
ALC(F): a new description logic for spatial
reasoning in images
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Abstract. In image interpretation and computer vision, spatial rela-
tions between objects and spatial reasoning are of prime importance
for recognition and interpretation tasks. Quantitative representations of
spatial knowledge have been proposed in the literature. In the Artificial
Intelligence community, logical formalisms such as ontologies have also
been proposed for spatial knowledge representation and reasoning, and a
challenging and open problem consists in bridging the gap between these
ontological representations and the quantitative ones used in image in-
terpretation. In this paper, we propose a new description logic, named
ALC(F), dedicated to spatial reasoning for image understanding. Our
logic relies on the family of description logics equipped with concrete do-
mains, a widely accepted way to integrate quantitative and qualitative
qualities of real world objects in the conceptual domain, in which we have
integrated mathematical morphological operators as predicates. Merging
description logic with mathematical morphology enables us to provide
new mechanisms to derive useful concrete representations of spatial con-
cepts and new qualitative and quantitative spatial reasoning tools. It also
enables imprecision and uncertainty of spatial knowledge to be taken into
account through the fuzzy representation of spatial relations. We illus-
trate the benefits of our formalism on a model-guided cerebral image
interpretation task.

Keywords: Spatial Reasoning; Ontology-based Image Understanding;
Description Logics

1 Introduction

In image interpretation and computer vision, spatial relations between objects
and spatial reasoning are of prime importance for recognition and interpretation
tasks [5, 6], in particular when the objects are embedded in a complex environ-
ment. Indeed, spatial relations allow solving ambiguity between objects having
a similar appearance, and they are often more stable than characteristics of
the objects themselves. This is typically the case of anatomical structures, as
illustrated in Figure 1, where some structures, such as the internal grey nuclei
(thalamus, putamen, caudate nuclei), may have similar grey levels and similar
shapes, and can be therefore easier distinguished for their individual recognition
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using spatial relations [14, 34]. Spatial relations also allow improving object and
scene recognition in images such as photographs [30, 18], or satellite images [2,
22, 27, 36].

Spatial reasoning can be defined as the domain of spatial knowledge represen-
tation, in particular spatial relations between spatial entities, and of reasoning
on these entities and relations. This field has been largely developed in artifi-
cial intelligence, in particular using qualitative representations based on logical
formalisms [1, 37]. In image interpretation and computer vision, it is much less
developed and is mainly based on quantitative representations [23, 9]. Bridging
the gap between the qualitative representations and the quantitative ones is a
challenging and open issue to make them operational for image interpretation.

Description logics (DL) equipped with concrete domains [28] are a widely ac-
cepted way to integrate concrete and quantitative qualities of real world objects
with conceptual knowledge and as a consequence to combine qualitative and
quantitative reasoning useful for real-world applications. In this paper, we pro-
pose a new description logic, named ALC(F), dedicated to spatial reasoning for
image understanding. In this framework, the combination of a description logic
with concrete domains and mathematical morphology provides new mechanisms
to derive useful concrete representations of concepts and new reasoning tools,
as demonstrated in [20, 21]. This paper builds upon these works by studying in
depth the formal properties of this framework and revisiting the tableau decision
algorithm. This framework also enables us to take into account imprecision to
model vagueness, inherent to many spatial relations and to gain in robustness
in the representations [9]. The rest of this paper is organized as follows. In Sec-
tion 2, we review some related work and we recall how mathematical morphology
can be used to derive fuzzy representations of spatial relations. In Section 3, we
briefly present the main concepts of a spatial relation ontology used to represent
spatial knowledge. We describe our new logic and its properties in Section 4. The
reasoning and inference components are detailed in Section 5, and we illustrate
the benefits of this framework for image interpretation tasks in Section 6, with
the example of brain structure recognition in 3D images.

2 Spatial knowledge representations

As mentioned in Section 1, spatial relations between objects of a scene are of
prime importance for semantic scene understanding. Several models for repre-
senting spatial relations have been proposed in the literature. These models can
be classified according to different viewpoints:

– The nature of the model: quantitative or semi-quantitative models versus
qualitative ones. In image interpretation and computer vision, many quan-
titative or semi-quantitative representations have been proposed. Many of
them assimilate objects to basic entities such as centroid or bounding box [23]
and others are based on the notion of histograms [31, 29]. On the contrary,
in the artificial intelligence field, many qualitative and ontological models
have been proposed (for instance, see [13] for a review).
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– The type of the spatial relations: many authors have stressed the impor-
tance of topological relations and have proposed models for them [32, 15]
but distances and directional relative position [9, 24] are also important, as
well as more complex relations such as “between”, “surround” or “along”
for instance.

– Their ability to model some important characteristics of spatial knowledge
and in particular its imprecision [9].

The choice of a representation also depends on the type of question raised and
the type of reasoning one wants to perform [10]: (1) which is the region of space
where a relation with respect to a reference object is satisfied ? (2) to which
degree is a relation between two objects satisfied?

In the following, we briefly present some fuzzy models of spatial relations
using mathematical morphology on which we build our logic.

We denote by S the spatial (image) domain, and by F the set of fuzzy
sets defined over S, defined via their membership functions, associating with
each point of space a membership value in [0, 1]. The usual partial ordering on
fuzzy sets is used, denoted by ≤F , and the associated infimum ∧ and supremum
∨. The empty set is denoted by ∅F and the fuzzy set with membership value
equal to 1 everywhere by 1F . For a t-norm t and its residual implication I,
(F ,≤F ,∧,∨, ∅F , 1F , t, I) is a residuated lattice of fuzzy sets defined over the
image space by S.

As shown in [10] and the references therein, mathematical morphology is
a powerful tool to model spatial relations in various settings (sets, fuzzy sets,
propositional logics, modal logics...). In the fuzzy set setting, the two main mor-
phological operators, dilation δ and erosion ε, are defined from a t-norm t and
its residual implication I as [12]:

∀x ∈ S, δν(µ)(x) = ∨y∈St(ν(x− y), µ(x)), (1)

∀x ∈ S, εν(µ)(x) = ∧y∈SI(ν(y − x), µ(x)). (2)

The idea for mathematical morphology based spatial reasoning is to define
the semantics of a spatial relation by a fuzzy structuring element ν in the spatial
domain, and to use morphological operations to compute the region of space
where the relation is satisfied with respect to a reference object. For instance, if
ν represents the relation “right of”, then δν(µ)(x) represents the degree to which
x is to the right of the fuzzy set µ (an example is illustrated in Figure 2). This
allows answering the first question above. As for the second question, histogram
based approaches can be adopted [31], or pattern matching approaches, applied
to the previous result and the fuzzy set representing the second object. A review
of fuzzy spatial relations can be found in [9].

3 An ontology of spatial relations

The semantic interpretation of images can benefit from representations of useful
concepts and the links between them as ontologies. We build on the work of [19]
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which proposes an ontology of spatial relations with the aim of guiding image
interpretation using spatial knowledge. We briefly recall the main concepts of
this ontology using description logics (DLs) as a formal language and we rely on
the standard notations of DLs (see [3] for an introduction).

One important entity of this ontology, as proposed in [19], is the concept
SpatialObject (SpatialObject v >). As mentioned in [26], the nature of spatial
relations is twofold: they are concepts with their own properties but they are
also links between concepts and thus an important issue is related to the choice
of modeling spatial relations as concepts or as roles in DLs. In [19], a spatial
relation is not considered as a role (property) between two spatial objects but
as a concept on its own (SpatialRelation), enabling to address the two spatial
reasoning questions mentioned in Section 2.

– A SpatialRelation is subsumed by the general concept Relation . It is
defined according to a ReferenceSystem :
SpatialRelation v
Relation u 3 type.{Spatial} u ∃ hasReferenceSystem.ReferenceSystem

– The concept SpatialRelationWith refers to the set of spatial relations
which are defined according to at least one or more reference spatial objects
RO (hasRO):
SpatialRelationWith ≡
SpatialRelation u ∃ hasRO.SpatialObject u ≥ 1 hasRO

– We define the concept SpatiallyRelatedObject which refers to the set of
spatial objects which have at least one spatial relation (hasSR) with another
spatial object. This concept is useful to describe spatial configurations:
SpatiallyRelatedObject ≡
SpatialObject u ∃ hasSR.SpatialRelationWith u ≥ 1 hasSR

– At last, the concept DefinedSpatialRelation represents the set of spatial
relations for which target (hasTargetObject) and reference objects (hasRO)
are defined:
DefinedSpatialRelation ≡
SpatialRelation u ∃ hasRO.SpatialObject u ≥ 1 hasRO u
∃ hasTargetObject.SpatialObject u = 1 hasTargetObject

4 Proposed logic for spatial reasoning: ALC(F)

In this section, we introduce mathematical morphology as a spatial reasoning
tool. In particular, mathematical morphology operators are integrated as predi-
cates of a spatial concrete domain. The main objective is to provide a foundation
to reason about qualitative and quantitative spatial relations. The proposed logic
is built on ALCRP(D) [16, 17] with the spatial concrete domain F. We name it
ALC(F) in the rest of the paper.

4.1 ALC(F) - Syntax and semantics

Definition 1 (Spatial concrete domain). A spatial concrete domain is a
pair F = (∆F, ΦF) where ∆F = (F ,≤F ,∧,∨, ∅F , 1F , t, I) is a residuated lattice
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of fuzzy sets defined over the image space S, S being typically Z2 or Z3 for 2D or
3D images, with t a t-norm (fuzzy intersection) and I its residuated implication.
ΦF denotes a set of predicate names on ∆F which contains:

– The unary predicates ⊥S and >S defined by ⊥F
S = ∅F and >F

S = 1F .
– The name of the unary predicate µX defined by (µX)F ∈ F ((µX)F : S →

[0, 1]). The predicate associates to a spatial concept X a unique fuzzy set in
the concrete domain F. For each point x ∈ S, µF

X(x) represents the degree
to which x belongs to the spatial representation of the object X in the spatial
domain (the image in our illustrative example).

– The name of the unary predicate νR defined as νFR ∈ F (νFR : S → [0, 1]). The
predicate associates to a spatial relation R, the fuzzy structuring element νFR
defined on S which represents the fuzzy relation R in the spatial domain.

– The name of the unary predicate δµXνR , defined by (δµXνR )F = δνF
R

(µF
X) ∈ F ,

with δ a fuzzy dilation defined as in Equation 1.
– The name of the unary predicate εµXνR , defined as (εµXνR )F = ενF

R
(µF
X) ∈ F ,

with ε a fuzzy erosion defined as in Equation 2.
– The names of two binary predicates ud,td: (µX1

ud µX2
)F = µF

X1
∧µF

X2
and

(µX1 td µX2)F = µF
X1
∨ µF

X2
, with ∧ and ∨ the infimum and the supremum

of F .
– The name of a binary predicate \d, defined as (µX1 \d µX2)F = µF

X1
\ µF

X2
,

with \ the difference between fuzzy sets.
– The name of a unary predicate − which defines the substraction between the

membership function of a fuzzy set with a number into [0, 1].
– Names for composite predicates consisting of composition of elementary pred-

icates.

We now illustrate how these fuzzy concrete domain predicates are used to
represent spatial relations. As in [16, 17], we assume that each abstract spa-
tial relation concept and each abstract spatial object concept is associated with
its fuzzy representation in the concrete domain by the concrete feature has-
ForFuzzyRepresentation, denoted hasFR (it is a concrete feature because each
abstract concept has only one fuzzy spatial representation in the image space).

– SpatialObject ≡ ∃ hasFR.>S . It defines a SpatialObject as a concept which
has a spatial existence in image represented by a spatial fuzzy set.

– In the same way, we have: SpatialRelation ≡ Relation u∃ hasFR.>S .

Then, the following constructors can be used to define the other concepts of
the ontology:

– ∃ hasFR.µX restricts the concrete region associated with the object X to the
specific spatial fuzzy set defined by the predicate µX ,

– ∃ hasFR.νR restricts the concrete region associated with the relation R to
the specific fuzzy structuring element defined by the predicate νR,

– ∃ hasFR.δµXνR restricts the concrete region associated with the spatial relation
R to a referent object X, denoted R X, to the spatial fuzzy set obtained by
the dilation of µF

X by νFR,
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– each concept R X can then be defined by:
R X ≡ SpatialRelation u∃ hasRO.X v SpatialRelationWith et R X ≡ SpatialRelation

u∃ (hasFR,hasRO.hasFR).λ,
where λ is a binary predicate built with the mathematical fuzzy operators δ
and ε. For a relation R which has a referent object X, we write:

(hasFR,hasRO.hasFR).δ ≡ hasFR. δµXνR ,

– C ≡ SpatialObjectuhasSR.R X denotes the set of spatial objects which have a
spatial relation of type R with the referent object X and we have the following
axioms:

C v ∃relationTo.X and C v SpatiallyRelatedObject.

Examples for distance relations. This new formalism can be used to model
different types of spatial relations and to derive useful concrete representations
of these spatial relations. We illustrate our approach with distance relations. As
for other relations, distance relations can be defined using fuzzy structuring ele-
ments and fuzzy morphological operators [8]. For instance, the Close to relation
can be defined by the structuring element νClose To, which provides a representa-
tion of the relation in the spatial domain S. This representation can be learned
from examples. We can thus define the abstract spatial relation Close to as:
Close To ≡ DistanceRelation u∃hasFR.νClose To. Let X ≡ ∃ hasFR.µX , µF

X being
the spatial fuzzy set representing the spatial extent of the object X in the con-
crete domain (image space). Using the concept-forming predicate operator ∃f.P
(see [16]), we can define restrictions for the fuzzy representation of the abstract
spatial concept Close to X using the dilation operator δ. As a consequence, we

have: Close To X ≡ DistanceRelation u∃hasFR.δµXνClose To . The value δ
µF
X

νF
Close To

(x)

represents the degree to which a point x of S belongs to the fuzzy dilation of
the fuzzy spatial representation of X by the fuzzy structuring element νFClose To.
This approach naturally extends to any distance relation expressed as a vague
interval.

4.2 Properties

Admissibility of F = (∆F, ΦF). A concrete domain D is called admissible
if the set of its predicate names is closed under negation and contains a name
>D for ∆D, and the satisfiability problem for finite conjunctions of predicates is
decidable [28]. Let us prove that the concrete domain F = (∆F, ΦF) is admissible
thanks to the algebraic setting of mathematical morphology and fuzzy sets.
Indeed, using the classical partial order on fuzzy sets ≤F , (F ,≤F ) is a complete
lattice.

1. The name for ∆F is >S .
2. ΦF is closed under negation:

– ¬>S = ⊥S ; ¬⊥S = >S ;
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– ∀µF
X ∈ F ,¬µF

X ∈ F (the negation is then a fuzzy complementation and
F is closed under complementation); ∀νFR ∈ F ,¬νFR ∈ F ;

– ∀(µ, ν) ∈ F2,¬δν(µ) = εν(¬µ) and ¬εν(µ) = δν(¬µ) (duality of erosion
and dilation), for dual connectives t and I [11].

3. For decidability of the satisfiability of finite conjunctions of predicates, the
same reasoning as in [16] can be applied, leading to the following algorithm:
– negated predicates can be replaced by other predicates (or disjunctions

of predicates), so that only non-negated predicates need to be considered;
– concrete representations of µX and νR are computed and considered as

variables;
– relations can be computed between the concrete representations of spa-

tial objects, using classical algorithms of mathematical morphology (here
we consider a discrete finite space, and these algorithms are tractable);

– then it can be directly checked whether a conjunction of predicates is
satisfied or not (this is performed in the concrete domain, i.e. a digital
finite space, and it therefore tractable).

Let us note that tractability is guaranteed by the fact that the computation
of dilations has a low computational complexity. If it is computed using a brute
force method, its complexity is in O(Nnse) where N is the size of the spatial
domain (i.e. number of pixels or voxels) and nse is the size of the support of
the structuring element (with nse � N in general). Moreover, fast propagation
algorithms exist for a number of relations (see e.g. [7] for directions). Addi-
tionally, most relations can be computed on sub-sampled images to reduce the
computational cost while keeping enough accuracy.

Moreover, several interesting properties for spatial reasoning can be derived
from properties of mathematical morphology (for properties of mathematical
morphology see [35] and [12, 11] for the fuzzy case). We summarize here the
most important ones:

1. ∨-commutativity: δνF
R

(µF
X1

)∨ δνF
R

(µF
X2

) = δνF
R

(µF
X1
∨ µF

X2
) and δνF

R1
(µF
X)∨

δνF
R2

(µF
X) = δνF

R1∨νF
R2

(µF
X) and therefore we have the following rules:

Rule 1: R X1t R X2 ≡ R (X1t X2).
Rule 2: R1 Xt R2 X ≡ R12 X,

where R12 has for representation in the concrete domain νFR1 ∨ νFR2.

2. ∧-monotony: δνF
R

(µF
X1
∧ µF

X2
) ≤F δνF

R
(µF
X1

) ∧ δνF
R

(µF
X2

), leading to:

Rule 3: R (X1u X2) v R X1u R X2.

3. Increasingness: µF
X1
≤F µF

X2
⇒ ∀νFR ∈ F , δνF

R
(µF
X1

) ≤F δνF
R

(µF
X2

) and

νFR1
≤F νFR2

⇒ ∀µF
X ∈ F , δνF

R1

(µF
X) ≤F δνF

R2

(µF
X) which implies:

Rule 4: X1 v X2 ⇒ ∀ R, R X1 v R X2.
Rule 5: R1 v R2 ⇒ ∀ X, R1 X v R2 X.

4. Iterativity property: δνF
R1

(δνF
R2

(µF
X)) = δδ

νF
R1

(νF
R2

)(µ
F
X) hence:

Rule 6: R1 (R2 X) ≡ (R1 R2) X,
where R1 R2 is the relation having as fuzzy concrete representation δνF

R1

(νFR2
).
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5. Extensivity: νFR(O) = 1 ⇐⇒ ∀µF
X ∈ F , µF

X ≤F δνF
R

(µF
X), where O is the

origin of S hence:
Rule 7: X v R X for any relation defined by a dilation with a structuring

element containing the origin of S (with membership value 1).
6. Duality: ενF

R
(µF
X) = 1 − δνF

R
(1 − µF

X) for dual t and I, which induces
relations between some relations. For instance the fuzzy representation of
the mereotopological relation IntB X can be written as: µF

X \ (εµXν0 )F =
µF
X∧(δ1−µXν0 )F = (δ1−µXν0 )F\(1−µX)F, where ν0 is an elementary structuring

element, hence:
Rule 8: IntB X ≡ ExtB ¬X.

These properties provide the basis for inference processes. Other examples use
simple operations, such as conjunction and disjunction of relations, in addition
to these properties, to derive useful spatial representations of potential areas
of target objects, based on knowledge about their relative positions to known
reference objects. This will be illustrated in Section 6 on a real example.

5 Reasoning and inference method

A knowledge base 〈T ,A〉 built with our description logic framework is composed
of two components: the terminology T (i.e. Tbox) and assertions about individu-
als A (i.e. Abox). Different kinds of reasoning can be performed using description
logics: basic ones, including concept consistency, subsumption, instance check-
ing, relation checking, knowledge base consistency, and non-standard ones [25].
In [3], it has been shown that basic inference services can be reduced to Abox
consistency checking. For instance, concept satisfiability, (i.e. C is satisfiable
with respect to T if there exists a model I of T such that CI is not empty) can
be reduced to verifying that the Abox A = {a : C} is consistent.

In description logics, this reasoning is often based on tableau algorithms, also
known as completion algorithms. A good overview on these algorithms can be
found in [4]. The principle of these algorithms is the following: starting from an
initial Abox A0 whose consistency is to be decided, the algorithm iteratively ap-
plies completion rules to transform the given Abox into more descendent Aboxes.
The algorithm results in a tree of Aboxes (or a forest in the case of Aboxes in-
volving multiple individuals with arbitrary role relationships between them). The
algorithm stops either if the produced Abox is complete, i.e. no more rules are
applicable, or all leafs in the tree are contradictory (i.e. with clashes). Tableau
algorithms often assume that all the concept terms occurring in the Abox are
converted in their negation normal form.

In our framework, to combine terminological with quantitative reasoning in
the concrete domain, the tableau calculus proposed in [17] is slightly modified.

First, the properties of description logics derived from properties of mathe-
matical morphology can be directly used to expand the knowledge base and to
facilitate the consistency checking. For instance, each disjunction of spatial rela-
tions is replaced according to the following equivalences: R X1t R X2 ≡ R (X1t
X2) and R1 Xt R2 X ≡ R12 X.
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Moreover, in our framework, we assume as an ontological commitment that
each instance of abstract concept is associated with its fuzzy spatial represen-
tation in the image space with the feature hasFR. As a consequence, each step
of the tableau calculus algorithm enables us to derive spatial constraints on the
fuzzy concrete representation using the properties of mathematical morphology.
Thus, we consider that an instance of a concept C describing an object having a
spatial relation R with the instance of another concept X (i.e. R X) is satisfiable
if and only if the fuzzy representation in the image domain of the instance of
C fits with the fuzzy representation of the instance of the relation R X with the
function fit : F × F → {0, 1} which verifies the strict inclusion between fuzzy
sets1:

fit(µF
X1
, µF
X2

) = 1⇔ µF
X1
≤F µF

X2
.

If it does not fit, a clash occurs in the Abox. More precisely, this clash occurs
when we have the following assertions in the Abox:

– s : X, (s, t) : hasSR, t : R Y, (s, µX) : hasFR, (t, λµYνR ) : hasFR and, in the
spatial domain, fit(µF

X , (λ
µY
νR )F) = 0 where λ is the fuzzy predicate enabling

the building of the fuzzy representation of the spatial relation R Y.

Others occuring clashes are:

– a : C ∈ A, a : ¬C ∈ A
– (a, x) : f ∈ A, (a, y) : f ∈ A with x 6= y

As an example, let us detail some completion rules introduced in our frame-
work for spatial reasoning:

– Spatial Object Conjunction Rule (Ru)
• Premise: (a : X u Y ) ∈ A, (a, µ) : hasFR, (a : X) /∈ A, (a : Y ) /∈ A.
• Consequence: A′

= A ∪ {a : X, a : Y } and we have the spatial con-
straint µ = µX ud µY .

This rule means that if a conjunction is included in A, then each part of
the conjunction should be included in A as well (this is what is meant by
“completion”). Here the novelty when using concrete domains is that the
constraint µ = µX ud µY is added as well.

– Spatial Relation 1 (R1RX )
• Premise: (a : R X) ∈ A, ((a, µ) : hasFR) ∈ A, ¬∃r, (r : R) ∈ A,¬∃x, (x :
X) ∈ A.

• Consequence:A′
= A∪{r : R, (r, νR) : hasFR, x : X, (x, µX) : hasFR, (a, x) :

hasRO} and we have the spatial constraint µ = λµXνR .
This rule means that from a : R X(a ∈ (R X)I), we can deduce that there
must exist an individual r which is an instance of the relation R having
the fuzzy representation νR (i.e. the relation is well defined in the ab-
stract and the concrete domains) and an individual x which is an instance
of X (having the fuzzy representation µX), such that (a, x) ∈ (hasRO)I

1 Other functions could be used.
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and the binary predicate λµXνR holds in the concrete domain. λ is the
fuzzy predicate enabling the building of the fuzzy representation of the
spatial relation R X. Note that this rule is a shortcut of the application
of the conjunction rule, the exist restriction rule and the complex role
rule of [17] on the assertion a : R X where R X ≡ SpatialRelation u∃
(hasFR,hasRO.hasFR).λ.

– Spatial Relation 2 (R2RX )

• Premise: (a : R X) ∈ A, ((a, µ) : hasFR) ∈ A, ∃r, (r : R) ∈ A and ((r, νR) :
hasFR) ∈ A,∃x, x : X ∈ A and ((x, µX) : hasFR) ∈ A.

• Consequence: A′
= A ∪ {(a, x) : hasRO} and we have the spatial

constraint µ = λµXνR .

– In Spatial Relation (R∃hasSR)

• Premise: (a : ∃hasSR.R X) ∈ A, ((a, µ) : hasFR) ∈ A, ¬∃b, (b : R X) ∈
A and ((a, b) : hasSR) ∈ A.

• Consequence: A′
= A ∪ {b : R X, (a, b) : hasSR, (b, λµXνR ) : hasFR} and

we have the spatial constraint fit(µF, (λµXνR )F) = 1.

6 An illustration in the domain of medical image
interpretation

In this section, we illustrate on a simple but real example how our framework
can be used to support terminological and spatial reasoning in a cerebral image
interpretation application. In particular, our aim is to segment and recognize
anatomical structures progressively by using the spatial information between
the different structures. The recognition is performed in 3D magnetic resonance
images (MRI) obtained in routine clinical acquisitions. A slice of a typical 3D
MRI is shown in Figure 1.

putamen

thalamus

lateral ventricles

caudate nucleus

Fig. 1. An example of a slice of a 3D MRI of the brain, with a few anatomical structures
indicated.
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6.1 Modeling and reasoning

Anatomical knowledge, derived from anatomical textbooks [38] and from exist-
ing medical ontologies, such as the FMA [33], is converted in our formalism as
follows.We denote respectively LV, RLV and LLV the Lateral Ventricle, the Right
Lateral Ventricle and the Left Lateral Ventricle. The other anatomical structures
we consider are the Caudate Nucleus (denoted CN, RCN, LCN) which are grey
nuclei (denoted GN) of the brain. We have the following TBox (T ) describing
anatomical knowledge using our spatial logic ALC(F):

AnatomicalStructure v SpatialObject
GN v AnatomicalStructure
RLV ≡ AnatomicalStructure u ∃ hasFR.µRLV
LLV ≡ AnatomicalStructure u ∃ hasFR.µLLV
LV ≡ RLV t LLV
Right of ≡ DirectionalRelation u ∃ hasFR.νIN DIRECTION 0

Close to ≡ DistanceRelation u ∃ hasFR.νCLOSE TO

Right of RLV ≡ DirectionalRelation u ∃ hasRO.RLV u ∃ hasFR.δµRLVνIN DIRECTION 0

Close to RLV ≡ DistanceRelation u ∃ hasRO.RLV u ∃ hasFR.δµRLVνCLOSE TO

RCN ≡ GN u∃ hasSR.(Right of RLV u Close to RLV)
CN ≡ GN u∃ hasSR.(Close to LV)
CN ≡ RCN t LCN
The role forming predicate allows defining explicitly the dilation or erosion

as a role (for instance the dilation which leads to the definition of the region to
the right of the lateral ventricle):

dilate ≡ (hasFR,hasRO.hasFR).δ
Right of RLV ≡ Right of u∃ dilate.RLV

(a) (b) (c) (d)

Fig. 2. (a) The right ventricle corresponding to the image region S1 is superimposed
on one slice of the original image (3D MRI). (b) Fuzzy structuring element representing
the semantics of Right of in the image. (c) Fuzzy structuring element representing the
semantics of Close to in the image. (d) (δ

µS1
νIN DIRECTION 0)F ∧ (δ

µS1
νCLOSE TO )F.

The situation in Figure 2(a) corresponds to the following Abox A:

c1: RLV , (c1,µS1): hasFR
r1: Right of, (r1,νIN DIRECTION 0): hasFR
r2: Close to, (r2,νCLOSE TO): hasFR
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It means that we can observe an instance of the Right Lateral Ventricle (RLV) on
Figure 2(a) and that we know its spatial extent in the image domain (µS1

). More-
over, the spatial relations Right of and Close to has been defined in the spatial do-
main by the learning from examples of the structuring elements νIN DIRECTION 0

and νCLOSE TO.

First scenario. In a first example, our aim is to find some spatial constraints
in the image domain on an instance c2 of the Right Caudate Nucleus (RCN)
given available knowledge, i.e. K = (T ,A). Our objective is to infer spatial
constraints on concrete domains to ensure the satisfiability of RCN given K.
Using the basics of description logics reasoning, it means that the Abox enriched
with {c2 : RCN, (c2, µS2

) : hasFR} is consistent.
First, we replace the concept RCN by its definition in T :

A ∪ {c2 : GN u ∃hasSR.(Right of RLV u Close to RLV), (c2, µS2) : hasFR}.

Then, completion rules are used to transform the given Abox into more de-
scendent Aboxes and to derive constraints on the fuzzy representations of con-
cepts in the concrete domain (in our case, the image domain). For instance, the
completion rule adds the assertion:

c2 : GN, c2 : ∃hasSR.(Right of RLV u Close to RLV)

and we have an individual name c3 such that:

c3 : Right of RLV u Close to RLV, (c2, c3) : hasSR, (c3, µS3
) : hasFR

In the spatial domain, it means that µF
S2

and µF
S3

must fit, i.e. fit(µF
S2
, µF
S3

) = 1.
As c3 is an instance of a conjunction of spatial objects, its fuzzy spatial

representation in the concrete domain is:

((µRight of RLV) ud (µClose to RLV))F

and we add the following assertions in the ABox:

c3 : Right of RLV, c3 : Close to RLV

The completion rule R2RX is applied and we have:

µS3 = δ
µS1
νIN DIRECTION 0 ud δ

µS1
νCLOSE TO

and the following assertion in the ABox : (c3, c1) : hasRO.
The set of inferred spatial constraints is:

fit(µF
S2
, µF
S3

) = fit(µF
S2
, (δ

µS1
νIN DIRECTION 0 ud δ

µS1
νCLOSE TO )F) = 1

and the following constraint must be verified in the image domain :

(µS2)F ≤F (δ
µS1
νIN DIRECTION 0)F ∧ (δ

µS1
νCLOSE TO )F.

The region corresponding to the the right-hand side of the inequality is illustrated
in Figure 2(d). No more completion rules can be applied so the concept RCN is
satisfiable given K if and only if this constraint is satisfied.
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Second scenario. In this second example, illustrating disjunctions of relations,
we are interested in all the instances of Caudate Nuclei in the image. A caudate
nucleus is a grey nucleus which is either to the right or to the left of the lateral
ventricles. This information can be represented by the following axioms:

CN ≡ GN u ∃hasSR.(Right of LV t Left of LV)

Using Rule 2 introduced in Section 4.2, we obtain:

Right of LV t Left of LV ≡ SpatialRelation u ∃hasFR.δµLVνRIGHT OFtdνLEFT OF
.

As a consequence, the search space for the caudate nuclei is computed by:
δνF
RIGHT OF∨νF

LEFT OF
(µF
LV ), which is equivalent to δνF

RIGHT OF (µF
LV )∨δνF

LEFT OF
(µF
LV ).

The corresponding fuzzy region is represented in Figure 3(a).

(a) (b)

Fig. 3. (a) Fuzzy interpretation of the disjunction of the relations “to the left or to the
right of LV”. (b) One of the caudate nuclei is displayed.

7 Conclusions

In this paper, we extended the work described in [19] by the proposition of
a framework for spatial relationships and spatial reasoning under imprecision
based on description logics with fuzzy interpretations in concrete domains and
fuzzy mathematical morphology. The resulting framework enables us to integrate
qualitative and quantitative information and to derive appropriate representa-
tions of concepts and reasoning tools for an operational use in image interpreta-
tion. The benefits of our framework for image interpretation has been illustrated
in the domain of medical image interpretation for the progressive segmentation
and recognition of brain anatomical structures. Future work aims at formaliza-
tion the spatial reasoning in the concrete domain as a constraint satisfaction
problem and at further developing the brain imaging example.
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(eds.) ECAI. pp. 1122–1128. IOS Press (2004)

16. Haarslev, V., Lutz, C., Moller, R.: Foundations of spatioterminological reasoning
with description logics. In: Sixth International Conference on Principles of Knowl-
edge Representation and Reasoning. pp. 112–123. Trento, Italy (1998)

17. Haarslev, V., Lutz, C., Moller, R.: A description logic with concrete domains and a
role-forming predicate operator. Journal of Logic and Computation 9(3), 351–384
(1999)

18. Hernández-Gracidas, C., Sucar, L., Montes-y Gómez, M.: Improving image retrieval
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