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Abstract. We present a new short-term tracking algorithm called Best
Displacement Flow (BDF). This approach is based on the idea of ‘Flock
of Trackers’ with two main contributions. The first contribution is the
adoption of an efficient clustering approach to identify what we term
the ‘Best Displacement’ vector, used to update the object’s bounding
box. This clustering procedure is more robust than the median filter to
high percentage of outliers. The second contribution is a procedure that
we term ‘Consensus-Based Reinitialization’ used to reinitialize trackers
that have previously been classified as outliers. For this reason we define
a new tracker state called ‘transition’ used to sample new trackers in
according to the current inlier trackers.

Keywords: Visual object tracking, optical flow, motion-based, texture-
less tracking

1 Introduction

The main challenge of an object tracking system is the difficulty to handle the
appearance changes of the target object. The appearance changes can be caused
by intrinsic changes such as pose, scale and shape variation and by extrinsic
changes such as illumination, camera motion, camera viewpoint, and occlusions.

For instance, our approach Matrioska [13], while ranking closely to one of the
best performing tracker EDFT [4] (see the Accuracy-Robustness plot shown in
Figure 1 for the trackers that joined the VOT2013 challenge [10]), was not able
to rank better due to failures on some sequences. Indeeed, as Figure 2 shows,
Matrioska fails on sequences such as hand and torus mainly due to two factors:
(i) texture-less objects and (ii) non-rigid transformations, resulting in low values
for the Accuracy and Robustness, as reported in Table 1.

To model such variability, various approaches have been proposed, such as:
updating a low dimensional subspace representation [15], MIL based [1] and tem-
plate or patch based. Other approaches are reported in recent surveys ([10], [23]
and [18]), and specifically [7, 20, 19, 25, 4, 22, 11, 6, 3, 14, 16, 26, 5, 2, 12, 17, 24].

In this paper we introduce a new short-term tracking algorithm named Best
Displacement Flow (BDF), that is aimed to avoid the Matrioska’s failure cases.
To achieve a better robustness over texture-less objects we adopt a different
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visual representation: Matrioska is based on a sparse representation with the use
of point features, whereas BDF adopts a dense approach represented by local
trackers that cover the entire object.

BDF is inspired by the Flock of Features ([9], [20]) where a set of displace-
ments, estimated by local trackers, are robustly combined to localize the tar-
get object. We propose different contributions and we show how this approach
reaches state-of-the-art performance for sequences in which a re-detector module
is not required.

The main contributions, i.e. the clustering procedure and the consensus-based
reinitialization, are discussed in sections 2.2 and 2.3, respectively.

Fig. 1. The Accuracy-Robustness plot of VOT2013 challenge.

Fig. 2. Snapshots of the hand and torus sequences showing typical Matrioska failure
cases: texture-less objects and non-rigid transformations.
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Table 1. Matrioska’s results on hand, torus and diving sequences of the VOT2013
dataset.

accuracy robustness speed (fps)

hand 0.37 7.00 24.81

torus 0.26 8.00 16.25

diving 0.32 4.00 14.00

iceskater 0.48 4.00 11.49

2 Best Displacement Flow (BDF)

In the following sections we will describe our tracking approach for short-term
sequences. A short-term tracker is an algorithm able to track an unknown ob-
ject for short sequences in which the target object is visible through the entire
sequence, and it usually does not have a re-detector module (if the object goes
out of the scene the tracker will drift).

Our approach called Best Displacement Flow is inspired by (in order of pub-
lication) Flock of Features [9], Median Flow [8] and Flock of Trackers ([20], [21])
where a set of displacements, estimated by local trackers, are robustly combined
to localize the target object. The name of our approach, BDF, remarks the most
important difference between our tracker and the other approaches: we apply
a clustering procedure over all local trackers estimates to filter outliers instead
of using the median filter. The biggest cluster identifies what we term the best
displacement vector used to update the position of the target bounding box.

The following sections describe in detail the main components of our system:
the multi-size initialization (section 2.1), the clustering procedure (section 2.2)
and the consensus-based reinitialization (section 2.3).

2.1 Multisize Initialization

The initialization is the first step of our approach. Unlike other approaches,
which use the same patch size for each tracker (both MedianFlow [8] and Flock
of Trackers [20] use a single grid with a fixed cell size), we allow the initialization
of local trackers with different patch sizes, as Figure 3 shows. To estimate the
optical flow we use the Block Matching algorithm, i.e. each patch is used as a
template to find the displacement that optimizes a cost function in the following
frame.

For this reason the patch size becomes an important factor, hence the use of
patches with different sizes ensures a greater robustness. Note that we do not
constraint the trackers position inside a cell (i.e. the local trackers can freely
move inside the object bounding box).
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Fig. 3. The final trackers are obtained by superimposing grids with different patch
sizes. In this case two grids with a size of 7x7 and 13x13 pixel. Using patches with
different sizes ensure a greater robustness over different appearances of objects.

2.2 Displacement Clustering

Each local tracker, after the initialization in the first frame, estimates the dis-
placement that optimizes a cost function (usually the SSD or the NCC) using
the block matching algorithm for the optical flow estimation.

Once every tracker estimated its displacement vector (i.e. the optical flow)
we need to filter each possible outlier. The median filter is robust up to 50% of
outliers and this can represent a limitation in many challenging sequences. For
this reason we employ a clustering procedure that produces good results even
in presence of a greater percentage of outliers. The only exception to this rule
is represented by rotational motion of the object, only in this case the median
filter is better suited for inlier/outlier filtering.

Figure 4 shows this process: to efficiently cluster all displacements each
tracker votes its displacement in the accumulator space. After all votes have
been casted, the bucket with most votes identifies what we call the best displace-
ment vector β. Note that this process is equivalent to the hierarchical clustering
using the infinity norm ‖d‖∞ = max{|d1|, . . . , |dn|} and a cut-off threshold of 1
but it is much more efficient. In this illustrative scenario the median filter would
not produce a good results due to a high percentage of outliers (8 trackers out of
10 are outliers). Note that we use the infinity norm and not the Euclidean norm
because: (i) it is more efficient and (ii) the accumulator space is partitioned into
squares.

Furthermore, to improve the clustering process we assign a weight for every
tracker based on its past performances (i.e. the weight is increased each time the
tracker response agrees with the best displacement vector) that is used to cast
a weighted vote in the accumulator space. The best displacement β is used to
shift the center of the bounding box as follows: Obb

t+1 = Obb
t +βt+1 where Obb

represents the center of the bounding box.
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Fig. 4. Each tracker votes its displacement in the accumulator space. The most voted
bucket identifies the best displacement vector used to update the bounding box.

2.3 Consensus-Based Reinitialization

After the clustering procedure, each tracker response ∆i is compared to the best
displacement vector β. If their distance is greater than a threshold δs we set the
tracker state State(ti) to outlier as follows:

State(ti) =

{
inlier if ‖∆i − β‖∞ < δs

outlier otherwise
(1)

where δs is equal to 7. Once a tracker state is outlier it will not be used in
the following frames to cast new displacement votes. For this reason we need a
procedure to reinitialize the trackers when the number of inliers falls under a
certain threshold δn (we set δn to 25% of the total number of trackers).

The consensus-based reinitialization, for every outlier tracker, performs two
steps: (i) reinitializes the default position of the tracker inside the current bound-
ing box and (ii) sets the state of the tracker to transition.

When a tracker state is equal to transition it will not contribute to the
clustering procedure. The transition state indicates that the tracker has been
reinitialized and it needs to be validated.

This validation is based on the consensus with the current inlier trackers,
i.e. a tracker whose state is transition can be promoted to inlier if its response
agrees (see equation 1) with the best displacement vector for at least δt frames
following its reinitialization (we set δt to 3 frames) otherwise it is classified again
as outlier.

Figure 5 shows the state diagram of this process, note that a tracker state,
at any given time, can be either inlier or outlier or transition.

In the first frame all trackers are initialized as inliers. When the distance
between a tracker displacement and the best displacement β is greater than a
threshold δs, the tracker state is set to outlier and it will not be used again
until the reinitialization. When the number of inliers falls under a threshold δn,
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the consensus-based reinitialization sets the state to transition to every outlier
tracker. Only the transition trackers that agree for at least δt frames with the
current inliers are promoted to the inlier state.

Inlier

Outlier

Transition

 

 

 

 

Reinitialization

Consensus-based
Transition

Displacement 
 error > delta

Displacement 
 error > delta

Fig. 5. The three tracker states, displayed in a state diagram.

3 Quantitative Evaluation

In this section we evaluate our approach with benchmark sequences that are com-
monly used in the literature with the VOT2014 evaluation kit. The kit performs
two experiments: Experiment “Baseline” and Experiment “Region Noise”. Both
the experiments are evaluated with two metrics: (i) accuracy and (ii) failures.

Accuracy is the mean overlap computed only over the valid frames on multiple
trials. Failures indicate the number of times the algorithm drifted (i.e. the overlap
between the tracker bounding box and the ground truth bounding box is equal
to zero).

The overlap φi, given the ith frame, is defined as:

φi =
AT ∩AGT

AT ∪AGT

where AT and AGT represent the tracker bounding box and the ground truth
bounding box.

As show in Table 2 BDF is able to get accuracy values of 0.49 for Baseline
and 0.47 for Region Noise, while robustness values in average of 1.20 for Baseline
and 1.37 for Region Noise. We tested our C++ implementation on an Intel i7-920
processor, getting FPS of 96.29 for Baseline and 104.6 for Region Noise.
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As an example, Figure 6 illustrates the Best Displacement Flow tracking the
object in the torus sequence. In the first frame all trackers are initialized with
three different patch sizes. The clustering procedure, in the following frames,
identifies the best displacement vector that is used to: (i) update the bounding
box and (ii) filter inlier/outlier trackers. When the number of inlier trackers
(represented with red squares) falls under a threshold δn, the outlier trackers
are reinitialized in their default position with transition state (represented with
yellow squares). Only the trackers that agree with the current inliers, for at least
δt frames, are promoted to the inlier state.

Table 2. Results for tracker BDF

Baseline Region Noise

accuracy robustness speed (FPS) accuracy robustness FPS

ball 0.52 2.00 177.21 0.52 2.80 182.02

basketball 0.56 2.00 99.82 0.47 2.33 100.47

bicycle 0.46 1.00 157.77 0.48 1.00 171.23

bolt 0.47 5.00 86.87 0.40 5.20 88.79

car 0.41 1.00 106.23 0.42 1.00 132.56

david 0.70 0.00 94.95 0.66 0.00 105.12

diving 0.29 2.00 91.68 0.30 2.13 99.40

drunk 0.53 1.00 76.59 0.49 0.80 83.82

fernando 0.42 1.00 53.48 0.40 1.47 53.78

fish1 0.29 2.00 112.43 0.28 2.67 123.92

fish2 0.23 5.00 81.10 0.17 5.53 89.39

gymnastics 0.57 1.00 62.77 0.50 1.53 67.57

hand1 0.55 1.00 89.23 0.55 1.07 92.99

hand2 0.48 1.00 87.22 0.46 1.00 85.14

jogging 0.75 2.00 117.94 0.62 1.13 113.35

motocross 0.41 0.00 64.53 0.39 1.13 91.79

polarbear 0.53 0.00 62.58 0.52 0.00 67.95

skating 0.57 2.00 69.53 0.49 1.20 75.06

sphere 0.36 0.00 109.03 0.62 0.20 110.91

sunshade 0.75 0.00 108.44 0.69 0.00 110.73

surfing 0.49 0.00 181.57 0.43 0.13 185.70

torus 0.61 0.00 66.08 0.63 0.27 78.06

trellis 0.48 0.00 124.56 0.45 0.20 163.76

tunnel 0.29 0.00 56.89 0.28 0.33 68.15

woman 0.61 1.00 68.84 0.61 1.07 73.63

Average 0.49 1.20 96.29 0.47 1.37 104.6

Best Displacement Flow is an optical-flow based tracker, hence it fails when
the optical-flow estimation doesn’t return a good result. The failure cases include:
total occlusions and very large displacements between consecutive frames. The
failures of bicycle, basketball, car, fernando, fish2, jogging and woman are due to



8 M. E. Maresca, A. Petrosino

total occlusions, whereas the failures of bolt, fish1, fish2, gymnastics and skating
are due to abrupt appearance changes between consecutive frames.

Fig. 6. BDF on torus sequence.

4 Conclusions

In this paper we introduced a new short-term tracking algorithm called Best
Displacement Flow (BDF) that tracks an object by robustly combining a set of
local tracker estimates. We introduced two main contributions: (i) a clustering
procedure to identify the best displacement vector and (ii) a consensus-based
reinitialization to sample new trackers in according to the current inliers using
a third state called transition.

Our approach reaches state-of-the-art performance and it is more robust than
the median filter-based approaches in challenging sequences. Regarding future
developments, it would be interesting to extend our approach by adding a re-
detector module for handling situations such as: total occlusion and object out
of the camera view.
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