
000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

ECCV

#4
ECCV

#4

Characterizing Predicate Arity and Spatial
Structure for Inductive Learning of Game Rules

Debidatta Dwibedi and Amitabha Mukerjee

Indian Institute of Technology, Kanpur
debidattadwibedi@gmail.com, amit@iitk.ac.in

Abstract. Where do the predicates in a game ontology come from? We
use RGBD vision to learn a) the spatial structure of a board, and b) the
number of parameters in a move or transition. These are used to define
state-transition predicates for a logical description of each game state.
Given a set of videos for a game, we use an improved 3D multi-object
tracking to obtain the positions of each piece in games such as 4-peg
solitaire or Towers of Hanoi. The spatial positions occupied by pieces
over the entire game is clustered, revealing the structure of the board.
Each frame is represented as a Semantic Graph with edges encoding
spatial relations between pieces. Changes in the graphs between game
states reveal the structure of a “move”. Knowledge from spatial structure
and semantic graphs is mapped to FOL descriptions of the moves and
used in an Inductive Logic framework to infer the valid moves and other
rules of the game. Discovered predicate structures and induced rules are
demonstrated for several games with varying board layouts and move
structures.

Keywords: predicate discovery, spatial structure discovery, game rule
learning, semantic graphs, multi-object tracking, vision-based ontology
discovery, inductive logic programming, kinect

1 Introduction

Any formal system is built on a base vocabulary of predicates, functions and
constants. These predicates may show much variability while representing the
same linguistic terms. In modeling games with moving pieces, predicates such as
move() or adjacent() may vary in argument patterns and semantics owing to
differences between games. Thus, in Tic-tac-toe, a move involves adding a piece,
whereas in Towers of Hanoi or Kalaha, many pieces may be moved at once.
Thus, the arity of move() varies across games. Similarly, adjacency relations
will change depending on the board layout (1-D, 2-D, mixed-vertical, triangle vs
grid, etc.). In order for an ontology to be induced for such games, it is crucial
that one start with the right predicates. In addition the range of constant values
that a variable can take (e.g. the set of valid positions) has to be specified. In
this paper, we look at single-person games involving pieces that move, and we
ask if instead of introducing such knowledge implicitly in the background, can
we discover such structures by visually observing the game play?

045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

ECCV

#4
ECCV

#4

2 Debidatta Dwibedi and Amitabha Mukerjee

Inductive Logic Programming and allied methods have shown immense ad-
vantages in learning domain theories for a wide class of problems [1, 2], but the
approach is still restricted by an inability to discover a suitable set of predicates,
which require grounding in sensorimotor data. Formal systems with polymor-
phism permit functions with varying arity, but these cannot be handled effi-
ciently in inductive logic situations. Thus, the background input for inductive
logic programming invariably involves predicates with fixed arities.

When a child is shown a game of Tic-tac-toe, that each move involves adding
a single piece is immediately obvious, whereas in Towers of Hanoi, it is clear that
a move may involve several pieces. Similarly, one glance at a chess board tells
a learner that it has 8×8 squares, and that the position of any piece can take
a value only from these 64 possibilities. This suggests that some aspects of the
vocabulary used in the background theory may be inferred by the learner - as
opposed to being programmed - thus providing greater flexibility for inducing
the domain theory.

Here, we build on recent work in semantic graph discovery from RGB-D
(depth data) images to learn structures of interactions between objects [3, 4]
to explore the possibility of learning some aspects of predicate structures in
games involving moving pieces. Specifically, we attempt to discover a) the arity
and structure of base predicates such as move(), and b) the underlying spatial
structure that provides the set of constants that define admissible values for some
fluents like position. In the process, we also construct visual semantic interpreters
and generators for these predicates, in terms of the visual routines which result
in a discovered cluster.

The approach is demonstrated in three one-person games (or puzzles) involv-
ing spatial reconfiguration of pieces : Jumping frogs (1-D); Towers of Hanoi (1-D
with vertical) and 4×4 Peg Solitaire (2-D)(Fig. 1). Both Jumping frogs and Peg
solitaire have been modeled in simulation using the BlenSor RGBD simulation
system[5]; Towers of Hanoi has been tested both on real and simualted data.
The datasets and code used is being made available at http://www.cse.iitk.
ac.in/users/vision/debidatt/

(a) Jumping frogs puzzle (b) Towers of Hanoi (c) 4×4 Peg Solitaire

Fig. 1: Examples of Spatial Reconfiguration games handled. Board spatial layout
and predicate structures such as number of pieces involved in moves are inferred
from the visual structure. ILP then is able to infer aspects such as that higher
disks must be smaller in Towers of Hanoi.

090

091

092

093

094

095

096

097

098

099

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

090

091

092

093

094

095

096

097

098

099

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

ECCV

#4
ECCV

#4

Predicate Arity and Spatial Structure for Inductive Learning of Game Rules 3

2 Related Work

Inductive logic programming (ILP) attempts to hypothesize the simplest hy-
pothesis explaining a set of (mostly) positive examples using background knowl-
edge [1, 2]. More formally, given a set of observed examples Ei (propositions),
and the categories ci they belong to, ILP attempts to find the simplest model
H (a first-order-logic theory) s.t. for all training pairs 〈Ei, ci〉, H ∧Ei ∧B |= ci,
while ∀c′ 6= ci,H ∧ Ei ∧B 6|= ci.

ILP approaches have been used in learning the rules for boardgames like
Tic-Tac-Toe and Hexapawn [6], dice-based games [7] and card games [8, 9]. In
each of these, the backghround knowledge already covers concepts like board
representation, adjacency / linearity tests, frame axioms, turns and opponents,
piece ownership and spatial predicates. Our objective is to start a bit further
back, and try to discover the structure for some these predicates.

However, hypotheses discovered by ILP (Progol) are restricted to essentially
single clause hypotheses in the refutation chain, and multi-clause induction is
highly inefficient [10, 11]. One approach to multi-clause induction is to prioritize
the ordering of rules using a set of meta theoretic rules (“top theory”) that
enables multi-clause refutations [11]. This has been used in learning grammars
and also a strategy for the Nim game. Other attempts to extend the paradigm
include interleaving induction with abduction models to generate more compact
models for modeling event structures [12]. Systems attempting to learn game
strategy are better served by using models related to learning planns, which
often use a PDDL structure [13]. However, our objective here is at the vision-
logic interface, and not in the domain of logic per se, hence we restrict ourselves
to Progol for our testing.

2.1 Inducing domain theories for games from vision

Inducing rules of games using vision as input has been attracting increasing
attention in recent years [6, 14, 9], since they provide a key test for other gener-
alizations that may be possible for real-world problems. In Barbu etal [6], the
learned rules are used impressively by a robot to manipulate the pieces onto a
wooden frame to actually play the game. They use ILP (Progol) to learn valid
moves of the game pieces and winning conditions in six games. The approach
proposed by Kaiser [14] is also inductive, requiring a few visual demonstrations
to learn rules for games such as Connect4 or Gomoku.

However, these systems needs to be provided with the predicate structure im-
plicitly via background knowledge. Thus [6, 15, 14] all assume a 2-D grid of known
size, and pre-define the set of possible moves and adjacency relations of interest.
The priors embedded in the background knowledge thus restrict the generality
of such systems. Also, the visual classifiers associated with each predicate are
hard-coded and game specific. We show that as part of ths semantic-graph anal-
ysis, these visual routines, (and hence the argument structure) can be discovered
for predicates like move().

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

ECCV

#4
ECCV

#4

4 Debidatta Dwibedi and Amitabha Mukerjee

2.2 Representing Scenes with Semantic Graphs

In a series of recent papers, Aksoy and co-workers [16, 3] have mapped videos
to dynamic graphs with nodes representing objects and edges encoding seman-
tic relations such as contact. Related ideas for learning semantic relations by
tracking objects can be found in the semantic segmentation of scenes[17], affor-
dance modeling of objects[18] and manipulation planning[19]. Semantic graphs
can model manipulation actions[3][4] in terms of primitives like merging and di-
viding and used to classify higher-order actions like making a sandwich, cutting a
cucumber, pouring liquids, etc. When a piece is moved in a game, manipulations
are relatively simpler, since the piece does not deform or merge into others.

A key requirement for our work is that objects must be tracked reliably across
visual frames. As in [4], we propose to use Kinect-based RGBD image inputs for
the tracking. Contact between pieces is important in some games (e.g. Towers of
Hanoi), and this is determined by analyzing four types of relationships between
each pair: touching, overlapping, non-touching and absent. A matrix encoding
all possible relation pairs is created and this is compressed to represent only the
change in relation pairs. The dynamic changes in graphs caused by manipulation
actions are compared by converting these relations into strings. Thus one may
define spatial and temporal similarity measures between different actions, and
cluster such actions, resulting in a template for game actions such as move().
Other candidates for edges in semantic graphs may be obtained by tracking the
hand in 3D videos [20].

In the attempt presented here, part of the structure is being learned via the
semantic graph in terms of contact and neighbourhood relations, and this is
used to identify the type of primitive predicates that would be used to describe
the system. These predicates are added to a sparse human-defined ontology of
background knowledge in order to learn rules for games and puzzles from the
RGBD videos.

We modify the semantic graph for situations specific to rigid piece motions
as in games. We are given a set of game videos as input, but are not told about
the spatial structure - whether it is being played on a grid or a line or a triangle
or other spatial layout. We also do not know the number of pieces involved in
each state-transition and their specific behaviours. In the next section, we see
how we do this starting with RGBD videos which enable improved 3D tracking
since camera-based depth data is available. For example. clustering all the 3D
positions of the pieces enable us to obtain the “cells” that a piece can occupy.
Grid layouts are identified using Principal Component Analysis; if the layout is
aligned to the dominant eigenvectors, it is a grid. Next, we identify if there is
direct contact (as in Towers of Hanoi), if so, contact is used as the edge relation
in our semantic graph. Else, we use adjacency relations defined on the board
discovered. This initial analysis also tells us the number of changes that occur
on different types of moves, and how these can be captured in terms of a “move”
or a “transition” predicate.

In our work we analyze the RGBD video of a game. If there are contact situa-
tions, we consider contact as a primitive for the Semantic graph analysis; else we

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

ECCV

#4
ECCV

#4

Predicate Arity and Spatial Structure for Inductive Learning of Game Rules 5

use neighbourhoods on the discovered spatial structure. These relationships are
mapped to FOL predicates which are then used in an ILP framework to induce
rules for the game.

3 Semantic Graphs of game scenes from RGBD video

In order to generate semantic graphs from images or point clouds, the first task
is to robustly segment and track each piece. Challenges include occlusion by the
hand or by other objects and altered appearance. Other changes come about
due to division or merging (e.g. a tower may be a single merged object in Towers
of Hanoi). The above problem is simpler in games because pieces are usually
rigid. However, many games have pieces that are identical in colour and shape,
throwing up other challenges.

3.1 Game Piece Segmentation

With 3D data, object segmentation can be performed to cluster points close to
each together based on Euclidean distance[21]. Algorithm 1 is a modified version
where we perform filtering based on the colour in the HSV space before the
clusters of points are discovered in the scene by doing Euclidean clustering based
on distance. This is done because sometimes game pieces of different colours
might be placed on top on another or in contact with each other like in the
Towers of Hanoi. So our objective is to extract clusters of points as game pieces.
These clusters should either have perceptually different colours or be separated
above a particular threshold in space as shown in Fig. 2.

Algorithm 1 Pipeline to extract objects from scene

1. Use a Pass Through filter to focus on the table-top.
2. Use RANSAC to filter out points of the table-top from the cloud.
3. Perform Colour-based filtering of the point cloud in HSV space.
4. Do euclidean clustering of the different colour clouds to give objects that are either
separated in space or have perceptually different colours.

Fig. 2: Game pieces found in a scene from the real Towers of Hanoi dataset

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

ECCV

#4
ECCV

#4

6 Debidatta Dwibedi and Amitabha Mukerjee

3.2 Multi-object Tracking

In the multi-object tracking problem, a label associated with an object needs to
be linked with the same object in the next frame and this needs to be done with
all objects present in the scene. The problem is challenging owing to all pieces
being identical in many games, and further complicated due to occlusion by the
player’s hand or by other pieces. A model-based detection method cannot be
used here since many objects have the same shape and colour.

Aksoy et al.[3], extracted segments from the images using super-paramagnetic
clustering in a spin-lattice model[22]. Doing this allowed them to perform robust
markerless tracking of the segments. A number of other tracking algorithms[4][23]
attempt to handle objects that may break up (cutting with a knife) or join
together (pouring from one glass to another), etc. Since game pieces are usually
rigid our tracker can make the assumption that pieces do not break up or merge
significantly.

Our proposed method for tracking multiple-objects in a point cloud video
is based on the occupancy of voxels by an object in one frame and the next.
Multiple object tracking can be reduced to an assignment problem where the
objects detected in frame i need to matched with themselves in frame i + 1.

The assignment problem is a combinatorial optimization problem. It con-
sists of finding a maximum weight or minimum cost matching in a weighted
bipartite graph. In other words, there are two sets A = {a1, a2, .., an} and
B = {b1, b2, ..., bn}. There is a certain cost for matching a ai with a bj . The
assignment problem is to match each members of set A one member of set B
such that the total cost of the assignments is minimized. The Hungarian method
is used to solve the label assignment problem in polynomial time.

Using Euclidean distance between the centroids [19] may fail if there are mul-
tiple objects moving simultaneously. We use the octree overlap between point
clouds that is the amount of overlap between axis-oriented bounding boxes of the
objects. The hierarchical octree [24] method reduces complexity by downsam-
pling the point cloud. We build the octree representation of the objects found by
segmentation in two consecutive frames. If it moves, there is going to be a spa-
tial overlap between the same object in the two consecutive frames. This overlap
will be zero with the other objects present in the scene. We use this overlap in
space to track objects by maximizing the sum of all overlaps while assigning
labels from one frame to the next. There are two assumptions that make this
tracking algorithm work. Our objects of interest are non-planar and rigid. Planar
objects may have zero overlap with themselves in the next frame. The action
performed by the player is slow enough for the Kinect to record the movement
of the objects. If the frame-rate of recording the point clouds is slow there will
be no overlap. In our case, however, we recorded gameplay at the usual pace
a person plays and there was considerable overlap between the same objects in
consecutive frames at normal Kinect recording rates. We also suggest the use of
a Kalman filter to improve tracking under full occlusion.

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

ECCV

#4
ECCV

#4

Predicate Arity and Spatial Structure for Inductive Learning of Game Rules 7

3.3 Semantic Graphs

A semantic graph of the scene encodes the relationships between the objects.
Building semantic graphs depends on choosing some primitive relations for the
edges, and this often depends on the task one is looking at. An intuitive prim-
itive is to consider contact, e.g. Yang et al.[4], but sometimes an object like a
bar, may be privileged [19]. In our situation, the table-top is a special object
whose contacts are not listed as predicates. Aksoy et al.[3] encode proximity
relationships even if they are not in contact. They also encoded the semantic
relationship overlapping which meant one segment is included in another.

(a) Frame 93 from Towers of Hanoi (simulation)
dataset

(b) Semantic Graph

Fig. 3: Example Semantic Graph

In most board games or puzzles the game state is altered by picking up a
piece and placing it somewhere else on the board, but sometimes an intermediate
piece or the piece at the target square, if of an opposing colour, may be removed.
In games such as the Towers of Hanoi, vertical contact occurs frequently, and
this needs to be represented.

In Fig. 3, there are four pieces from largest piece (1, yellow) to smallest
(4, blue) with red (2) and green (3) in between. The board is labeled B. Edges
reflect contact between pieces. Thus, the graph shows that a stack of 1,2 is on
the board, as well as 4, but the green piece (3) is not in contact with anything.
Changes in this semantic graph - e.g. 3 being placed on top of 2 - will represent
a move action.

We can now discover the states of the game by looking for configuration
changes of the game pieces on the board. Every time a player lifts up a piece, an
edge is broken. The moment the player places the piece back on the board or on
another piece, a new edge is formed. Hence, game states can easily be discovered
from the video by looking for states where the number of edges changes. Each
node in the graph also stores meta-information such as the coordinates of its
centroid, average colour of the object, number of visible points and the volume
occupied by the bounding box of the object in the current frame. After the states

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

ECCV

#4
ECCV

#4

8 Debidatta Dwibedi and Amitabha Mukerjee

have been detected, the change from one state to another can be found out by
looking for changes in the meta-information. In Fig. 4, some game states from
the Towers of Hanoi dataset, that were discovered automatically, are shown. We

(a) Frame 4 with Semantic Graph (b) Frame 83 with Semantic Graph

(c) Frame 173 with Semantic Graph (d) Frame 251 with Semantic
Graph

Fig. 4: Automatic detection of game states in the Towers of Hanoi Real dataset.
Blocks and their labels in the graph:(1,purple),(2,yellow),(3,green),(4,orange).
For example, comparing graphs (a) and (b), we find that the move consisted in
taking the piece 2 from the stack 3,1,2 to the board.

observe that discovering game states is not a trivial problem. For example in the
4×4 peg solitaire, after a piece has been moved, the intermediate, jumped-over
piece is removed. Here the system needs to be told that the intermediate stage
does not constitute a “game state”. This could also be learned via a heuristic
looking at pauses in the game, but as of now, this has not been implemented.

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

ECCV

#4
ECCV

#4

Predicate Arity and Spatial Structure for Inductive Learning of Game Rules 9

4 Learning Spatial States

Many logical systems start with an implicit assumption about the board on
which the game is being played. But this need not be the case. A human ob-
serving a game immediately notes the type of board on which the game is being
played. Thus, a game such as a 4×4 peg solitaire will have a 2-D structure in the
horizontal plane, whereas the Towers of Hanoi has essentially a 1-D structure
with vertical contacts. The distribution of spatial locations of the pieces during
an entire game can be used to infer the game board, using the following steps:

1. Discover intrinsic dimensionality of the game: The system does not
have any idea in the beginning whether the game is 1D or 2D or 3D. After
it has discovered the game states by using the methods described in the
previous section, it populates a list of the positions of all the game pieces
across all the game-state frames. These are data points where game pieces
have visited during the game play. By performing Singular Value Decompo-
sition(SVD) on these coordinates the intrinsic dimensionality of the game is
known. One-dimensional games have only one significant eigenvalue.

2. Transform from camera coordinates to board coordinates: Xb, Yb, Zb

are coordinates of the object in the frame of the board which will be used
to find the clusters. These co-ordinates are obtained by transforming the
camera coordinates Xc, Yc, Zc by using the cosines of the angles between
the axes. x̂b, ŷb and ẑb represent the unit vectors of the axes in the frame
of the board. ẑb is obtained as the average of normals of the points on the
board. x̂b and ŷb are obtained by SVD mentioned above. The eigenvector
corresponding to the largest eigenvalue gives x̂b if it doesn’t coincide with
ẑb. Similarly, In 2D games the second significant eigenvector gives ŷb. This
can also be found as a cross product of ẑb and x̂b. The above generalizations
don’t hold true when the game being played doesn’t conform to an usual
rectangular grid like triangular peg solitaire.

3. Discover discrete valid positions of game pieces: The next step is to
look for clusters in the positions occupied by game pieces in the game states.
While finding out the optimal number of clusters is an open problem, there
are statistical methods to estimate the optimum number of clusters in a
dataset like ours. One method will be to look for an elbow or a bend in the
sum of squared error(SSE) plot. The locations of the clusters are discovered
by performing k-means clustering using the value of k found by using the
elbow method. In Fig. 5(a) and Fig. 5(b) there are sixteen clusters and three
clusters respectively. Fig. 6 shows the elbow method being used to determine
the number of clusters in corresponding to the four holes in one dimension
in 4× 4PegSolitaire.

4. Represent game state: For each game state, each game piece is assigned
to its nearest cluster. Doing so, allows us to generate a general representa-
tion of game states of any game. This might leave us with a cluster that
is unoccupied which can be represented as empty. We transfer these states
to a logic programming system which will be a better domain to induce

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

ECCV

#4
ECCV

#4

10 Debidatta Dwibedi and Amitabha Mukerjee

(a) 16 clusters in 4×4 Peg Solitaire (b) Three clusters in Towers of Hanoi

Fig. 5: Clusters formed in the significant dimension

Fig. 6: Elbow method to find number of clusters in one axis of 4×4 Peg Solitaire

the rules of games. The first game state(Fig. 1(a)) in Four Frogs will be
[{a},{b},{},{c},{d}] where a, b, c and d are the labels given to the game
pieces. The third hole is unoccupied in the beginning which is represented
by the empty set. In Towers of Hanoi, the state shown in Fig. 1(b) will be
represented by [{a,b,c},{d},{}]. This representation is there to handle
games where pieces can be placed one on top another occupying the same
discrete cluster on the board. This can be extended to 2D games where a
matrix of characters will represent the game state.

4.1 From Semantic Graphs to Horn Clauses

We use meta-information contained in the nodes of the graphs and changes in
that from one game state to the next to generate logical clauses that will help us
learn the rules. We generate the background knowledge and positive examples
(instances seen in video) to come up with hypotheses regarding the rules of the
game.

The ontology used to represent games and involves three kind of predicates:

1. Attributes of game pieces derived from visual classifiers like size, colour,
shape, starting position etc.

2. Relationships between game pieces generated from the edges of the semantic
graphs like on, contact etc.

3. Movement of game pieces generated from changes in game states and se-
mantic graphs (move, transition, etc.).

Background Knowledge:We assume that game pieces are objects that
will need to be monitored. Attributes of the game pieces like color, shape and
size may constrain the possible moves it can make. First, we need to identify

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

ECCV

#4
ECCV

#4

Predicate Arity and Spatial Structure for Inductive Learning of Game Rules 11

the number of pieces. Thus, a 4-piece Towers of Hanoi, may have the following
initial declaration: piece(a). piece(b). piece(c). piece(d).

In 1-D games, location is described with one variable and in 2-D with two. In
the Towers of Hanoi, 3 clusters are discovered on the primary eigenvector. Each
cluster is also associated with a number which helps in comparing their position
with other clusters. They are declared as follows: x(l1). x(l2). x(l3).

project(l1,1). project(l2,2). project(l3,3). A set of colours are pre-
defined and associated with a HSV classifier. These are used to declare a colour
for each game piece:
colour(a,red). colour(b,green). colour(c,yellow). colour(d,blue).

Numerical features like size is obtained as the largest dimension of the bound-
ing box of the game piece, rounded off to an integer scale:
size(a,1). size(b,3). size(c,9). size(d,10).

We do not use shape classifiers in the present analysis since in the games
we consider all objects have the same shape. For each numerical feature there
is a meta-clause generator that compares their values. For example the clause
generated for size is shown below:
greatersize(A,B) :- piece(A),piece(B),size(A,NA),size(B,NB),NA>NB.

The function diff gives us the number of steps a game piece has been moved
and in what direction (positive is along the default axis). absDiff ignores the
direction. In the 4×4 peg-solitaire diff and absDiff operate on each dimension
separately. In the towers of hanoi we also use predicates for top and bottom in a
stack.
diff(X1,X2,Diff):- x(X1),x(X2),project(X1,N1),project(X2,N2),

Diff is N1-N2.

abs(X,X) :- X>=0.abs(X,Y) :- X<0, Y is -X.

absDiff(X1,X2,Diff) :- x(X1),x(X2),project(X1,N1),project(X2,N2),

Diff1 is X1-X2, abs(Diff1,Diff).

neighbour(X1,X2) :- absDiff(X1,X2,1).

top(A,[A]).top(A,[B|C]) :- top(A,C).

bottom(A,[A]).bottom(A,[B|C]) :- bottom(A,B).

Note that for 2D games, the diff is modified xDiff and yDiff and similarly for
absDiff.

Given a set of observations we can obtain Positive examples of board play.
A critical inference has to do with valid Moves of game pieces. A move re-
sults in a transition from one spatial graph to another, which includes a piece
move along with possible side effects (e.g. removal of the intermediate piece in
4×4 peg solitaire). The relationship transition encodes the active piece and the
states of clusters that undergo change from one game state to the next. It has
the following structure:
transition(<active pieces>,<initial states>,<final states)>.

The predicate shown below is from the Towers of Hanoi game and represents a
piece d being moved where the set of game pieces at the initial position l1 was
[a,b,c,d] and that at final position l2 after the move was [d]:
transition(d,[a,b,c,d],[],[a,b,c],[d]).

The arity of the transition predicate varies from game to game. In the 4× 4 Peg

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

ECCV

#4
ECCV

#4

12 Debidatta Dwibedi and Amitabha Mukerjee

Solitaire, the number of pieces involved in a move are two and the number of
positions where there is change from one game state to the next is three. Hence,
the transition relation example for the move where piece p1 in position l1 jumps
over piece p2 in l2 to land in l3 following which p2 is removed looks like this:
transition(p1,p2,[p1],[p2],[],[],[],[p1]).

Table 1: Games learnt with their respective modes of data generation
Game Nature of Dataset

Towers of Hanoi
Animated(generated in Blensor),

Real(recorded with a Kinect)

Four Frogs Animated(generated in Blensor)

4 × 4 Peg Solitaire Game traces of a simulation

5 Experiments and Results

5.1 Towers of Hanoi

In addition to one real game played, we used the RGBD simulator BlenSor[5] to
animate four differently sized blocks with Towers of Hanoi puzzle being solved.
There are 740 frames of 640 × 480 RGBD images recorded on an artificial Kinect
sensor in BlenSor. The real Kinect data with the Towers of Hanoi being by a
person has 1200 frames. The spatial structure discovery has been shown earlier.
The ILP system input includes the following:
colour(a,yellow).colour(b,red).colour(c,green).colour(d,blue).

size(a,10).size(b,8).size(c,4).size(d,2).

on(d,a).on(d,b).on(d,c).on(c,b).on(c,a).on(b,a).

from(d,[a,b,c,d],[d]).from(c,[a,b,c],[c]).from(d,[d],[c,d]).

The rules learnt by PROGOL are:

on(A,B) :- greatersize(B,A).

transition(A,B,C,D,E) :- top(A,C), top(A,E).

The first rule translates as “No disk may be placed on top of a smaller disk.”
The second rule says that piece A moves from the top of the stack C and to the
top of stack E.

5.2 Jumping Frogs puzzle

The animated dataset consists of 560 frames of 640 × 480 RGBD images. There
are five cylindrical holes in a row, two red pegs (which can only move right) and
two blue pegs (only move left)(Fig. 1(a)). Initially, the red pegs are placed in the
two left holes and the blue pegs are placed in the two right holes leaving a hole
in between that is empty. The goal of the game is to swap the positions of the
red pegs with the blue pegs. PROGOL generalizes the clause move and comes
up with four rules:
move(A,B,C) :- diff(B,C,-2), colour(A,blue).

move(A,B,C) :- diff(B,C,-1), colour(A,blue).

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

ECCV

#4
ECCV

#4

Predicate Arity and Spatial Structure for Inductive Learning of Game Rules 13

move(A,B,C) :- diff(B,C,1), colour(A,red).

move(A,B,C) :- diff(B,C,2), colour(A,red).

We learn that if there is an object that moves right its colour must be red and
if there is one which moves left then its colour must be blue. More interestingly,
the system discovers that there are two types of moves a piece is able to do that
is one step and one jump which implies moving two steps at the same time.

The colours of the pegs were then interchanged. The rules learnt by append-
ing the newer clauses with the older ones are:
move(A,B,C) :- diff(B,C,-2), startpos(A,l1).

move(A,B,C) :- diff(B,C,-2), startpos(A,l2).

move(A,B,C) :- diff(B,C,-1), startpos(A,l1).

move(A,B,C) :- diff(B,C,-1), startpos(A,l2).

move(A,B,C) :- diff(B,C,1), startpos(A,l4).

move(A,B,C) :- diff(B,C,1), startpos(A,l5).

move(A,B,C) :- diff(B,C,2), startpos(A,l4).

move(A,B,C) :- diff(B,C,2), startpos(A,l5).

Thus the colour dependence is replaced by a clause for the row where the pieces
start from. This highlights the fact how the rules learnt by induction learning
can undergo radical changes depending on the dataset

5.3 4 × 4 Peg Solitaire

In the beginning, of this game there are 15 marbles arranged in form of a 4 ×
4 grid with one position empty(Fig. 1(c). The marbles can only move by jump-
ing to an empty position and by doing so the piece over which they jumped
is removed. The objective is to remove as many pieces as one can, preferably
reaching a single piece. We use game traces of a simulation of this game being
solved to test how good our system is in inducing the rules in case it has perfect
information regarding the game states. The rules learnt by ILP are:

move(A,B,C):- xabsdiff(B,C,2). move(A,B,C):- yabsdiff(B,C,2).

transition(A,B,C,D,E,E,E,C):-piece(A),piece(B),top(A,C),

bottom(A,C),top(B,D),bottom(B,D),empty(E).

The two move rules have learned that the moves take place either horizontal
or vertical rows of three neighbouring cells. In the transition predicate, the ar-
guments are the pieces involved (here A,B), and the remaining 3+3 arguments
are the pieces at the three locations involved, before and after the move. Thus
the learned rule says that the state of loc1 and loc2 changes to E, which was
the initial state of loc3. The state E is identified as the special constant empty()
at the end of the rule. The piece at loc3 becomes C which was initially at loc1
(i.e. the piece A is moved to loc3). The top and bottom rules are used to assert
equivalence - basically A and C are colocated, as are B,D. Thus, the rule infers
that A moves from loc1 to loc 3, and that the piece B is removed from the
jumped-over position loc2. The three locations are arranged in a horizontal or
vertical row of the board.

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

ECCV

#4
ECCV

#4

14 Debidatta Dwibedi and Amitabha Mukerjee

5.4 Discussion

We observe that in all three cases, the spatial structure can be inferred at the
visual level, permitting a set of constants which the position attributes in move()
etc can be assigned to. Also the number of pieces and positions affected by move
are identified in the vision system. When the resulting game states and transi-
tions are introduced into the ILP system, we find that it is able to derive the
right rules, such as identifying that in ToH, the higher disks must be cmaller,
or that in peg solitaire, adjacency relations (for move) are only row or column-
wise. Similarly, in the peg solitaire, the fact that the jumped-over piece (also an
argument to move) is removed, is inferred.

6 Conclusion

One of the major challenges in inducing knowledge representations involves dis-
covering the right set of logical primitives to be used. Here we have presented a
framework that is able to analyze RGBD videos of game scenes using dynamic se-
mantic graphs, which permit generation of suitable Horn Clause structures. The
system uses an improved tracking based on the assumption that game pieces do
not change shape or visual attributes (like colour or shape). We then demon-
strate its application in learning the rules of game and puzzles. The system can
successfully induce the spatial description of boards for 1-D and 2-D games, and
also induce vertical contact situations and their ramifications for an otherwise
1-D game such as Towers of Hanoi. The arity of predicates such as “move” varies
in these games and is captured via the pre-processing in the Semantic Graph
step.

As of now, we have demonstrated this for only three simple games. A number
of loose ends remain in the present implementation. As of now, the end states
of a game are not being discovered, hence we are not able to generate a Game
Description Language(GDL) which will enable the system to start playing these
games. In most real situations, the learner often needs to be told about the start
and end configurations along with whether it was a winning or losing game, etc.
Our system can be enhanced with this start and goal state knowledge to generate
the suitable GDL for automatic game playing. Further, the system cannot handle
multi-player games, which require event calculus representations. However, our
main focus has been to demonstrate the idea of obtaining descriptors with the
correct number of arguments, which would apply equally to event calculus or
other planning formalisms.

Also, for any system using vision, improvements are always possible in track-
ing. Recent research[23][25] on multi-object tracking has shown encouraging re-
sults which may be helpful in tracking for games with more game pieces.

However, the main contribution of this work is at the level of the implicit
knowledge used in defining logical descriptors. This is a challenging problem for
knowledege representation in general that has not been adequately investigated,
and this work takes some initial steps in developing vision-based approaches
towards discovering this implicit structure.

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

ECCV
#4

ECCV
#4

Predicate Arity and Spatial Structure for Inductive Learning of Game Rules 15

References

1. De Raedt, L.: Inductive logic programming. In: Encyclopedia of machine learning.
Springer (2010) 529–537

2. Muggleton, S.: Inverse entailment and progol. New generation computing 13(3-4)
(1995) 245–286

3. Aksoy, E.E., Abramov, A., Dörr, J., Ning, K., Dellen, B., Wörgötter, F.: Learning
the semantics of object–action relations by observation. The International Journal
of Robotics Research 30(10) (2011) 1229–1249

4. Yang, Y., Fermuller, C., Aloimonos, Y.: Detection of manipulation action conse-
quences (mac). In: CVPR 2013. (2013)

5. Gschwandtner, M., Kwitt, R., Uhl, A., Pree, W.: BlenSor: Blender Sensor Simu-
lation Toolbox Advances in Visual Computing. Volume 6939 of Lecture Notes in
Computer Science. Springer Berlin / Heidelberg, Berlin, Heidelberg (2011) 199–208

6. Barbu, A., Narayanaswamy, S., Siskind, J.M.: Learning physically-instantiated
game play through visual observation. In: Robotics and Automation (ICRA), 2010
IEEE International Conference on, IEEE (2010) 1879–1886

7. Santos, P., Colton, S., Magee, D.: Predictive and descriptive approaches to learning
game rules from vision data. In: Advances in Artificial Intelligence-IBERAMIA-
SBIA 2006. Springer (2006) 349–359

8. Magee, D., Needham, C., Santos, P., Cohn, A., Hogg, D.: Autonomous learning for
a cognitive agent using continuous models and inductive logic programming from
audio-visual input. In: Proceedings of the AAAI workshop on Anchoring Symbols
to Sensor Data. (2004) 17–24

9. Hazarika, S.M., Bhowmick, A.: Learning rules of a card game from video. Artificial
Intelligence Review 38(1) (2012) 55–65

10. Yamamoto, Y.: Research on Logic and Computation in Hypothesis Finding. PhD
thesis

11. Muggleton, S.H., Lin, D., Tamaddoni-Nezhad, A.: Mc-toplog: Complete multi-
clause learning guided by a top theory. In: Inductive Logic Programming. Springer
(2012) 238–254

12. Dubba, K., Bhatt, M., Dylla, F., Hogg, D.C., Cohn, A.G.: Interleaved inductive-
abductive reasoning for learning complex event models. In: Inductive Logic Pro-
gramming. Springer (2012) 113–129

13. Edelkamp, S., Kissmann, P.: Symbolic exploration for general game playing in
pddl. In: ICAPS-Workshop on Planning in Games. Volume 141. (2007) 144

14. Kaiser, L.: Learning games from videos guided by descriptive complexity. In:
Twenty-Sixth AAAI Conference on Artificial Intelligence. (2012)

15. Björnsson, Y.: Learning rules of simplified boardgames by observing. In: ECAI.
(2012) 175–180

16. Aein, M.J., Aksoy, E.E., Tamosiunaite, M., Papon, J., Ude, A., Worgotter, F.:
Toward a library of manipulation actions based on semantic object-action relations.
In: IROS-2013. (2013) 4555–4562

17. Delaitre, V., Fouhey, D.F., Laptev, I., Sivic, J., Gupta, A., Efros, A.A.: Scene
semantics from long-term observation of people. Computer Vision–ECCV 2012
(2012) 284–298

18. Koppula, H.S., Gupta, R., Saxena, A.: Learning human activities and object affor-
dances from rgb-d videos. The International Journal of Robotics Research 32(8)
(2013) 951–970

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

ECCV

#4
ECCV

#4

16 Debidatta Dwibedi and Amitabha Mukerjee

19. Dantam, N., Essa, I., Stilman, M.: Linguistic transfer of human assembly tasks to
robots. In: Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International
Conference on, IEEE (2012) 237–242

20. Oikonomidis, I., Kyriazis, N., Argyros, A.A.: Efficient model-based 3d tracking of
hand articulations using kinect. In: BMVC. (2011) 1–11

21. Rusu, R.B.: Semantic 3D Object Maps for Everyday Manipulation in Human
Living Environments. PhD thesis, Computer Science department, Technische Uni-
versitaet Muenchen, Germany (October 2009)

22. Dellen, B., Erdal Aksoy, E., Wörgötter, F.: Segment tracking via a spatiotemporal
linking process including feedback stabilization in an nd lattice model. Sensors
9(11) (2009) 9355–9379

23. Koo, S., Lee, D., Kwon, D.S.: Multiple object tracking using an rgb-d camera by
hierarchical spatiotemporal data association. In: Intelligent Robots and Systems
(IROS), 2013 IEEE/RSJ International Conference on, IEEE (2013) 1113–1118

24. Meagher, D.: Geometric modeling using octree encoding. Computer graphics and
image processing 19(2) (1982) 129–147

25. Papon, J., Kulvicius, T., Aksoy, E.E., Worgotter, F.: Point cloud video object
segmentation using a persistent supervoxel world-model. In: Intelligent Robots
and Systems (IROS), 2013 IEEE/RSJ International Conference on, IEEE (2013)
3712–3718

