs
its classical steps of predicting particles X(i) sampled from the proposal distri-
bution q(Xt|Xt−1) and updating their weights according to the observation like-

lihood, state dynamics and proposal (see Section 2.2): wi = p(Yt|Xt)
p(Xt|Xt−1)
q(Xt|Xt−1)

,

for each particle i ∈ 1..N . At the end of each iteration, the observation like-
lihood model parameters are updated using the mean particle of the posterior
distribution p(Xx|Y1:t), and systematic resampling is performed.

2.2 State dynamics and proposal function

The state dynamic model p(Xt|Xt−1) is defined for each individual component
of X. The position and speed components of the object are described by a
mixture of a first-order auto-regressive model with additive Gaussian noise and
a uniform distribution allowing for small “jumps” coming from the proposal
function (Eq. 2). A simple first order model is used for the scale and eccentricity
parameters, s and e.

In order to cope with fairly complex motion of arbitrary objects in videos from
a possibly moving camera, we use a proposal function composed of a mixture of
three distributions:

q(Xt|Xt−1) = βmp(Xt|Xt−1) + βfpf (Xt|Xt−1) + βdpd(Xt|Xt−1) , (2)

where βm, βf and βd define the mixture weights, and p(Xt|Xt−1) is the state
dynamics model. The function

pf (Xt|Xt−1) = N (Xt−1 + d; 0,Σf ) (3)

predicts the new state by performing a parametric robust motion estimation
of the image region defined by Xt like in [14]. The output of this multi-level
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estimation is the differential vector d which updates position and scale. The last
term:

pd(Xt|Xt−1) = N (Xd; 0,Σd) (4)

uses the output Xd of a detector (see Section 3) that has been trained on-line
and that is applied in the neighbourhood around Xt to predict the new object
position and scale (as in [16]). See Section 4 for a summary of parameter values.

2.3 Observation likelihood

The observation likelihood function p(Y|X) is a geometric mean of three distri-
butions corresponding to different visual cues described in the following:

p(Yt|Xt) = (pH(Yt|Xt) pS(Yt|Xt) pT (Yt|Xt))
1/3

. (5)

Histogram likelihood ratio. The histogram likelihood function is defined as
a ratio of foreground and background likelihoods:

pH(Yt|Xt) =
pFG(Yt|Xt)

pBG(Yt|Xt)
, (6)

where

pFG(Yt|Xt) = exp

(

−λFG

9
∑

r=1

(D2[h∗
t (r), h(r,Xt)])

)

, (7)

is the foreground likelihood defined over a grid of 3×3 regions r. D computes the
Bhattacharyya distance between the HSV histograms ht extracted from state Xt

and the respective reference histograms h∗
t initialised from the first frame, and

λFG is a constant. Similarly, the background likelihood:

pBG(Yt|Xt) = exp
(

−λBG(D
2[ĥ∗

t , ĥ(Xt)])
)

, (8)

is computed over the image region surrounding the object’s bounding box.

Global colour segmentation likelihood. In addition to the more local colour
models with one histogram per object part, we also use a global colour histogram
model based on a pixel-wise colour segmentation of foreground and background.
To this end, as above, HSV colour histograms with separate colour and greyscale
bins are extracted, one inside the current bounding box of the object, and one
around it. Then a probabilistic soft-segmentation is performed computing the
probability p(ci|zi) of each pixel i inside a search window belonging to the fore-
ground c = 1 or background c = 0 given its colour zi.

Then, the likelihood function is defined as:

pS(Yt|Xt) =
exp(−λSSFG(Xt)

2)

exp(−λSSBG(Xt)2)
, (9)

where λS is a constant, SFG is the proportion of foreground pixels, i.e. for which
p(c = 1|z) > 0.5, inside the object’s bounding box and SBG is the proportion of
foreground pixels outside the bounding box.
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Texture likelihood. The likelihood pT (Y|X) is based on the (greyscale) tex-
ture of the object to track. A discriminative classifier is trained at the first frame
using the object region as positive and the background regions as negative ex-
amples. Then, the classifier is updated at each iteration collecting positive and
negative examples from the foreground and background respectively (see Section
3). We use the On-line Adaboost classifier presented by Grabner et al . [7] that
uses Haar-like features, but any other on-line classifier could be used as well.

The likelihood is based on the detector’s confidence cD ∈ [0, 1] for the image
patch defined by Xt:

pD(Yt|Xt) = exp(−λD(1− cD)2) . (10)

3 Model adaptation with contextual cues

As mentioned earlier, in the particle filter, we use a binary discriminative clas-
sifier based on the On-line Adaboost (OAB) algorithm [7] for proposing new
particles (Eq. 4) as well as for evaluating the observation likelihood (Eq. 10).
The classifier is trained with the first video frame using the image patch inside
the object’s bounding box as a positive example and surrounding patches within
a search window as negative examples. Then, the authors propose to update
the classifier at each tracking iteration using the same strategy for extracting
positive and negative examples. We refer to [7] for details on the model.

3.1 Background sampling

We propose to sample negative examples from image regions that contain motion
and thus likely correspond to moving objects (see Fig. 1). The idea is that
these regions may distract the tracker at some point in time. Therefore it is
preferable to learn these negative examples as early as possible, i.e. as soon as
they appear in the scene. To this end, we first compensate for camera motion
between two consecutive frames using a classical parametric motion estimation
approach [14]. We apply a three-parameter model to estimate the translation
and scale of the scene, and then compute the intensity differences for each pixel
with its corresponding pixel in the previous frame. This gives an image M(x, y)
approximating the amount of motion present at each position (x, y) of the current
frame of the video. We then transform this image into a probability density
function (PDF) m(x, y) over the 2-dimensional image space:

m(x, y) = Z−1
∑

(u,v)∈Ω(x,y)

M(u, v) , (11)

where Ω(x, y) defines an image region of the size of the bounding box of the
object being tracked, centred at (x, y), and Z is a constant normalising the
density function to sum up to 1. Thus, m(x, y) represents the relative amount
of motion inside the region centred at (x, y). Finally, N− image positions (x, y)
are sampled from this PDF corresponding to rectangles centred at (x, y), where,
statistically, regions with high amount of motion are sampled more often than
static image regions. This process is illustrated in Fig. 1.
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3.2 Classifier update

The N− image patches corresponding to the sampled regions as well as the
positive example coming from the mean particle of the tracker are then used to
update the classifier. In this case, the OAB method needs a balanced number of
positives and negatives, thus the positive example is used N− times, alternating
positive and negative updates.

The advantage of sampling positions from these motion cues is that we don’t
need to care about explicitly detecting, initialising, tracking, and eventually re-
moving a certain number of distracting objects at each point in time. Note that,
we could also sample regions of different scales but as scale does not change
rapidly in most videos the benefit of this would be relatively small. Note also
that the PDF could as well include appearance similarity with the tracked target.
However, this would considerably increase the computational complexity.

4 Experiments

4.1 Parameters

The following tracking parameters that have been used for all the experiments:

Σ̂ Σ̄ Σf/p βm βf βd λFG λBG λS λD

(7, 7) (0.001, 0.001) (1, 1, 10−4, 10−4) 0.7 0.2 0.1 120 36 0.1 10

The variances for x and y values are scaled by w
200 , w being the current width of

the bounding box. We should highlight that only 100 particles have been used
throughout all experiments. This turns out to be sufficient due to our effective
proposal and discriminative likelihood functions.

4.2 Datasets

We performed a quantitative evaluation on 4 challenging public tracking datasets:

Babenko1 [2] contains 8 videos of objects that undergo mostly rigid deforma-
tions and some rather large lighting variations and partial occlusions. Most of
the videos are in grey-scale format (except “David”, “Girl”, and “Face Occl. 1”).

Non-rigid objects2 is a more challenging dataset composed of 11 videos show-
ing moving objects that undergo considerable rigid and non-rigid deformations.

VOT20133 is the Visual Object Tracking (VOT) Benchmark 2013 [11] contain-
ing 16 videos that show a large variability in terms of camera motion, illumina-
tion change, occlusion, object size, and motion. Four of these sequences (David,
diving, face, jump) are also part of the first or second dataset.

VOT20143 contains 25 challenging videos including eight from VOT2013.

1 http://vision.ucsd.edu/∼bbabenko/project miltrack.shtml
2 http://lrs.icg.tugraz.at/research/houghtrack/
3 http://votchallenge.net/

http://vision.ucsd.edu/~bbabenko/project_miltrack.shtml
http://lrs.icg.tugraz.at/research/houghtrack/
http://votchallenge.net/
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Note that long-term tracking datasets like LTDT2014 are not suitable for evalu-
ating our approach as these videos contain longer periods of full occlusion which
requires the algorithm to be able to re-detect the tracked object after occlusion.

4.3 Evaluation

We performed several experiments with different evaluation protocols. For the
first two datasets we evaluated the robustness of the proposed algorithm by mea-
suring the proportion of correctly tracked frames. A frame is counted as correct,
if the tracking accuracy A = RT∩RGT

RT∪RGT
is greater than a threshold, where RT is the

rectangle corresponding to the mean particle from the tracking algorithm, and
RGT is the ground truth rectangle surrounding the object. We set the threshold
to 0.1 in order not to penalise fixed-size, fixed-ratio trackers in our comparison.
For every experiment and video sequence, the proposed algorithm has been run
5 times and the average result is reported.

For the VOT datasets, we used the evaluation protocol of the VOT2013
benchmark, which measures accuracy and robustness. For evaluating the accu-
racy, the measure A, defined above, is used. The robustness is measured in terms
of number of tracking failures, where trackers are re-initialised after failures. Ev-
ery video sequence is evaluated 15 times and the average results are reported.
In addition to this “baseline” experiment, there are two other experiments us-
ing the same data. In the “region-noise” experiment the initial bounding box is
randomly, slightly shifted for each run, and in the “greyscale” experiment, each
video is transformed into greyscale format. See [11] for more details.

4.4 Results

In the first experiments, we evaluated four different strategies for the collection
of negative examples of the discriminative OAB classifier (c.f . section 3):

fixed: N− negatives are taken from fixed positions around the positive example
inside the search window, which is twice the size of the object’s bounding box.
fixed+random: N−/2 examples are taken from fixed position (as for “fixed“),
and N−/2 examples are sampled from random image positions.
motion: N− negative examples are sampled from the contextual motion distri-
bution m (Eq. 11).
fixed+motion: N−/2 examples are taken from fixed positions, and N−/2 ex-
amples are sampled from the contextual motion distribution.

In any case, the negative examples do not overlap more than 70% with the
positive ones in the image.

Table 1 and 2 show the results for the first two datasets in terms of the
percentage of correctly tracked frames. In most cases, the sampling of negative
examples from the contextual motion PDF, i.e. “motion” and “fixed+motion”,
improves the tracking performance. For the Babenko sequences, the improvement
is smaller because there are not many other moving objects that can distract
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fixed fixed+rand. motion fixed+mot.

David 62.6 61.9 60.6 61.5
Sylvester 49.8 59.6 81.6 78.7
Girl 67.9 44.4 73.0 74.2

Face Occlusions 1 98.4 100.0 100.0 100.0

Face Occlusions 2 97.7 95.8 95.0 98.4

Coke 88.8 92.5 92.9 93.2

Tiger 1 60.3 58.9 59.7 59.7
Tiger 2 90.4 93.2 97.3 97.3

average 76.99 75.80 82.51 82.88

Table 1. Babenko sequences: percentage of correctly tracked frames with fixed negative
sampling, sampling from motion, combined fixed+random, and fixed+motion sampling.

fixed fixed+rand. motion fixed+mot.

Cliff-dive 1 100.0 100.0 100.0 100.0

Motocross 1 75.9 84.7 94.1 99.1

Skiing 98.1 89.6 96.4 99.2

Mountain-bike 100.0 100.0 100.0 100.0

Cliff-dive 2 51.8 70.2 63.3 73.8

Volleyball 99.9 88.5 100.0 99.9
Motocross 2 100.0 100.0 100.0 100.0

Transformer 91.1 92.9 94.4 91.5
Diving 75.0 76.0 70.5 77.4

High Jump 52.5 59.8 69.7 66.6
Gymnastics 88.9 99.1 99.1 99.1

average 84.83 87.35 89.76 91.5

Table 2. Non-rigid object sequences: percentage of correctly tracked frames with fixed
negative sampling, sampling from motion, combined fixed+random, and fixed+motion
sampling.

the tracker. On average, the best strategy is “fixed+motion”, with a relative
improvement of around 7.5%. We use this strategy for the following experiments
and call the overall tracking algorithm “Motion Context Tracker” (MCT).

We further evaluated MCT with the VOT2013 dataset using the protocol
of the VOT challenge and comparing it with 27 other state-of-the-art tracking
methods. Table 3 shows the average accuracy and robustness with the three
different experiments explained above: baseline, region-noise, and greyscale.

Table 4 lists the top 6 ranks for each experiment, combining accuracy and
robustness. The results of MCT are very competitive, being the second-best
method for baseline and region-noise and third-best for greyscale. Only, one
method, the Pixel-based LUT Tracker (PLT), is consistently outperforming
MCT on this dataset. It is an optimisation of the tracker called “Struck” [9],
currently unpublished but some explanation can be found in [11]. Note that,
PLT is a single-scale tracker and it uses different feature sets for greyscale and
colour video sequences.

Table 5 shows the accuracy and robustness results for the VOT2014 dataset.

Finally, Fig. 2 shows some qualitative tracking results on some of the video
sequences. One can see that the algorithm is very robust to changes in object
appearance, illumination, pose as well as complex motion, and partial occlusions.
The algorithm runs at around 4fps (or with a single-scale OAB detector: at
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accuracy robustness

baseline region-noise greyscale baseline region-noise greyscale

average 0.597 0.579 0.590 0.458 0.417 0.867

Table 3. Results of the proposed algorithm on the VOT2013 dataset.

baseline region-noise greyscale

PLT 4.96 PLT 3.58 PLT 3.96
MCT 6.62 MCT 5.08 FoT [20] 4.75
FoT [20] 8.25 CCMS 8.33 MCT 6.25

EDFT [4] 9.5 FoT [20] 9.04 EDFT [4] 7.5
CCMS 9.54 LGT++ [22] 9.04 GSDT [5] 9.5
LGT++ [22] 10.2 EDFT [4] 9.08 LGT++ [22] 9.58

Table 4. Overall ranking result with the VOT2013 dataset. Only the first 6 out of 28
ranks are shown. The numbers represent the actual average ranking.

20fps) for a frame size of 320 × 240 on an Intel Xeon 3.4GHz not counting the
initialisation phase and screen display.

5 Conclusions

We presented a new efficient particle filter-based approach for tracking arbitrary
objects in videos. The method combines generative and discriminative models,
by effectively integrating an online learning classifier. We propose a new method
to train this classifier that samples the position of negative examples from con-
textual motion cues instead of a fixed region around the tracked object. Our
extensive experimental results show that this procedure improves the overall
tracking performance. Further, the proposed tracking algorithm gives state-of-
the-art results on four different challenging tracking datasets, effectively dealing
with large object shape and appearance changes, as well as complex motion,
varying illumination conditions and partial occlusions.
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6. Gengembre, N., Pérez, P.: Probabilistic color-based multi-object tracking with ap-
plication to team sports. Tech. Rep. 6555, INRIA (2008)

7. Grabner, H., Grabner, M., Bischof, H.: Real-time tracking via on-line boosting. In:
Proc. of the British Machine Vision Conference (2006)

8. Grabner, H., Matas, J., Van Gool, L., Cattin, P.: Tracking the invisible: Learn-
ing where the object might be. In: Proc. of the Computer Vision and Pattern
Recognition. vol. 3, pp. 1285–1292 (Jun 2010)

9. Hare, S., Saffari, A., Torr, P.H.S.: Struck: Structured output tracking with kernels.
In: Proc. of the International Conference on Computer Vision (2011)

10. Hong, Z., Mei, X., Tao, D.: Dual-force metric learning for robust distracter-resistant
tracker. In: Proc. of the European Conference on Computer Vision (2012)

11. Kristan, M., Cehovin, L., Pflugfelder, R., Nebehay, G., Fernandez, G., Matas, J.,
et al.: The Visual Object Tracking VOT2013 challenge results. In: Proc. of the
International Conference on Computer Vision (Workshops) (2013)

12. Maggio, E.: Adaptive multifeature tracking in a particle filtering framework. IEEE
Trans. on Circuits and Systems for Video Technology 17(10), 1348–1359 (2007)

13. Mei, X., Ling, H.: Robust visual tracking and vehicle classification via sparse rep-
resentation. IEEE Trans. on Pattern Analysis and Machine Intelligence 33(11),
2259–72 (Nov 2011)

14. Odobez, J.M., Bouthemy, P.: Robust multiresolution estimation of parametric mo-
tion models. Journal of Visual Communication and Image Representation 6(4),
348–365 (Dec 1995)

15. Odobez, J.M., Gatica-Perez, D., Ba, S.O.: Embedding motion in model-based
stochastic tracking. IEEE Trans. on Image Processing 15(11), 3514–3530 (2006)



12 Stefan Duffner and Christophe Garcia

Fig. 2. Tracking results for PLT, FoT, Struck, and MCT on the sequences “David”,
“Bolt”, “Gymnastics”, and “Singer” (VOT2013/2014). Tracking is very robust to par-
tial occlusions, illumination changes, deformations, pose or other appearance changes.
The second last example shows some difficulties of MCT to adapt to different aspect ra-
tios. And the last example illustrates the problem of drastic size change for single-scale
trackers like Struck and PLT.

16. Okuma, K., Taleghani, A., Freitas, N.D.: A boosted particle filter: Multitarget
detection and tracking. In: Proc. of the European Conference on Computer Vision.
pp. 28–39 (2004)
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